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The transverse dynamics of space-charge dominated beams are investigated both analytically and
computationally, in order to understand the mechanisms for emittance oscillations and growth due to
nonlinear space-charge fields. This work explores the role of space-charge dominated equilibrium and
its relationship to phase space wave breaking, which is responsible for the irreversible emittance growth
in these systems. The physics of both coasting and accelerating beams are examined in order to illumi-
nate the most effective approaches to beam handling during the emittance compensation process as well
as during subsequent beam transport. These results are discussed within the context of recent ultrahigh
brightness rf photoinjector designs.

PACS numbers: 05.45.–a, 29.27.Bd, 41.75.Ht, 41.85.Ja
I. INTRODUCTION

In recent years, a concerted attempt has been made to
understand the space-charge dominated beam dynamics of
intense electron beams, mainly in the context of rf pho-
toinjectors. The ultrashort beams in these devices undergo
transverse expansion from the photocathode in the initial
cell of the rf gun, an expansion accompanied by rapid rms
emittance growth [1]. This growth has been found to be
due in large part to correlations between the transverse
phase space angle described by the rms beam size s and
divergence s0 and the longitudinal position in the beam [2].
A transverse cross section of the beam at a given longitu-
dinal position is referred to as a beam slice, and removal of
the correlation between slice position and rms phase space
angle s0�s through appropriate space-charge dominated
beam manipulation is a process known as emittance com-
pensation [2,3]. As discussed in the following section, this
process is explainable in terms of linear plasma oscillations
(the beam is considered to be a nearly laminar, cold rela-
tivistic plasma) about equilibria dictated by the value of
the current at a given slice and the applied external forces.
This analysis, originally performed by Serafini and Rosen-
zweig (SR) [4], led to the identification of a new type of
space-charge dominated beam equilibrium which is found
in accelerating systems, termed the invariant envelope. It
was proposed in this analysis that the invariant envelope
is the preferred mode of beam propagation for providing
optimized emittance compensation. In fact, this point of
view is not completely consistent, as we shall see, with the
original proposed mechanism of emittance compensation.
Part of the motivation for this work is to clarify the role
of the invariant envelope in the emittance compensation
process.

Further, because the invariant envelope is a generalized
equilibrium, a beam slice matched to it in general under-
goes wave breaking in the transverse phase space—where
the previously approximately single-valued distribution of
1098-4402�00�3(9)�094201(19)$15.00
transverse momenta fpx
�x� becomes multiple valued—

thus causing an irreversible emittance growth. This
emittance growth mechanism has been studied extensively
in the field of heavy-ion fusion in the context of Bril-
louin flow (the rigid rotor equilibrium corresponding to
maximum beam density [5]) in coasting, solenoid-focused
beams. It is well understood from the viewpoint of
microscopic phase space dynamics of coasting beams, as
studied by Anderson [6], and alternatively as the conver-
sion of so-called nonlinear field energy to thermal energy,
and thus emittance [6–8]. This irreversible emittance
growth has also been associated in O’Shea’s analysis
with the increase in the beam entropy [9]. The fact that
initially nonuniform density beams which are matched to
external focusing channels undergo wave breaking due to
nonlinear space-charge fields is, at first glance, apparently
at odds with the assertion that the invariant envelope (a
generalized form of matching) is the preferred mode of
transport in pulsed, space-charge dominated beams. This
work is also intended to address and clarify this apparent
disagreement. In the process we also hope to inject
some valuable methods from space-charge dominated ion
beams [10,11] into the study of emittance compensation
of high brightness electron beams. In particular, since the
present work is concerned primarily with purely transverse
microscopic dynamics associated with beams undergoing
reversible and irreversible emittance growth, the connec-
tion of our results is most pronounced with Anderson’s
study of microscopic dynamics in space-charge dominated
ion beams. Conversely, in the cases of present interest we
are not concerned with long-range irreversible behavior,
such as halo formation equipartitioning of energy between
phase planes, and so we do not find it necessary to utilize
thermodynamics-based tools more familiar to the ion
beam community.

Therefore, we can state that this paper is concerned with
the self-consistent phase space dynamics of beam slices
as they evolve under the influences of space-charge and
© 2000 The American Physical Society 094201-1
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external forces. We analytically study these dynamics to
determine the conditions under which phase space wave
breaking occurs, for coasting beams, in slab-symmetric,
as well as cylindrically symmetric, geometries. The slab-
symmetric case is included mainly to allow use of ex-
act and physically transparent results, which illustrate the
mechanisms involved in phase space wave breaking. In
practice, one is nearly always concerned with cylindrically
symmetric beams, and so we extend our discussion of this
case to include acceleration in an rf structure. Because the
analysis of dynamics of this system is not tractable after
wave breaking has occurred, we then also employ com-
putational simulations to further our understanding of the
cylindrically symmetric beam physics in both the coasting
and accelerating cases. The results of this analysis show
that, in order to compensate the beam emittance within
a slice, in the presence of significant nonlinearities in the
space-charge field, one must avoid matching of the beam to
the generalized equilibria (e.g., Brillouin flow, or invariant
envelope), and that the optimal transport of a space-charge
dominated beam is typically not close to such equilibria.

II. ENVELOPE DYNAMICS AND LINEAR
EMITTANCE COMPENSATION

The purpose of this section is to provide a review of
the analytical theory of emittance compensation as formu-
lated by SR in Ref. [4]. This background is needed in
order to understand the detailed nature of the problems ad-
dressed in this paper. The invariant envelope theory begins
with the writing of the cylindrically symmetric rms enve-
lope equation of each beam slice in the long-beam (two-
dimensional) limit. This limit is reached when the beam
is highly relativistic nb ! c �g ¿ 1�, and even a short
pulse of particles appears elongated in the longitudinal di-
mension in its rest frame. In this limit, which is assumed
for the remainder of this section, the transverse defocusing
due to space-charge forces is dependent only on the local
value of the current I�z � � ql�z �nb � ql�z �c and the
rms beam size at the particular slice in question sr�z , z�,
and the envelope equation including acceleration is

s00
r �z , z� 1

µ
g0

g�z�

∂
s0

r�z , z� 1
h

8

µ
g0

g�z�

∂2

sr �z , z�

�
rel�z �

g�z�3sr�z , z�
. (1)

Here z � z 2 ct is the internal longitudinal coordinate of
a fixed position moving beam (and thus labels a slice), z is
the distance along the beam propagation direction, and we
have suppressed the thermal emittance term, which means
we are assuming a highly space-charge dominated beam.
Note that this is a relatively extreme limit, where the ther-
mal motion of particles is completely negligible, and the
motion of the ensemble of beam particles resembles that
of a cold fluid—a one-component relativistic plasma. In
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more standard accelerator terminology, this limit corre-
sponds to full depression of the betatron tune by space-
charge defocusing. This type of ultrarelativistic cold-fluid
(laminar) beam analysis gives an excellent approximation
when one studies high brightness electron beams, but is
less applicable in the context of ion beams, which are typi-
cally not as extremely space-charge dominated.

Also, the parameter h is a measure of the second-order
focusing, e.g., nonsynchronous rf wave [12,13] and/or so-
lenoid focusing [4], applied to the beam as it acceler-
ates with normalized, average (over an rf period) spatial
rate g0 � q�Ez��m0c2. For a standing wave accelerator
h � 1, while for a disk-loaded traveling wave accelerator
it is an order of magnitude smaller [13]. If solenoid focus-
ing is also applied, h ! h 1 2b2, where b � Bz��Ez�. It
should be noted that we have adopted the ultrarelativistic
limit here mainly to simplify the model of the rf focusing,
as well as the mathematics of the analysis. The results we
obtain can be straightforwardly generalized to moderately
relativistic or even nonrelativistic beams.

When the beam is focused by a solenoid, but not ac-
celerating, g0 � 0, we recover the familiar rms envelope
equation

s00
r �z , z� 1 k2

bsr�z , z� �
rel�z �

g3sr�z , z�
, (2)

where kb � qBz�bgm0c2 � qBz�gm0c2 is the spatial
betatron frequency [14], which in this case is identical to
the Larmor frequency of the particle. Equation (2) is a
nonlinear differential equation with no general analytical
solution, but does have a particular equilibrium solution,

seq�z � �
1

kb

s
rel�z �

g3 . (3)

This steady state envelope given by Eq. (3) corresponds
to a rigid rotor equilibrium known as Brillouin flow, in
which the beam’s canonical angular momentum is 0. The
typical way of dealing with solution of Eq. (2) is to expand
it to first order about its equilibrium, in the parameter
dsr � sr 2 seq ø seq, to obtain

ds00
r �z , z� 1 k2

bdsr�z , z� � 2
rel�z�

g3s2
eq�z �

dsr�z , z� ,

(4)

or

ds00
r �z , z� 1 2k2

bdsr�z , z� � 0 . (5)

The general solution for small amplitude motion about
the equilibrium associated with each beam slice is thus,
assuming for simplicity that all slices are initially launched
at the same rms size sr�z , 0� � sr0 with no rms angular
motion s0

r�z , 0� � 0,

sr�z , z� � sr0 1 �sr0 2 seq�z �� cos�
p

2 kbz� , (6)

with derivative

s0
r�z , z� � 2

p
2 kb�sr0 2 seq�z �� sin�

p
2 kbz� . (7)
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In this case the �sr , s0
r� trace space trajectory of the enve-

lope is simply an ellipse whose origin is offset to �seq, 0�.
The mismatched envelopes rotate about this offset posi-
tion with spatial frequency (wave number)

p
2 kb , which

is equal to the plasma frequency kp �
p

4prcnb�b2g3

of the equivalent uniform density �nb �z � � l�z ��2ps2
r �

matched beam [6]. In the small amplitude limit, the oscil-
lation frequency is independent of l�z �. Thus every tra-
jectory of this form aligns in trace space twice per plasma
period, points at which the projected rms emittance ob-
tained by summing �� �� over the ensemble of beam slices
in this trace space,

´r �
q

�s2
r � �s02

r � 2 �srs0
r�2 , (8)

vanishes. This definition of emittance is identical
to that of the standard radial rms emittance ´rms �p

�r2� �r 02� 2 �rr 0�2 if each slice of the beam is a line in
�r, r 0� trace space, which connects the origin to the edge
of the slice distribution through the value �sr , s0

r�. This
case, which is physically realized when the beam’s density
distribution is uniform inside of the radius 2 �

p
2 sr

and vanishing outside of this radius, was the subject of
the envelope dynamics analyzed in Ref. [4].

In the case most relevant to the emittance compensa-
tion process, the beam is launched with a size smaller than
equilibrium for all portions of the beam, and the trace
space trajectories for various slices are nested ellipses.
This is shown in Fig. 1, which displays three elliptical
trajectories corresponding to three different slices with
l1 , l2 , l3. These ellipses are traversed, according to
our linear analysis, with the same frequency. Thus the area
in trace space that the points on the three ellipses describe
when connected to the trace space origin (at an instant in
time), which is proportional to the emittance defined by
Eq. (8), oscillates with twice the mismatch oscillation fre-

 σr

  λ
1 2 3

eq1  
eq2  

eq3

λ 2λ 1< <λ 3

λ λ

σ
σ

σ

σ
r'

FIG. 1. Trace space trajectories for �sr , s0
r � in a system

launched with size below the equilibrium for three represen-
tative slices, with line charges l1 , l2 , l3. Oscillations
proceed at the same frequency �kp �

p
2 kb� about different

equilibrium values of sr .
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quency. This phenomenon is illustrated in Fig. 2, which
displays the trace space area described by the three slices
at kpz � 0, p�2, 3p�2, 2p . It can be seen that the trajec-
tories fan out to produce a large summed (or projected )
emittance at kpz � p�2, 3p�2, while to lowest order the
emittance vanishes at kpz � 0, 2p and also at kpz � p

(not shown). These emittance oscillations repeat twice
every plasma oscillation, but eventually decohere due to
small, higher order differences in the nonlinear plasma fre-
quency in each slice [15]. The proper execution of such
an emittance oscillation due to differential slice motion is
termed emittance compensation in the context of high cur-
rent, space-charge dominated beams in rf photoinjectors.
This simple picture is complicated somewhat by accelera-
tion, as discussed below, but essentially illustrates the rele-
vant physics of the compensation process.

The picture of the slice dynamics displayed in the trace
space diagrams of Figs. 1 and 2 assumes—as is true
of motion originating at a cathode in an rf photoinjec-
tor— that the beam expands from its initial size, exceeds
an equilibrium value, and finally returns to its initial state.
As this is not the most general case, a more complicated,
but equally relevant, picture is displayed in Fig. 3, where
only two of the slices are launched with sizes below equi-
librium, but the third has low enough line charge density
that, at the same initial size of the other two slices, it is
above equilibrium. This picture displays what happens if a
beam is launched with size matched in an rms, integrated
beam sense, so that all slices are the same size, but due to
variations in current, some slice sizes are initially above,
and others below, equilibrium. It can be seen that, while
the slice dynamics and associated emittance evolution
are in some ways different (the maximum emittance is
larger in this case), the overall periodicity of the emittance
oscillation is the same. The most important way in which
the two situations differ is that in Fig. 1 the rms beam

σ

σ
r

r'

k z=3   /2π
p

k z=0,2p π

λ1

λ 2

λ3

λ1< <

λ 2

λ3

k z=  /2πp

FIG. 2. Projected trace space areas described by the three
slices of Fig. 1, at kpz � 0, p�2, 3p�2, 2p . Note the area
(emittance) is maximized at kpz � p�2, 3p�2 and vanishes at
kpz � 0, 2p and also at kpz � p (not shown).
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σ

σ
r

r

λ λ

λ

1 2

3

σeq1 σ
eq2σeq3

'

λ2λ1<<λ 3

k z=  /2π
p

FIG. 3. Projected trace space area described by three slice en-
velopes with line charge l3 , l1 , l2 with the line charge of
slice 3 so low that sr0 . seq, shown at kpz � p�2. The emit-
tance evolution behavior is qualitatively the same as in Figs. 1
and 2, but with larger amplitude of oscillation.

angle s0
r is the same sign for all slices, while in Fig. 3 the

angle of the low current slice is of opposite sign from the
other two. We will return to this important point below.

The extension of this type of motion about an equilib-
rium to a system with longitudinal acceleration has been
considered by SR, who have analyzed the motion of such a
system with Eq. (1). This equation is again nonlinear, but
also has a useful particular solution—which is no longer
an equilibrium, however—with which one can begin an
analysis, termed the invariant envelope [4],

sinv�z , z� �
2
g0

s
rel�z �

�1 1 h�2�g�z�
. (9)

It can be seen that the existence of this particular solution
is not dependent on external focusing, as even with h � 0
(pure traveling wave, no solenoid) the state correspond-
ing to this solution exists due to the effects of adiabatic
damping.

The invariant envelope has the unique property that the
trace space angle s0

r�sr � 2g0�2g is independent of
l�z �. Thus if one places all slices on their invariant en-
velope, they will be aligned in trace space angle and the
emittance vanishes. It is not possible in practice to do this,
and so one must consider what happens when all slices in
the beam ensemble are placed close to their invariant en-
velopes. First, we examine the motion of a slice perturbed
slightly off of its invariant envelope, by using a linear ex-
pansion of Eq. (1) about this particular solution,

ds00
r 1

µ
g0

g

∂
ds0

r 1
1 1 h

4

µ
g0

g

∂2

dsr � 0 , (10)

where dsr � sr 2 sinv. This equation has a general
form of solution, for the type of initial conditions we have
been describing, of
094201-4
dsr � �sr0 2 sinv � cos

∑p
1 1 h

2
ln

µ
g0

g�z�

∂∏
, (11)

so that we can write

sr�z� � sinv 1 �sr0 2 sinv � cos

∑p
1 1 h

2
ln

µ
g0

g�z�

∂∏
,

(12)

and

s0
r�z� �

p
1 1 h

2
g0

g�z�
�sr0 2 sinv �

3 cos

∑p
1 1 h

2
ln

µ
g0

g�z�

∂∏
, (13)

with g0 � g�0�. Thus the mismatch envelope dynamics
are not conceptually much different than in the coast-
ing beam case, with oscillations about the particular
solution (no longer an equilibrium, but a secularly dimin-
ishing envelope) proceeding at approximately the plasma
frequency. Note that the plasma frequency is no longer
a constant in this case, but monotonically diminishes
with acceleration, approximately as kp ~

p
nb�g3 ~

s
21
invg23�2 ~ g21�2. Mismatch envelope dynamics cor-

responding to Eqs. (12) and (13) are illustrated by the
normalized trace space (phase space) picture given in
Fig. 4, which shows the dynamics of three slices corre-
sponding to the hierarchy of currents introduced in Fig. 3.

While the picture in Fig. 4 gives a similar schematic
view of emittance oscillations as Fig. 3, it has two notable
differences with the nonaccelerating case. The first is sim-
ply that the emittance one needs to be concerned with when
the beam accelerates is the normalized emittance ´r,n �
bg

p
�s2

r � �s02
r � 2 �srs0

r�2 � g
p

�s2
r � �s02

r � 2 �srs0
r�2,

which is a measure of the transverse phase space area, and
is thus conserved under linear transport and acceleration.

σr
'γ

λ
3

λ1 λ 2

Phase space area after 1/4 plasma oscillation

σr

γ σr
/ σr =−  γ / 2′′

FIG. 4. Normalized, projected trace space areas described by
three slices with line charge l3 , l1 , l2 as the envelopes
oscillate about the individual invariant envelopes, with the line
charge of slice 3 so low that sr0 . sinv .
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The usual “adiabatic damping” of the trace space area, in
which the trace space angles diminish through acceleration
as bg21, is emphasized in Fig. 4 by rescaling of the
vertical axis with g (recall that we have set b � 1 in this
analysis). This rescaling removes the apparent damping
of the motion and makes the diagram approximately
a correct phase space plot, in the limit b � 1. The
second difference is that all mismatch oscillations have
end points attached to a line gs0

r�sr � 2g0�2 instead
of s0

r � 0. As the invariant envelope associated with
the slices becomes smaller with increasing energy as
g21�2 (the ensemble of ellipses shown slides up the line
gs0

r�sr � 2g0�2 towards the origin), the area associated
with the emittance not only oscillates, but secularly damps
as g21�2.

Note that the offset phase space area described by the
mismatch oscillations (the ellipses in Fig. 4) is actually
conserved, as can be seen through inspection of Eqs. (12)
and (13). This means that for an ensemble of slices placed
all at the same initial phase space condition, but with dif-
ferent l�z �, the set of points which makes up the section of
the phase space boundary not attached to the origin form
a line with varying length but no area. This ensemble
line stretches and rotates about the invariant envelope of
the matched slice. If the invariant envelope slice is actu-
ally present in the beam, the ensemble line passes through
the invariant envelope line gs0

r�sr � 2g0�2, and rotates
about the intersection point of these two lines. This inter-
section is therefore a fixed point in phase space. Thus the
matched invariant envelope is a generalized fixed point in
the envelope phase space. This is an important observation
having implications for particle motion within a slice.

III. LAMINAR AND NONLAMINAR MOTION IN
COASTING SLAB BEAMS

As can be seen by the analysis above, the self-consistent
collective motion of particle beams in cylindrical symme-
try is complicated somewhat by the need to approximate
the solutions to the relevant differential equations. Because
of this, it is most instructive to begin our analysis using a
Cartesian, or slab-symmetric (sheet) beam, following the
general methods introduced by Anderson in Ref. [6].

We start this discussion by examining a freely expand-
ing (unfocused) laminar beam, with initial �z � 0� density
profile, infinite in the y and z dimensions, and propagating
in the 1z direction,

nb�x0� �
Sb

a0
f�x0� � nb0f�x0� with f�0� � 1 , (14)

where Sb is the beam charge per unit (slab) area and a0 �
Sb�nb0 is the effective initial beam width. The case of free
expansion can be considered to be the most nonequilibrium
scenario possible. It can also be thought of as forming one
portion of propagation under periodic application of thin
lenses separated by drifts or free-expansion regions.
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The equations of motion for the electron position for the
free-expansion scenario are, under laminar flow conditions
(meaning particle trajectories do not cross),

x00�z� � k2
p0F�x0�, F�x0� �

Z x0

0
f�x� dx � const,

(15)

where the local value of the initial (spatial) plasma fre-
quency in the plane of symmetry has been defined as

k2
p0 �

4prcnb0

b2g3 . (16)

If laminarity is obeyed, the integral F�x0� is constant and
these equations have solutions dependent only on initial
conditions,

x�x0, z� � x0 1
�kp0z�2

2
F�x0� . (17)

The density distribution is also a simple function of
its initial state, as conservation of probability gives
f���x�x0�, z���dx � f�x0�dx0 or

f���x�x0�, z��� �
f�x0�
dx�x0�

dx0

�
f�x0�

1 1
�kp0z�2

2 f�x0�
. (18)

In the freely expanding case, the density distribution be-
comes more uniform as it expands over many plasma ra-
dians �kpz ¿ 1�,

f���x�x0���� �
f�x0�

1 1
�kp0z�2

2 f�x0�
)

2
�kp0z�2 . (19)

This observation is critical, as it implies that the transport
is “more linear,” since the space-charge defocusing for a
uniform beam becomes approximately linearly dependent
on offset,

x00�z� � k2
p0F�x0� 	 x�2z2. (20)

This will in turn imply that the phase space wave-breaking
effects which lead to irreversible emittance growth are
mitigated, since the angle that a particle attains becomes
more linearly correlated with position,

x0

x
�

k2
p0zF�x0�

x0 1
1
2 k2

p0z2F�x0�
!

2
z

, (21)

If the phase space distribution lies along a straight line, the
emittance vanishes, so Eq. (21) indicates a desirable trend.

An example of this increased distribution uniformity is
shown in Fig. 5, where a beam with initial parabolic profile

f�x0� � 1 2

µ
x
a

∂2

(22)

has freely expanded for a distance kp0z � 4. The profile
has become noticeably flattened during this expansion.

It is instructive at this point to calculate the emittance
evolution associated with the freely expanding beam. In
order to do so, we consider a number of possible forms
of the distribution: Gaussian, parabolic, and uniform
094201-5
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FIG. 5. (Color) Initially parabolic slab beam distribution (solid
line) mapped to more uniform (normalized) distribution (dashed
line) after a drift length kp0z � 4. Distribution shown as a
function of relative offset position x�xmax.

(“flattop”). The single particle equations of motion and
the condition of laminar flow allow the calculation of the
second moments of the distribution and consequently the
rms emittance. Laminar flow implies

nb�x, z�dx � nb�x0�dx0 . (23)

Thus, the second moments of the distribution in trace space
can be simply calculated by integrating with respect to the
initial particle positions. For example, s2 is written as
follows:

�x2� �
Z `

2`
x2�x0, z�nb�x0� dx0 . (24)

Through this method the second moments are straightfor-
wardly calculated, and the emittance is found. The emit-
tance evolution of the drifting laminar beam can be written
in the following general form:

´ � ak2
p0s0z , (25)

where s0 is the initial rms spread in the distribution and a

is a form factor dependent on the initial beam distribution
type. The values of a are summarized in Table I. For a
uniform initial distribution, there are no nonlinear forces,
and thus no emittance growth. Note that in the case of
free expansion the emittance grows linearly with distance

TABLE I. Values of the form factor a for various initial slab-
symmetric distribution types.

Profile a

Gaussian
p

�p 2 3��3p

Parabolic
p

2�3675
Flattop 0
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from the launching point, but has no dependence on initial
beam size, as k2

p0s0 ~ Sb. While this linear growth is
a worrisome phenomenon, it turns out not to be valid for
cylindrically symmetric beams. In cylindrical beams, the
emittance growth is reversed after a time (see the simula-
tion in Fig. 9 below) during expansion, and after applica-
tion of a thin lens, a nearly perfect oscillation of this non-
linear space-charge force-induced emittance can be made
to occur. This compensation of the nonlinearity-derived
emittance, which is the central phenomenon under study
in this paper, will be discussed in following sections.

Wave breaking occurs in phase space when the value of
x�z� somewhere in the distribution becomes independent
of x0, and the transverse momentum distribution becomes
a multiple valued function of transverse offset. According
to Eq. (15), this condition �dx�dx0 � 0� also implies that
the density would become singular at these points. Note
that there is no wave breaking for the free-expansion slab-
symmetric case, as

dx

dx0
� 1 1

�kp0z�2

2
f�x0� . 1 . 0 . (26)

This will change when we introduce focusing, but one
conclusion remains from this analysis: one must allow the
beam to stay far from equilibrium in order to avoid the
most serious consequences of wave breaking.

There are two ways to proceed from this point. One is to
introduce thin lenses to produce a periodic transport sys-
tem with an rms matched (in the sense that the envelope
has the same periodicity and symmetry as the applied fo-
cusing forces) beam. The other is to introduce a uniform
strength focusing channel (akin to the solenoid commonly
used in cylindrically symmetric systems), but to allow a
mismatch between the beam and the channel. In the inter-
est of simplicity, we will follow the latter course first.

In a system with uniform strength focusing, Eq. (15)
becomes

x00�z� 1 k2
bx�z� � k2

p0F�x0� , (27)

where we have introduced the betatron wave number kb

associated with free oscillations under the influence of the
focusing gradient. The equilibrium solution for a given
initial particle position is simply

xeq�x0� �
k2

p0

k2
b

F�x0� . (28)

This equilibrium can be made consistent for all particles, in
the sense that no particles will move after the distribution
is launched, if F�x0� � 1 and k2

p0 � k2
b . If any initial

distribution other than a uniform one is employed, there
will be subsequent motion and associated rearrangement
of the distribution. In this more general case, we may
write the solution to Eq. (27) as

x�x0, z� � xeq�x0� 1 �x0 2 xeq�x0�� cos�kbz� . (29)
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The wave breaking condition associated with this motion
is

≠x
≠x0

�
k2

p0

k2
b

f�x0� 1

∑
1 2

k2
p0

k2
b

f�x0�
∏

cos�kbz� � 0 ,

(30)

or

f�x0� � 2
k2

b

2k2
p0

cos�kbz�
sin2�kbz�2�

. (31)

It can be seen that wave breaking always occurs
for a sufficiently small value of f�x0�, i.e., portions of
the beam found in a long continuous tail, assuming a
monotonically decreasing function f�x0�. Quantitatively,
Eq. (31) states that wave breaking eventually occurs for
all f�x0� , k2

b�2k2
p0, with the most interior value of x0

undergoing wave breaking at kbz � p (for distributions
which smoothly approach zero, wave breaking begins in
these tails at kbz � p�2). It is also apparent that wave
breaking can be avoided by a combination of removal of
the distribution tails, so that f�x0� discontinuously goes
to zero at a hard-edge beam boundary, and by making the
ratio k2

b�k2
p0 become small. When this ratio is near unity,

the beam is closely “matched” to the external focusing,
and when the ratio is much smaller than unity the beam is
mismatched, with the focusing being too weak to control
the beam distribution at its launch size. An alternative
way of understanding wave breaking is to note that the
equilibrium beam size xeq associated with the initial
wave-breaking position is a fixed point of the oscillation.
On the other hand, we know that the origin in trace space
is also a fixed point, with an opposing sense of phase
space rotation about it. The existence of two such fixed
points guarantees that the trace space will filament after
wave breaking and the emittance will grow irreversibly.
The trace space picture of this system is displayed
in Fig. 6.

Thus we deduce that a mismatched beam is more likely
to preserve its laminar flow, under mismatched conditions,
which is an extension and deepening of what we have
learned from the case of free expansion. To emphasize
this point, in Fig. 7 we show a plot of normalized beam
density at the maximal wave-breaking point kbz � p for
a cutoff (at the 25% intensity level) parabolic distribution
in nearly matched �k2

b�k2
p0 � 4�3� and highly mismatched

�k2
b�k2

p0 � 1�3� cases. The nearly matched case barely
evades wave breaking, and displays a very large density
spike at the beam edge, while the highly mismatched beam
easily maintains laminarity, giving a much smaller density
spike.

In order to calculate the emittance evolution in the case
of the slab beam in a focusing channel, we follow the
same procedure as in the drifting beam case up to the
point of wave breaking, where laminar flow strictly ends
094201-7
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FIG. 6. (Color) Trace space picture of slab symmetric beam at
wave breaking onset �kbz � p�2�, for the case of k2

b�k2
p0 �

2�3, showing two fixed points with opposing direction of
rotation.

and our present analysis breaks down. Assuming a cold
beam initially at a waist �x0

0 � 0� the emittance evolution
is found to be

´ � a
k2

p0

kb

s0jsin�kbz�j , (32)

where, again, a is a constant depending on the form of the
initial distribution and the factor k2

p0s0 ~ Sb has no de-
pendence on initial beam size. We note from this that the
predicted maximum emittance occurs at kbz � p�2, as
with the correlated interslice emittance studied in Ref. [4].
It should also be emphasized that this is the same longitu-
dinal position that the initial wave breaking occurs in for
a distribution with a continuous tail.
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FIG. 7. (Color) Normalized beam density f�f�0� for a beam
with initially parabolic slab beam distribution (cutoff at 0.25 nor-
malized density) at kbz � p for distribution in nearly matched
�k2

b�k2
p0 � 4�3� and highly mismatched �k2

b�k2
p0 � 1�3� cases.

Offset x is normalized to its maximum value in the distribution.
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IV. LAMINAR AND NONLAMINAR MOTION IN
COASTING CYLINDRICAL BEAMS

The density of a continuous beam in an axisymmetric
system can be described by the expression

nb�r , z� � lbf�r,z� , (33)

where lb � I�qn is the beam’s axial charge density. The
electromagnetic force on a particle in such a distribution is

Fr �r, z� �
2q
g2r

Z r0

0
2pnb�r̃, z�r̃ dr̃ 


2ql�r0�
g2r

. (34)

The force has been written in terms of the enclosed
current at an initial point r0�z0�,

l�r0� �
Z r0

0
2pnb�r̃, z0�r̃ dr̃ , (35)

which for laminar flow is a constant of the motion.
The equation of motion for a particle with no canonical

angular momentum experiencing both a solenoidal restor-
ing force and the repulsive space charge force correspond-
ing to Eq. (34) is

r 00�z� 1 k2
br�z� �

2rel�r0�
b2g3r

. (36)

Equation (36), like Eq. (2), is a nonlinear equation not
amenable to exact solution in general. We can begin an
approximate analysis, however, by defining an equilibrium
radius corresponding to each value of r0,

req�r0� �

s
2rel�r0�
k2

bb2g3

 r0

k̄p�r0�
p

2 kb

. (37)

Here we have introduced an average beam plasma fre-
quency

k̄2
p�r0� �

4prcn̄b�r0�
b2g3 �

2rcl�r0�
r2

0 b2g3
, (38)

which corresponds to the mean enclosed initial density
at r0.

We now proceed to linearize Eq. (36) about the equilib-
ria given in Eq. (37) to obtain

dr 00 1 2k2
bdr � 0 , (39)

where dr � r 2 req. This equation yields a familiar form
of solution, for a distribution beginning with no radial
momentum (or angular momentum in the beam’s Larmor
frame)

r�r0, z� � req�r0� 1 �r0 2 req�r0�� cos�
p

2 kbz� .
(40)

The wave-breaking condition is again given by

≠r
≠r0

�
≠req

≠r0
1

∑
1 2

≠req

≠r0

∏
cos�

p
2 kbz� � 0 ,

or
≠req

≠r0
� 2

cos�
p

2 kbz�
2 sin2�kbz�

p
2 �

.

(41)

The quantity on the left-hand side of Eq. (41) can be writ-
ten as
094201-8
≠req

≠r0
�

rp

2l�r0�
≠l

≠r0
�

k2
p�r0�

p
2 k̄p�r0�

, (42)

where we have employed the local measure of the initial
beam plasma frequency,

k2
p�r0� �

4prcnb�r0�
b2g3

�
2rcl�r0�
b2g3r2

0
. (43)

As an illustrative example, let us examine the wave-
breaking condition for the case of an initially Gaussian
beam, where

nb�r0� � nb0 exp�2r2
0 �2s2

r � . (44)

In this case,

l�r0� � 2pnb0

Z r0

0
r exp�2r2�2s2

r � dr

� 2pnb0s2
r �1 2 exp�2r2

0 �2s2
r ��

� 2ps2
r �nb0 2 nb�r0�� (45)

and the wave-breaking condition can be written as

kp0

kb

r0

sr

exp�2r2
0 �2s2

r �q
1 2 exp�2r2

0�2s2
r �

� 2
cos�

p
2 kbz�

sin2�kbz�
p

2 �
,

with k2
p0 � k2

p�0� �
4prcnb0

b2g3 .
(46)

For wave breaking to be avoided, we have that the left-
hand side of Eq. (46) must be greater than unity,

kp0

kb

r0

sr

exp�2r2
0�2s2

r �q
1 2 exp�2r2

0 �2s2
r �



kp0

kb

g�r0� . 1 .

(47)

The function g�r0� is shown in Fig. 8 with f�r0� also
displayed for comparison. It can be seen that g�r0� ap-
proximately follows the density, and thus the threshold for
wave breaking is estimated as

kp0

kb

f�r0� � 1 . (48)
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FIG. 8. A comparison of the function g�r0� with Gaussian
f�r0�.
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TABLE II. Values of the form factor a for various initial cylin-
drical beam slice distribution types.

Profile a

Gaussian 0.141
Parabolic 0.065
Flattop 0

This is in contrast to the equivalent condition found in the
slab beam case,

k2
p0

2k2
b

f�y0� � 1 , (49)

which has the stronger quadratic dependence on the mis-
match parameter kp0�kb .

As the linear dynamics of the axisymmetric beam have
been seen to be formally quite similar to those of the slab
beam, it is not surprising that the emittance evolution is
similar as well. Given the same initial conditions as as-
sumed in the slab case, we find the emittance to be of the
same form as well,

´ � as2
0kp0jsin�

p
2 kbz�j . (50)

Here a is again a form factor, defined as in the previous
section. The numerical values of a found for the cylindri-
cally symmetric case are shown in Table II. We will see
that Eq. (50) provides a very accurate description of the
emittance evolution up until wave breaking. Note that the
emittance in Eq. (50) is in fact linearly dependent on s0,
as kp0 ~ s

21
0 .

V. SIMULATION OF COASTING CYLINDRICAL
BEAMS

The analytical treatments of intraslice transverse space
charge detailed above are limited to the laminar flow
regime and, in the case of cylindrical beams, are only
approximate. They do, however, predict where wave
breaking will occur, and that it can be minimized or
avoided by mismatching the beam-focusing channel
system. In order to test these predictions and examine
the behavior of a beam slice after wave breaking, we use
self-consistent simulations, using a one-dimensional time
dependent code called NORSE, that follow the evolution
of the beam using the space-charge force of Eq. (34). To
simulate the evolution of a beam slice, the space-charge
force of Eq. (34) is calculated by integrating over the
beam density at every time step. In order to counter nu-
merical noise inherent in calculating the beam density, we
employ the use of Riccian particles, as was introduced in
beam simulations in the ITACA code [16]. In this case each
particle has a finite size and its charge distribution is given
by rRic�r, ri � � qi exp�2�r2

i 1 r2��2s
2
i �I0�rri��2ps

2
i .

With this type of particle distribution the beam density
is given simply by the sum of the density contributions
of each particle at a given point, rb�r� �

P
i rRic�r, ri�,
094201-9
and the calculation of the space-charge force is straight-
forward. Because the use of Riccian particles provides
very smooth beam densities, it is not feasible to simulate
a perfectly hard-edged distribution. In the context of this
study, that drawback is not very important since we are
interested in studying distributions that will strongly wave
break.

We found in the case of the slab beam expanding under
its space-charge force that there was no wave breaking for
any type of distribution. Equation (34) tells us that this is
not the case for a freely expanding cylindrical beam if the
initial distribution function falls off, so that the integral of
the charge density does not increase proportionally with r.
In this case we expect wave breaking and look to simu-
lations for understanding of the beam behavior after wave
breaking occurs.

The emittance evolution of the freely expanding beam
shows the effects of wave breaking. As in the focusing
channel, the emittance increases to a maximum at lp0�4
where wave breaking occurs. While the beam contin-
ues to expand, the particles in the vicinity of the initial
wave-breaking point (where the maximum outward force is
found) effectively rotate about this outward-moving point.
This rotation causes the tail particles to “tuck under” in
phase space in a distance a bit longer than the initial plasma
half-wavelength (the plasma frequency is not constant, but
decreases as the beam expands), as would be expected, and
the emittance decreases during this initial rotation. The
emittance growth is not perfectly compensated by this non-
linear effect, however, and the emittance reaches a local
minimum. After that, ´ becomes simply proportional to
s as the beam continues to expand. Examination of the
beam phase space evolution, shown in Figs. 9 and 10, il-
lustrate this process.

We note from Fig. 10(b) that this tuck under effect on
the emittance occurs only after the rms beam size has
grown substantially (recall that kp0z . p, and the beam
has had a large distance in which to expand), as the emit-
tance minimum occurs when s�s0 	 8.5.
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FIG. 9. Results of a simulation of the free-expansion of an
initially Gaussian beam. The beam size (solid line) increases
monotonically while the emittance (dashed line) has a local
maximum and minimum.
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Gaussian beam at the initial emittance (a) maximum and
(b) minimum.

While the drifting beam is instructive, we are interested
in beam transport involving focusing elements. We pro-
ceed again as before by examining two cases: periodic
thin lenses separated by drifts and a focusing channel. In
the case of thin lens focusing we can directly apply the
result of the drifting beam. We find that, for a given trans-
port length, fewer lenses and larger beam size oscillations
will produce a better emittance at the end of the transport
line provided that the beam makes an integer number of
oscillations. Figures 11 and 12 show two simulations of
a beam with the same initial conditions and transported
through the same length of drift. In the first there is one
thin lens applied when s�s0 � 8.5. In the second, in or-
der to approximate a beam which is more closely matched
to a uniform focusing channel, a lens is applied each time
the beam size doubles its initial value. It is clear from the
graphs that, when the beam is allowed to expand enough
to take advantage of the tuck under effect observed in the
drifting beam above, much of the emittance growth can
be reversed when the beam is focused back down. In the
case where the beam size oscillations are kept smaller we
see that the emittance oscillates around its peak value but
never drops to as low a level as in the first case.

The striking performance of the scheme shown in
Fig. 11 for minimizing the emittance at the envelope
094201-10
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FIG. 11. Evolution of beam size and emittance in simulation
with thin lens focusing applied at the point of initial emittance
minimum. Lens strength chosen to reverse the envelope angle.

minimum— in other words, compensation of the non-
linear field-derived emittance— is understandable in a
number of different ways. If the dynamics being described
were only the linear slice dynamics, Figs. 2 and 3 illustrate
that the emittance performance would be qualitatively
the same in Figs. 11 and 12. They are not, however, and
this is because of the strong wave breaking induced in
the intraslice dynamics by the beam being too close to
equilibrium. In other words, the existence of the off-
origin moving “fixed point” in trace space gives rise to
wave breaking, trace space filamentation, and associated
irreversible emittance growth. O’Shea has identified
irreversible emittance growth of this type with an increase
in the entropy which, we note, is also equivalent to loss
of order or information in the system. In the case of
Fig. 11, the emittance increase due to field nonlinearities
is reversed (compensated) and the information about the
beam’s initial state is preserved. An excellent illustration
of this phenomenon is given in Fig. 13, which shows the
beam distribution in r at three points in the propagation
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FIG. 12. Evolution of beam size and emittance in simulation
with thin lens focusing applied at the points of beam enve-
lope doubling and lens strength chosen to reverse the envelope
angle. The simulation is followed for the same number of plasma
periods as in Fig. 11.
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FIG. 13. Evolution of beam distribution during simulation
shown in Fig. 11 at the (a) beginning, (b) focusing lens
(midpoint), and (c) endpoint (emittance minimum).

of Fig. 11— the initial and final states, as well as the thin
lens position. It can be seen that, by this judicious choice
of focusing, the final beam distribution reproduces the ini-
tial distribution remarkably well (information is retained
during the beam oscillation), considering how distorted it
becomes in intermediate points in the propagation.

It is useful at this point to make a connection between
our terminology, based on collective space-charge forces
094201-11
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FIG. 14. (Color) Evolution of emittance for beam rms matched
to a uniform focusing channel from simulation and analytical
prediction [Eq. (50)].

and stated in terms of plasma frequencies, and the termi-
nology of the ion-beam community, which emphasizes the
optical properties of the periodic focusing system used.
Periodic focusing systems are parameterized, in the limit
of no collective forces (emittance dominated beam), by
the betatron phase advance per period m The case shown
in Fig. 11, where the beam expands dramatically between
lenses, is one in which m is undefined, i.e., the trans-
port is unstable with no space-charge defocusing present,
while the space-charge depressed phase advance is near
vanishing. This situation is known to be prone to en-
velope instability [10], however, as well as halo forma-
tion. For long periodic transport systems, these properties
would be highly undesirable, but for the one or two oscil-
lation systems typified by photoinjectors (where the space-
charge tune depression is removed by acceleration) these
effects do not have time to assert themselves. On the other
hand, in the case shown in Fig. 12 where a large amount
of irreversible emittance growth is observed due to wave-
breaking effects, the m is small compared to unity, and the
envelope motion is stable.

It is natural to consider the limit suggested by the
simulation of Fig. 12, in which the beam size does not
vary—the case of a beam matched in the rms sense
to a uniform solenoidal focusing channel. We can also
compare these simulations with the prediction of Eq. (50),
at least until the onset of wave breaking. The emittance
evolution found by simulation of an initially parabolic
beam rms matched to a focusing channel along with
the emittance predicted by Eq. (50) is shown in Fig. 14.
Note that the emittance again follows the same pattern
shown above in that it increases rapidly in a quarter
of a plasma oscillation to a maximum [6]. Since wave
breaking does not occur until this maximum is reached,
the excellent agreement between theory and simulation up
to that point is not surprising. We will encounter a similar
type of emittance behavior in accelerating systems in the
following sections.
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VI. LAMINAR AND NONLAMINAR MOTION IN
ACCELERATING CYLINDRICAL BEAMS

In the case of a beam accelerating under the influence
of radio frequency fields, the paraxial equation of motion
for a particle in a laminar flow condition now contains
terms arising from adiabatic damping and ponderomotive
(alternating transverse gradient) forces,

r 00�z� 1

µ
g0

g�z�

∂
r 0�z� 1

h

8

µ
g0

g�z�

∂2

r�z� �
2rel�r0�
g�z�3r

,

(51)

which is again a nonlinear equation without an analyti-
cal solution. In this system, there is also an equilibrium-
like particular solution to Eq. (51), which is analogous to
the invariant envelope above, corresponding to each value
of r0.

As in previous sections, we proceed by finding an ana-
lytical formula for the emittance of a “matched” beam. In
the case of an accelerating beam, we mean matched in the
sense that the rms size of the beam follows the invariant
094201-12
envelope. This situation is slightly different from that of
coasting beams because we are required to reference s0 to
the nonstationary particular solution

rp�r0, z� �
4
g0

s
rel�r0�

�2 1 h�g�z�


 r0
k̄p�r0�

kb

s
1

2 1 h

g0

g�z�
. (52)

In Eq. (52) we have identified kb � g0�
p

8 g, and can
see that the particular solution is again proportional to the
initial ratio k̄p�r0��kb . We can again proceed to linearize
Eq. (52) about these particular solutions to obtain

dr 00 1

µ
g0

g

∂
dr 0 1

1 1 h

4

µ
g0

g

∂2

dr � 0 , (53)

where dr � r 2 rp . This equation has a general form
of solution similar to that given by Eqs. (12) and (13).
Therefore, we can solve Eq. (51) to find the single particle
motion, yielding
r�r0, z� � rp�r0, z� 1 �r0 2 rp0�r0�� cos

∑p
1 1 h

2
ln

µ
g0

g

∂∏
1

1
p

1 1 h
�r0 2 rp0�r0�� sin

∑p
1 1 h

2
ln

µ
g0

g

∂∏
,

(54)
where the integration constants are chosen so that

r 00 �
1
2

g0

g
r0 . (55)

The wave-breaking condition is now given by

≠rp

≠r0
� 2

cos�
p

11h

2 ln�g0

g ��

2 sin2�
p

11h

8 ln� g0

g ��
. (56)

The quantity on the right-hand side of Eq. (56) can be
recast to give

≠rp

≠r0
�

4pr0nb

g

s
rc

�2 1 h�l�r0�g�z�

�
k2

p�r0�
2kbg0

r
h

2 1 h

� 2
cos�

p
11h

2 ln�g0

g ��

2 sin2�
q

11h

8 ln�g0

g ��
, (57)

and we see that wave breaking is again averted by cutting
the tails off of the distribution.

To proceed in the analysis, we again use the laminarity
condition to integrate over the initial beam distribution and
determine the second moments of the distribution and the
emittance. We find that the geometric emittance evolution
for a beam rms matched to the invariant envelope is
´geom �
4arelb

g0
p

p�1 1 h�g0g3

Ç
sin

∑p
1 1 h

2
ln

µ
g0

g

∂∏ Ç
.

(58)

The subscript indicating that the emittance is the geo-
metric measure is included here to differentiate this mea-
sure of trace space area from the normalized emittance
�´m � bg´geom � g´geom� which measures the beam’s
phase space area. In Eq. (58), as before, a is a unitless
constant depending on the initial beam distribution, with
values listed in Table III.

The expression for the emittance evolution given in
Eq. (58) is valid (in the linear approximation jdrj ø rp)
up to the wave-breaking point. The details of wave break-
ing in the accelerating beam system are discussed in the
following section. Note that the emittance for this case
is inversely dependent on the acceleration gradient g0 and
proportional to the beam current. These dependences are
due primarily to the setting of the beam size with the in-
variant envelope.

TABLE III. Values of the form factor a for various initial
cylindrical beam slice distribution types, accelerating case.

Distribution type a

Gaussian 0.1704
Parabolic 0.0561
Flattop 0
094201-12
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VII. SIMULATION OF ACCELERATING
CYLINDRICAL BEAMS

In this section we study the behavior of an initially
parabolic profile accelerating beam matched in the rms
sense to the invariant envelope and compare simulation to
analytical results. Figure 15 shows the simulation of nor-
malized emittance evolution in such a case, along with
emittance predicted by Eq. (58). Again we see that the nor-
malized emittance rapidly increases to a local maximum.
We also see from the figure that the analytical formula for
the emittance agrees well with the simulation up to the
emittance maximum. However, because Eq. (53) is the
linearized equation of motion, and jdrj has constant am-
plitude, while rp ~ g21�2 ~ z21�2 decreases, the agree-
ment between theory and simulation is not as striking as
with the coasting beam. Also, we see that theory and simu-
lation do not agree after the emittance maximum. This is
in keeping with the coasting beam results, as the beam un-
dergoes wave breaking near the emittance maximum and
the assumption of laminarity used in Eqs. (51)–(58) is no
longer true. This wave breaking is easily seen in the beam
trace space at the peak emittance shown in Fig. 16.

We observe in Fig. 15 that the emittance does not change
significantly shortly after the emittance maximum. Since
the transverse plasma frequency of the beam decreases
as 2g3�2, the acceleration process essentially stops the
plasma oscillations and the beam becomes emittance domi-
nated. The initial emittance growth caused by space-
charge field nonuniformities then is “frozen in” and the
094201-13
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FIG. 15. (Color) Emittance evolution of an initially parabolic
beam matched to the invariant envelope with a 60 MV�m peak
accelerating field gradient. (These beam and accelerator parame-
ters are the same as those in the booster linac at the Neptune
Advanced Accelerator Laboratory [17].) The dashed line is the
simulation result and the solid line is produced by Eq. (58).

beam has a finite irreversible emittance. We can use
Eq. (58) to estimate the final emittance of the beam and,
therefore, its size in the emittance dominated limit. To do
this we start by finding the position of the emittance maxi-
mum,
≠´2
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� 2
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or

tan

∑p
1 1 h

2
ln

µ
g0

g

∂∏
� 2

p
1 1 h . (60)

Equation (60) yields the position of the emittance maxi-
mum,

z´max �
g0

g0

"
1

e�2 tan21�2
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11h ���
p

2
2 1

#
, (61)

and the maximum emittance at this point is simply

´n,max �
4arelb

g0g0
p

p�1 1 h�
sin�tan21�2

p
1 1 h��

�exp�
p

2 tan21�
p

1 1 h ���1�2
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(62)

The final beam size in the simulations is estimated by
ignoring the space-charge term in the envelope equation
and assuming a steady state solution based on a constant
normalized emittance equal to the maximum as predicted
by Eq. (62),

smin �

µ
8
h

∂1�4
s

´n,max

g0
. (63)

A comparison between the final rms beam size achieved in
simulation and the prediction of Eq. (63) for the simula-
tion case of Fig. 16 is shown in Fig. 17. The agreement is
remarkably good in the asymptotic region, where the simu-
lated beam size approaches a constant value very close to
that predicted from the analytical result of Eq. (63). Thus,
one can determine the final beam characteristics simply
by knowing the degree of nonuniformity of the initial dis-
tribution (which is parameterized by a) at the beginning
of acceleration with transverse matching to the invariant
envelope.
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FIG. 16. (Color) Trace space of an initially parabolic beam slice
at the maximum emittance point in the accelerating beam simu-
lation. Wave breaking has just occurred.

As an example of the potential final emittance, we take
the nominal linear coherent light source (LCLS) photoin-
jector design parameters [18], in which a 100 A beam is
emitted in a high gradient rf gun, accelerated to g0 	 14,
and then focused into a matched invariant envelope at the
beginning of a high gradient linac. For a standard SLAC
S-band traveling wave �h � 0.3� linac (average acceler-
ating gradient of 17 MeV�m), one obtains an asymptotic
emittance of ´n,max � 6.5a mm mrad. Even though a
roughly uniform beam is planned to be launched at the
cathode in this device, it will be nonuniform at the injec-
tion to the linac due to nonlinearities in the space-charge
forces at very low velocities, as well as imperfections in
the drive laser spatiotemporal profile. To see the potential
effects of such nonlinearities, assumption of a � 0.1
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FIG. 17. (Color) The beam envelope evolution for the same
simulation as Fig. 16. Here the beam size follows the invari-
ant envelope initially, but levels off as it approaches the limit
predicted by Eq. (63).
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(between a Gaussian and a parabolic profile) gives
a predicted emittance due to nonlinearities alone of
´n,max � 0.65 mm mrad, which is nearly equal to the full
allowed design emittance in the LCLS. An alternative
design, which is discussed below, uses the high gradient
(29 MeV�m average) standing wave �h � 1� plane-wave
transformer (PWT) linac developed at the UCLA Neptune
Laboratory [17] for acceleration after the gun. In this case,
we have ´n,max � 2.75a, which produces a more tolerable
margin for emittance due to nonlinearities and wave
breaking.

VIII. EMITTANCE COMPENSATED
THREE-DIMENSIONAL BEAM SIMULATIONS

The results of the one-dimensional beam distribution
(with z dependent dynamics) analyses discussed above
were introduced, of course, to aid in explaining the physics
of beams with truly three-dimensional distributions, such
as are found in short-pulse photoinjectors. An interest-
ing photoinjector design has just been developed in con-
text of the LCLS x-ray free-electron laser (FEL) injector
collaboration [18], in which an ultrahigh gradient rf gun
is followed by two short (42 cm) PWT sections to bring
the beam to 33 MeV final energy. This design was origi-
nally found by use of a linear “slice” simulation code,
termed HOMDYN [19]. In the case of the LCLS photoin-
jector, the design parameters predicted by HOMDYN were
verified by multiparticle simulation, as we shall see below,
to be excellent choices. The design assumes a perfectly
uniform beam emitted from the cathode (constant current
density up to hard boundaries in radius and time), and thus
is modeled well by HOMDYN, which assumes the same sce-
nario. On the other hand, we are presently concerned with
beam densities with nontrivial radial dependences, which
we have found to give rise to both reversible and irre-
versible emittance growth. Thus, in order to illuminate the
role of the nonlinear intraslice forces we have examined
here, we compare cases with radially uniform and nonuni-
form emission via three-dimensional, self-consistent mul-
tiparticle PARMELA simulation.

We begin by illustrating the dynamics of the rms
beam size and normalized rms emittance in the case of
a perfectly uniform beam injected at the photocathode in
Fig. 18. The pulse is uniform over 10 psec and a radius of
1 mm, and vanishes outside of these boundaries. The total
charge injected is 1 nC, and the peak accelerating fields in
the rf gun and PWTs are 140 and 58 MV�m, respectively.
The focusing solenoid is adjusted to produce a matched
invariant envelope in the PWT post-acceleration sections.
Figure 18 shows the extremely good rms normalized emit-
tance achieved (0.4 mm mrad) in this design after a final
drift to roughly 4 m from the cathode. It should be noted
that, as one might expect from the simulations shown in
Fig. 11, the size of the beam on the cathode and its size
at the first compensation point (end of first beam size
094201-14
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FIG. 18. (Color) Results of a PARMELA simulation of a uniform beam emitted at the cathode in the LCLS photoinjector design, with
a 1.6 cell rf gun followed by an emittance-compensating solenoid and two PWT standing wave sections.
oscillation) are nearly identical in this optimized design.
This fact points to the close relationship that interslice
(linear) and intraslice (nonlinear) emittance oscillations
have with each other— they are both governed by the
same oscillation frequency but, in contrast to the intraslice
emittance growth, the interslice dynamics are always
reversible.

The �x, z� spatial profile of the 10 000 simulation par-
ticles at the z � 4 m point is shown in Fig. 19. It can be
seen that, while the core of the beam is well behaved in
terms of the different z slices ending up in the same con-
figuration, the leading and trailing beam edges display very
different behavior. This is due to the fact that the transverse
space-charge forces drop dramatically in these longitudi-
nal “tail” regions, and the particles in these slices do not
focus to space-charge dominated waists, but actually cross
the beam axis. This is clearly an example of nonlaminar
flow, and, as a result, the total transverse phase space bifur-

FIG. 19. (Color) Spatial �x, z� distribution at the end of the
PARMELA simulation shown in Fig. 18.
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cates into two populations. One population is composed
of slices whose dynamics were described in Sec. II, and
has essentially no wave breaking associated with it, and
another in which beam particles wave break near the trace
space origin (not off axis, as our analysis in preceding sec-
tions has examined).

These populations can also be observed in the �x, y� spa-
tial distribution shown in Fig. 20(a) and the phase space
distribution displayed in Fig. 21(a). In Fig. 20(a) the bi-
furcated population produces a slight beam halo, while in
Fig. 21(a) one can directly see the bifurcation as distinct
lengths of the slices in phase space. These points are em-
phasized by Figs. 20(b) and 21(b), in which the �x, y� spa-
tial and phase space distributions are shown for the beam
population located only within dz � 60.1 mm from the
beam longitudinal center. In Fig. 20(b), the beam halo es-
sentially disappears when this cut is made. In Fig. 21(b),
one sees a very interesting situation—even though the lon-
gitudinal tails have gone bifurcated, they are realigned in
phase space with the beam cores. The difference between
the bifurcated and unbifurcated populations is simply that
the length in phase space is larger for the bifurcated popu-
lation in the longitudinal tails.

This dynamical picture changes significantly if one in-
jects a beam with a radially nonuniform current profile
(but same rms beam dimensions), as is the case in the
simulation results shown in Fig. 22. Here a radial Gauss-
ian profile, cutoff at r � s, is introduced at the cathode.
While the rms beam envelope does not change appreciably
with a nonuniform injected beam, as is well known in the
theory of space-charge dominated beams [10], the phase
space dynamics reveal many changes from the uniform
beam case, as can be seen by examining the rms emittance
evolution in Fig. 22. As expected, the emittance grows
significantly when nonlinearities in the space-charge field
094201-15
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FIG. 20. (Color) (a) Spatial �x, y� distribution at the end of the
PARMELA simulation shown in Fig. 18. (b) Spatial �x, y� distri-
bution at the end of the PARMELA simulation shown in Fig. 18,
with a cut made on the distribution at dz � 60.1 mm to remove
longitudinal tails.

are enhanced by the nonuniformity of the beam’s radial
distribution. Also, as expected, the total emittance of the
beam in this case is dominated by the slice emittance and
not by the differential phase space angles of each slice.
The degree to which this is the case can be deduced by ex-
amination of the spatial �x, z� distribution at the end of the
simulation shown in Fig. 23. In this configuration space
picture, we see that the strong difference in transverse pro-
file as a function of z is greatly mitigated when the beam
is no longer radially uniform at injection.
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FIG. 21. (Color) (a) Phase space distribution at the end of the
PARMELA simulation shown in Fig. 18. (b) Phase space distri-
bution at the end of the PARMELA simulation shown in Fig. 18,
with a cut made on the distribution at dz � 60.1 mm to remove
longitudinal tails.

Figure 23 also displays the existence of a long trans-
verse halo. This halo, along with the general nonunifor-
mity of the �x, y� spatial distribution at the end of the
simulations, is also shown well in Fig. 24(a). The halo
is quite uniformly contributed from all z slices of the
beam, as can be deduced as well from Fig. 24(b), where
the �x, y� spatial distribution is replotted after making cuts
at dz � 60.1 mm. It can be seen from comparison of
Figs. 24(a) and 24(b) that the transverse halo does not pref-
erentially arise from the longitudinal tails of the beam.

This conclusion is strongly reinforced by the phase
space plots shown in Fig. 25(a) (full beam) and 25(b)
(distribution cut at dz � 60.1 mm). The full and cut
phase spaces are virtually identical, as are the normal-
ized rms emittances ´n � 2 mm rad for the full beam,
1.8 mm mrad for the cut distribution). The lack of no-
tably different behavior between the longitudinal beam
core and tails in the nonuniform beam is a result of the
mitigation of an unphysical discontinuity in the beam
profile. Thus we expect the results of our one-dimensional
094201-16
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FIG. 22. (Color) Results of a PARMELA simulation of a radially nonuniform beam (Gaussian, cutoff at r � s) emitted at the cathode
for the same accelerator conditions as in Fig. 18.
(purely radial) dynamics analysis to be surprisingly more
applicable to modeling of finite length photoinjector
beams than might be deduced from the purely uniform
beam case.

The phase space pictures shown in Fig. 25 display
again a bifurcation of particle populations, along with the
long halo of particles at large amplitude in phase space.
This bifurcation is essentially not due to differential slice
motion in this case, but is due to wave breaking. The
components of the beam which have not undergone wave
breaking are localized within jx0j , 10 mrad, while the
components which have undergone wave breaking display
large angles and offsets in x.

The phase space distributions shown in Fig. 25 are com-
plicated pictures, which result from two separate folding
bifurcations of the transverse distribution within a slice.
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FIG. 23. (Color) Spatial �x, z� distribution at the end of the
PARMELA simulation shown in Fig. 22
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The core of the beam, which is inside of the initial wave-
breaking point, is well behaved, laminar, and aligned to
near the x axis. On the other hand, the particles which be-
gin outside of the initial wave-breaking point fold twice:
first these particles “tuck” under the core of the distribu-
tion, and then the ones at largest initial x move quickly
across the x � 0 axis to large amplitude and positive
�x,x0 � correlation. The particles at intermediate initial
values of x between these two cases are almost, but not
quite, prevented by the space-charge forces from cross-
ing the x � 0 axis, and end up nearly aligned to this �x0�
axis. Thus the characteristic “cross” shape within a large
amplitude halo seen in Fig. 25 is formed. This elaborate
phase space picture of course implies that a large amount of
irreversible emittance growth has occurred. The differ-
ences between Figs. 21 and 25 illustrate well one of the
main points of this paper— the onset of wave breaking and
emittance growth which results from matching of a beam
to a generalized transverse equilibrium.

We also note that the emittance as shown in Fig. 22 is
much larger than the sum of the emittance in the uniform
beam case with the estimate of Eq. (62) added to it. The
extra component of the emittance given in Eq. (62) is due
only to wave breaking occurring after entrance into the
first PWT linac and ignores the emittance one may expect
from the initial beam oscillation from the cathode to this
point. We have not provided an emittance estimate from
the nonlinear intraslice dynamics during this oscillation.
This is in part because our previous analyses do not allow
a good modeling of cylindrically symmetric beams so far
from equilibrium, and also because the transverse fields of
the beam very near to the cathode are not of simple quasi-
one-dimensional form, as is also assumed in our previous
analyses.
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FIG. 24. (Color) (a) Spatial �x, y� distribution at the end of the PARMELA simulation shown in Fig. 22. (b) Spatial �x, y� distribution
at the end of the PARMELA simulation shown in Fig. 22, with a cut made on the distribution at dz � 60.1 cm to remove longi-
tudinal tails.
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FIG. 25. (Color) (a) Phase space distribution at the end of the PARMELA simulation shown in Fig. 22. (b) Phase space distribution
at the end of the PARMELA simulation shown in Fig. 22, with a cut made on the distribution at dz � 60.1 cm to remove longi-
tudinal tails.
IX. CONCLUSIONS

In this paper, we have explored the consequences—
wave breaking and associate emittance growth—of the
choice of beam envelope trajectory, i.e., the degree to
which a beam is matched to a generalized equilibrium.
In cases where the nonlinearity of the field is tolerable
(as in the perfectly uniform beam simulated in Sec. VIII),
running the beam essentially on the invariant envelope in
a booster linac works well, as predicted by the analysis
of SR. In the example of such a case (Figs. 18–21), it
can be seen that very few nonuniformities are introduced
into the distribution by the initial emittance oscillation, in
which the beam leaves the cathode, experiences some non-
094201-18
negligible nonlinearities in the field for a short time, and
is then accelerated and focused (to the same radius as at
the cathode) to produce a beam which is appropriate for
injection into the linac. This example illustrates one of
the conclusions of our work—emittance compensation in
cylindrically symmetric systems works well when the os-
cillation has a large amplitude, far from a matched con-
dition. This conclusion is applicable to transport in a rel-
atively low energy beam line (e.g., 20 MeV in the Tesla
Test Facility [20]) placed after an emittance compensated
photoinjector.

On the other hand, when a moderately nonuniform
beam is injected at the cathode, the initial emittance
compensation is degraded and the “second compensation”
094201-18
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achieved by matching to the invariant envelope is almost
eliminated—in the uniform beam, the emittance dimin-
ishes by 60% in the second compensation, and in the
nonuniform beam case it is diminished by only 20%. The
minimum emittance associated with the process illustrated
by this example is given by Eq. (62), which serves a useful
guide to estimation of the best performance possible for a
given injector configuration.

In conclusion, in this work we have attempted to unify
the microscopic concepts of linear emittance compensa-
tion, which arise in high brightness electron beam physics,
and nonlinear wave breaking, which has had an impact
on the understanding of ion beam physics, showing their
relationship to one another in the context of high bright-
ness photoinjectors. We have provided both a qualita-
tive picture of extremely space-charge dominated beam
dynamics in radially nonuniform beams and quantitative
predictions concerning the irreversible emittance expected
to arise due to wave breaking and subsequent phase space
filamentation. This understanding aids in the classifica-
tion of global characteristics of beam distributions, such as
nonlinear field energy and entropy, which have been orig-
inally introduced in the field of intense ion beams. While
it is clear that this work has imported some valuable con-
cepts from this field into the study of the high brightness
electron beams, it is not yet clear that our results are of
other than conceptual significance to the study of intense
ion beam transport. This question will be left to further
investigations.
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