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Optical principles of beam transport for relativistic electron cooling
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In conventional low energy electron coolers, the electron beam is immersed in a continuous solenoid,
which provides a calm and tightly focused beam in a cooling section. While suitable for low energies, the
continuity of the accompanying magnetic field is hardly realizable at relativistic energies. We consider
the possibility of using an extended solenoid in the gun and the cooling section only, applying lumped
focusing for the rest of the electron transport line.

PACS numbers: 29.27.Eg, 29.27.Fh
I. INTRODUCTION

Although electron cooling [1,2] has been a routine tool
in many laboratories [3], its use has been restricted to
low energy accelerators with the kinetic energy ,1 GeV�
nucleon, i.e., ,0.5 MeV of electrons. Currently, there are
two relativistic energy range electron cooling projects be-
ing developed: one is at Fermilab, for 8.9 GeV�c antipro-
tons in the recycler ring [4], and the other is at DESY, for
a 15 20 GeV�c bunched proton beam in PETRA ring [5].
Traditional low energy electron cooling devices follow an
original design of the cooler EPOKHA at the storage ring
NAP-M [6] employing a continuous longitudinal magnetic
field in the kilogauss range for the electron beam transport
from the cathode through the cooling region to the collec-
tor; see Fig. 1.

The solenoidal field uniquely provides a focusing prop-
erty, crucial for electron cooling: it allows one to confine
tightly the electron beam while keeping its angular spread
small. Although at higher energies the space charge and
collective interaction effects become less destructive, the
mentioned property of the solenoidal field makes it very
beneficial. This was found to be true for the developed
medium-relativistic projects [4,5,7,8], but not only there.
According to Refs. [9,10], the solenoidal field in the cool-
ing section can be very advantageous at much higher en-
ergies as well. That is why a necessity of the longitudinal
magnetic field in the cooling section is assumed in this pa-
per. This does not mean that a possibility for effective cool-
ing without the solenoidal field is totally denied; rather,
such possibility, if found, would lie beyond the scope of
this paper.

In principle, a continuous solenoid along the whole elec-
tron beam line suggested in Ref. [8] would be a good fo-
cusing option at any energy. Such a solution though is
hardly compatible with the beam acceleration up to rela-
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tivistic energies and also with design advances (related to
cooling of bunched beams) such as electron bunch decom-
pression, incorporation of recirculator rings, etc. [5,10].
However, a different scale of electron energies under con-
sideration allows one to modify this approach. Namely,
lumped focusing can be used for the beam transport line
with the idea of avoiding any coherent motion of the beam
inside the cooling solenoid [4,5,10].

A beam state required by the electron cooling is charac-
terized by a high ratio between the beam size and the Lar-
mor radius; this state is referred to as calm or magnetized.
The transport line can include any separated optical ele-
ments such as solenoid lenses, dipoles, and quadrupoles.
It is shown in this paper that a calm beam in the cooler
requires certain matching between a magnetized electron
gun and the cooler solenoid. A linear theory of matched
four-dimensional optical transitions is presented which al-
lows one to formulate properties of the transport line. The
beam transformations are described in terms of the drift
and the cyclotron degrees of freedom; the necessity of hav-
ing them uncoupled is shown. For a beam born at a round
cathode, it is proved that the cathode has to be properly
magnetized. The possibility of transforming a ribbon elec-
tron beam in a storage ring into a calm beam in the cooler
is discussed. An example of a conceptual design of rela-
tivistic electron cooling is shown assuming an electrostatic
accelerator as a source of the electrons. In this device, only

FIG. 1. (Color) Sketch of the NAP-M electron cooler EPOKHA.
Electrons follow the magnetic field lines (green arrow lines)
from the cathode to the collector.
© 2000 The American Physical Society 094002-1
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the gun, cooling section, and the collector are immersed in
solenoids while the rest of the beam line has a lumped
focusing.

II. ANGULAR MOMENTUM-DOMINATED BEAM

On entering or exiting the solenoid, the beam acquires
a kick that changes its rotational state. Inside the cool-
ing solenoid, the beam is required to be calm, i.e., not to
have any angles in excess of the thermal ones (assumed
to be negligible in this section). The above point is very
important: the cooling rates are inversely proportional to
a relative electron-ion velocity cubed; thus, any coherent
angle above the thermal level dramatically depresses the
cooling process. The questions under consideration are
whether and how this requirement can be compatible with
the lumped focusing scheme.

A. Solenoids and acceleration intervals

First, let the beam line consist of aligned solenoids and
acceleration intervals only. For these straight and axially
symmetric lattices, Busch’s theorem states that the canoni-
cal angular momentum

M � xpy 2 ypx � pr2u0 2 eF�r , z��2pc (1)

is conserved along any of the electron trajectories (see, e.g.,
[11,12]). Here, x, y, px, py are the transverse Cartesian
coordinates and their canonically conjugated momenta,
r, u, z are the cylindrical coordinates, the prime denotes
a derivative along the axis z, p � gbmc is the total mo-
mentum, F�r, z� � 2p

Rr
0 B�r̃�r̃ dr̃ is the magnetic flux

inside a circle enclosed by the electron offset r, and 2e
is the electron charge. The canonical angular momentum
(CAM) of any electron is thus determined by its initial
value, i.e., by its value at the cathode. Thus, the conserva-
tion of the CAM allows one to express an electron angular
velocity at a given point of its trajectory in terms of the
magnetic fluxes enclosed by this electron at this point and
at the cathode. In the paraxial approximation, the mag-
netic field can be considered uniform over the beam cross
section, which gives

u0 � e�Br2 2 B0r
2
0 ��2pcr2 , (2)

with B0 and r0 the magnetic field and electron offset, re-
spectively, at the cathode.

The single particle radial offset is described by the
paraxial ray equation [12]
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g0r 0

b2g
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µ
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2pc

∂2
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µ
eB0

2pc

∂2 r4
0

r3

� K
r

a2 2
g00r

2b2g
, (3)

where a is the beam radius, K � 2I�I0b3g3 is the gen-
eralized perveance with I standing for the current and
I0 � mc3�e � 17 kA. The right-hand side takes into ac-
count both the space charge and the external transverse
094002-2
electric field. The beam envelope a � a�z� is found from
Eq. (3) by the substitution r � a, r0 � a0 with the initial
conditions a�0� � ao , a0�0� � 0. All the trajectories with
r 0�0� � 0 scale as r�z� � r0a�z��a0.

Without the transverse electric fields, Eqs. (2) and (3)
have an r 0 � 0 solution inside an extended solenoid of the
cooler. This solution is realized if, after the entrance in the
cooler,

a0 � 0, Ba2 � B0a
2
0 . (4)

At the exit of the gun solenoid, the beam acquires an azi-
muth velocity. During the transport, this velocity changes,
partly transforming into the radial velocity. However, if
the beam state at the entrance of the cooler is matched
with its state at the cathode so that the conditions (4) are
satisfied, the beam transverse velocities are finally can-
celed. Schematically, the beam transport with the matched
entrance in the cooling solenoid is depicted in Fig. 2.

In the cooler, the space charge limits the minimal at-
tainable angle,

p
a2u02 1 a02, which cannot be zero. As

follows from Eqs. (2) and (3), the angle is minimized when
the cyclotron motion is not excited, a0 � 0, and the angle
is given by an azimuthal drift

au0 � 2I�g2b2Bac . (5).

The drift angles can be neglected if they do not exceed
the thermal angles of the cooled ions; this puts the lower
boundary on the magnetic field in the cooling section.

With the drift neglected, the electrons do not have any
transverse velocity inside the cooling solenoid provided
that the matching conditions (4) are satisfied.

If the solenoid radius is much smaller than a period of
the Larmor helix, the solenoid entrance can be considered
as a thin boundary. In this case, the matching require-
ments (4) become explicit boundary conditions at the sole-
noid entrance. Note that, in the linear approximation, the
matching is satisfied for every trajectory once it is satisfied
for one of them.
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FIG. 2. (Color) Beam transport with matched entrance in the
cooler. The beam envelope is depicted at the top. Transfor-
mation of electron coordinates �r � �x, y� and velocities �r0 �
�x0, y0� are shown at the bottom.
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In the radial equation (3), the last term on the left-hand
side is determined by the inherited CAM M � eB0r

2
0 �2c.

Radial dependence of this term allows one to treat the
CAM as effective (unnormalized) emittance

´eff � M�p � F�2pBr , (6)

with Br � pc�e. Then, this analogy leads to a concept
of an effective beta function

beff � a2�´eff �
2pgbea2

reF
. (7)

The effective beta function determines a required lens-
to-lens distance in the beam transport channel. For a con-
ventional low-energy cooler, assuming the electron kinetic
energy Ee � 25 keV, the magnetic flux F � 1p kG cm2,
and the beam radius a � 1 cm, the effective beta function
is very small, beff � 1 cm. It means that the accompa-
nying magnetic field cannot be actually interrupted in this
region of parameters. However, the situation changes for
relativistic coolers where the accelerated beam is more
rigid, and the magnetic flux can be significantly reduced.

For the Fermilab project, for instance, with the elec-
tron kinetic energy in the cooler Ee � 4.3 MeV, the space
charge limitation (5) allows for a rather small value for the
magnetic flux: F � 30p G cm2 [4]. For the beam radius
of a � 0.6 cm, the accompanying magnetic field can be
interrupted at early stages of the acceleration; for gb � 2
Eq. (7) already gives beff � 20 cm.

When extracted from the magnetic field, the divergence
of this cold and low space charge beam is determined by
the inherited canonical angular momentum. Beams of this
type can be referred to as an angular momentum domi-
nated, as distinguished from emittance and space charge
dominated beams.

The transport of the angular momentum dominated
beam is not completely identical to that of the emittance
dominated beams, as can be concluded from the envelope
equation (3). The principal difference is that the CAM-
related angles are not random; once acquired, they can be
effectively nulled out by a proper beam matching in the
downstream solenoid, as sketched in Fig. 2. Because of
the momentum spread of electrons, though, this extraction
gets to be imperfect: electrons with different momenta
have different phase advances. Note that the mismatch
caused by the momentum spread increases with the
magnetic field due to a growth of the phase advances
and their spread; thus, from this point of view, a lower
magnetic field is more beneficial. In this paper, that issue
is not discussed in more detail; the electron momentum
spread is supposed to be insignificant, which requires the
phase-mismatch electron angles in the cooler to be smaller
than the angles of the cooled ions.

B. Bends

Above, a straight transport line was considered. In prac-
tice, though, bending parts are normally inevitable. Thus,
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the next question is whether or not the bends could be
compatible with this lumped focusing. Inside a dipole, the
linear electron motion is conventionally described by the
following set of equations:

x00 1
1 2 n

r
2
d

x � 0, y00 1
n

r
2
d

y � 0 ,

n � 2
rd

Bd

≠Bd

≠x
,

(8)

where x and y are the horizontal and vertical displace-
ments from the ideal orbit, rd is a radius of curvature in
the dipole magnetic field Bd along the y axis, and the pa-
rameter n is conventionally referred to as the field index.
Generally, these equations do not preserve the rotational
symmetry of the beam in the transverse x-y plane. How-
ever, for a specific case n � 1�2 the equations are invari-
ant under x-y rotations, and the angular momentum M �
pr2u0 � p�xy0 2 x0y� is an integral of motion. Thus,
for this specific field index, the bending parts are com-
patible with the lumped focusing scheme: the angular
momentum conservation guarantees the same sufficient
conditions for the calm beam in the cooler as for the
straight transport line (4). For this invariant bending, the
electron trajectory can be described in the polar coordi-
nates

r 00 1
r

2r
2
d

2

µ
M

p

∂2 1
r3 � 0 . (9)

Thus, the transport line consisting of solenoids, drifts, and
the index 1�2 bending magnets would provide the calm
beam inside the cooler if the matching conditions (4) were
satisfied. From the optical point of view, all these elements
are rotationally invariant; below, they are referred to as the
invariant elements. Transport lines entirely based on the
invariant elements can be called locally invariant; they are
considered in the next section. The locally invariant lines
have to be distinguished from another kind of a transport,
which restores the rotation symmetry at the exit, but does
not preserve it for the intermediate points of the trajectory.
As a whole, such a kind of a transport is described by an
invariant mapping, without being locally invariant. Such
transport can be referred to as globally invariant. It can
also be called block invariant if it relates to a part of the
transport line.

In the succeeding section, the locally invariant transport
is described in terms of 2 3 2 linear mapping. For these
lines, the Courant-Snyder parameters are found and the
matching conditions are reconsidered on a base of this
approach.

III. LOCALLY-INVARIANT MAPPING

A linear mapping can be built in terms of the Carte-
sian coordinates x and y. In the presence of solenoids, it
is convenient to also introduce a rotating Larmor frame,
x̂-ŷ, as
094002-3
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u � x̂ 1 iŷ � �x 1 iy�e2ix ,

x 0 �
1
2

eB

pc
� V�gbc .

(10)

Because of the symmetry, the equations of motion reduce
to a single equation for the complex offset u (see, e.g.,
[12]). This equation takes a most compact form when the
beam frame time t, dt � �m�p�dz is used as an indepen-
dent variable instead of the longitudinal coordinate z:

ü 1 V̂2u � 0 ,

V̂2 � V2 1
1
2

µ
eBd

mc

∂2

2
p2K
m2a2

1
gg00

2c2
,

(11)

which is the Mathieu-Hill equation describing the un-
coupled betatron oscillations.

The solution of (11) can be presented in the conventional
form

u�t� � C1

q
b eif 1 C2

q
b e2if � u1 1 u2 ,

�f � 1�b ,
(12)

where C1, C2 are two arbitrary complex constants, and
the betatron function b satisfies the following equation:

2bb̈ 2 �b
2

1 4V̂2b2 2 4 � 0 . (13)

The solution of the equation of motion (11) can be written
in a form that presents the constants jC6j

2 as the Courant-
Snyder invariants,

jC6j
2 �

1
4b

ju�1 6 i �b�2� 7 ib �uj2 , (14)

which can be also expressed as

jC6j
2 �

1
4b

��1 7 bV�2r2 1 �b
2
r2�4

1 b2��r2 1 r2 �u2�
6 2b�1 7 bV�r2 �u 2 b �br �r� . (15)

From here, it follows that the two squared amplitudes
jC6j

2 are related to each other by means of the CAM:

jC1j
2 2 jC2j

2 � M�m . (16)

To be complete, the presentation [(12) and (13)] requires
the initial conditions for the beta function, b�0�, �b�0�.
Generally speaking, these initial conditions can be arbi-
trarily chosen for transport lines. However, in the case un-
der study the starting point t � 0 corresponds to a surface
of the magnetized cathode, and this determines a natural
choice for the initial beta function. There are no trans-
verse fields at the cathode, V̂0 � V0, and a trajectory with
zero initial transverse velocities, �r � 0, r �u � 0, does not
have initial cyclotron amplitude. It is convenient to iden-
tify this particular trajectory with a pure “minus” solution,
with C1 � 0 for it, which is realized by a choice of
094002-4
b�0� � 1�V0, �b�0� � 0 . (17)

With this choice, the amplitude C2 is determined by an
initial offset, while C1 is a function of the initial transverse
velocity. So the minus solution relates to the position of
the Larmor center inside the gun solenoid, and the “plus”
solution describes the cyclotron excitation there. At the
cathode, they satisfy the boundary conditions

�u6j0 � 6iV0u6j0 . (18)

As shown in Sec. IV, these plus and minus solutions can
be treated as two canonical degrees of freedom, referred to
as a drift and a cyclotron motion.

The drift and the cyclotron solutions can also be con-
sidered inside the cooling solenoid, where V̂ � V̂f �
const. These particular solutions satisfy conditions simi-
ar to (18):

�u6jf � 6iV̂fu6j0 . (19)

A. Matched mapping

Solutions of the Mathieu-Hill equation (11) can also be
presented in terms of a transformation with a real 2 3 2
matrix, A�t�:µ

u
�u

∂
t

� A�t�
µ
u
�u

∂
0
, jA�t�j � 1 . (20)

When an initially calm beam is finally transformed into a
calm state again, it means that the cyclotron mode is not
excited either initially or finally or

�u0 � 2iV0u0, �uf � 2iV̂fuf . (21)

This matching imposes the following conditions on the
transformation matrix A (20):

A22

A11
�

V̂f

V0
;

A21

A12
� 2V̂fV . (22)

From here, the matrix A can be parameterized as

A �

0BB@
r

V0

V̂f
cosc 1p

V̂f V0

sinc

2

q
V̂fV0 sinc

V̂f

V0
cosc

1CCA , (23)

with a necessary condition V̂fV0 . 0. The single
free parameter, a phase c, is determined by all the
involved optic elements, with �c � V̂f inside the cooling
solenoid.

The presentation (23) can also be obtained in a different
manner. The matrix of transformation for the Mathieu-
Hill equation has a conventional expression in terms
of the initial and final values of the betatron function
and its derivative (see, e.g., [13]). The initial values
of the beta function and its derivative are considered
above: b

0
� 1�V0, �b

0
� 0. If the cyclotron mode is not

excited in the cooler, similar conditions are fulfilled there:
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b
f

� 1�V̂f , �b
f

� 0. With these initial and final values

of the betatron function, the above presentation of the
matrix A (23) follows.

It results from (21) and (23) that, if the cyclotron mode
is not finally excited, then the initial and final beam sizes
are matched:

�V̂r2�f � �Vr2�0 . (24)

A difference between this form of the matching condition
and the “magnetic flux law” (4) reflects a beam drift rota-
tion under the space charge effect. It is shown below that
the corrected matching condition (24) expresses a restora-
tion of the action related to the drift degree of freedom.

The equation of motion (11) corresponds to the Hamil-
tonian

H�x̂, p̂x , ŷ, p̂y� �
V̂2x̂2

2
1

p̂2
x

2
1

V̂2ŷ2

2
1

p̂2
y

2
, (25)

with p̂x , p̂y being canonical momenta conjugated to the
variables x̂, ŷ. For that part of the trajectory where V̂ �
const,

Ĵx �
V̂x̂2

2
1

p̂2
x

2V̂
, Ĵy �

V̂ŷ2

2
1

p̂2
y

2V̂
(26)

are the corresponding action variables. For the pure drift
motion, both actions are equal:

Ĵx � Ĵy � V̂r2�2 . (27)

It can also be seen that the actions are preserved under the
transformation A. Generally, the actions do not vary when
the system parameters change adiabatically. Although the
beam transport is not supposed to be adiabatic, the actions
are still preserved here. This property of mapping A can be
interpreted in a general way. The conditions (21) express a
requirement for the mapping not to mix the two modes of
the motion. Keeping the modes uncoupled is also a general
property of the adiabatic motion. That is why it is not a
surprise that the action preservation is guaranteed for both
cases.

As a curious fact, it can be noted that the equation of
motion (11) can be associated with a complex Hamiltonian

H�u, pu� �
V̂2u2

2
1

p2
u

2
. (28)

Then, the complex action

Ĵu �
V̂u2

2
1

p2
u

2V̂
(29)

is also conserved: initially and finally Ju � 0.

B. Temperature transformation for a matched
transport

Above, the transformation matrix A (23) was found from
the condition of the drift-to-drift transition (21). Since the
matrix is invariant with respect to a common sign change of
V0 and V̂f , it allows one to conclude that matching of the
094002-5
drift component leads automatically to identical matching
of the cyclotron component:

�V̂ju6j
2�f � �Vju6j

2�0 . (30)

For the drift mode �1�, it gives the conditions (24), while
for the cyclotron mode �2� it can be rewritten in terms of
the transverse temperature T�:µ

T�

V̂

∂
f

�

µ
T�

V

∂
0

. (31)

It is shown below that the relationships (30) may be inter-
preted as a preservation of both drift and cyclotron actions
when these modes do not transfer to each other.

IV. MATCHING WITH NONINVARIANT OPTIC
ELEMENTS

The analysis above was related to the locally invariant
transportation, i.e., based on such optically invariant
elements as the solenoids and dipoles with the index
1�2. However, with increasing the electron energy, the
quadrupoles can be more suitable than the solenoid lenses
for the beam transport. Also, the conventional uniform-
field dipoles may look more preferable than the 1�2 index
dipoles from a technical point of view. Consequently,
a question appears as to whether such optical elements
as conventional dipoles or quadrupoles are compatible
with the requirement to have a calm beam in the cooling
section.

A. Uncoupled transformation

In this section, a general form of the transformation ma-
trix is found. An optical transition between the magne-
tized cathode and the cooler can be treated in terms of the
canonically conjugated pairs. Let �r � �x, y� be the trans-
verse Cartesian coordinate and �p� � �px , py� � �k� 2
e
c

�A� be the canonically conjugated momentum. Here
�k� � gm �y� is the kinetic momentum and �A� �

1
2

�B 3
�r is the vector potential in the solenoid. The transforma-
tion of a particle state

x �

0BB@
x
px

y
py

1CCA (32)

is expressed as xf � T x0 with a symplectic 4 3 4 ma-
trix T . The mapping symplecticity can be expressed as
invariance of the Poisson brackets

�f, g	 �
X

i�x,y

µ
≠f
≠pi

≠g
≠ri

2
≠g
≠pi

≠f
≠ri

∂

under this transformation for any two functions f �
f� �p, �r�, g � g� �p, �r� (see, e.g., [14,15]). In particular,
there are only two nonzero Poisson brackets between the
components of the state vector xf as functions of the
components of the initial state x0:
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�px , x	 � �py , y	 � 1 , (33)

while the rest of the four brackets are equal to zero.
For a given point x in the 4D phase space, the transverse

kinetic momentum �k and the position �d of the Larmor
center are expressed as

�k� � �p� 1
e
2c

�B 3 �r ,

�d � �r 2 �rL �
1
2

�r 2
c
e

�p 3 �B
B2 ,

(34)

where the vector �rL � c �k 3 �B�eB2 describes the position
on the Larmor circle relative to its center. The relation-
ships (34) can be considered as a transformation from the
canonical pair �r and �p to the new variables �d and �k. The
nontrivial feature of this transformation is that the Pois-
son’s brackets between �k and �d are equal to zero, while

�kx, ky	 � 2
eB
c

, �dx, dy 	 �
c
eB

. (35)

Therefore, the normalized variablesµ
k1

k2

∂
�

r
c
eB

µ
ky

kx

∂
and

µ
j1

j2

∂
�

s
eB
c

µ
dx

dy

∂
(36)

compose new canonical pairs. The action and phase vari-
ables related to these pairs can be introduced as well:µ

j1
j2

∂
�

p
2JD

µ
coscD

sincD

∂
,

µ
k1
k2

∂
�

p
2JC

µ
coscC

sincC

∂
,

(37)

with

JD � �j2
1 1 j2

2 ��2 � j2�2 �
eB

2c
d2,

JC � �k2
1 1 k2

2��2 � k2�2 �
c

2eB
k2.

(38)

[A canonical transformation similar to (34)–(38) is men-
tioned in Ref. [14], p. 432.] In terms of these new vari-
ables, the CAM is expressed in a very compact way:

M �
eB
2c

�d2 2 r2
L� �

j2 2 k2

2
� JD 2 JC . (39)

This canonical transformation can be presented as

x̂ �

0BB@
k1
k2
j1
j2

1CCA � B

0BB@
x
px

y
py

1CCA � Bx , (40)

with a symplectic 4 3 4 matrix B , which can be com-
posed using (34) and (36). Finally, the transformation be-
tween the two solenoids can be rewritten as

x̂f � T̂ x̂i , (41)

with a new symplectic matrix

T̂ � BfT B21
0 , (42)
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where the matrices B0 and Bf belong to the initial
(electron gun) and final (cooling section) solenoids,
respectively.

The 4 3 4 matrix T̂ can be presented in a block form
as

T̂ �
µ

�CC� �CD�
�DC� �DD�

∂
. (43)

In the initial state (at the cathode), the beam diameter
largely exceeds a characteristic Larmor radii of particles.
It can be expressed as a high initial excitation of the drift
degree of freedom in comparison with the cyclotron one.
To minimize the cyclotron motion in the cooling solenoid,
any influence from the drift degree of freedom has to be
avoided. In other words, the beam transport should be
designed in a way that 2 3 2 block �CD� vanishes. So the
Poisson bracket �k1, k2	 � 1 is determined by the matrix
�CC� only; therefore,µ

k1
k2

∂
f

� �CC�
µ

k1
k2

∂
0

, j�CC�j � 1 . (44)

Because jT̂ j � 1, j�DD�j � 1. Finally, it can be shown
that the block �DC� also vanishes; it follows from the fact
that all the Poisson brackets �ki, jj	 � 0. As a result, the
transformation of the drift component reduces toµ

j1

j2

∂
f

� �DD�
µ

j1

j2

∂
0

, j�DD�j � 1 .

The obtained block-diagonal form of the transformation

T̂ �

µ
�CC� 0

0 �DD�

∂
(45)

shows that the mutual uncoupling of the drift and cyclotron
degrees of freedom is necessary and sufficient for having
a calm beam in the cooling section. Under this uncoupled
transformation, both the drift and the cyclotron rms emit-
tances,

eD �
q


j2
1 � 
j2

2� 2 
j1j2�2 ,

eC �
q


k2
1 � 
k2

2 � 2 
k1k2�2 , (46)

are preserved; the brackets 
 � stand for the ensemble
averaging.

If the matched mapping is (globally) rotation invariant,
then the matrices �CC� and�DD� are also invariant. The
group of rotationally invariant 2 3 2 transformations is the
group of rotations itself, so

�CC� �

µ
coscC sincC

2 sincC coscC

∂
, (47)

�DD� �

µ
coscD sincD

2 sincD coscD

∂
, (48)

with the two phases cC , cD as free parameters. In this
case, the actions j2�2 � JD and k2�2 � JC are not
changed. This again leads to the relations (24) and (31)
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found above for the locally invariant transport. Here, these
relations reveal themselves as conditions of the actions
preservation; also, they express the restoration of the
emittances (46). Indeed, in this case the cross averages in
(46) vanish, which results in

eD � 
JD� � eB�c
d2�2� ,

eC � 
JC � � c�eB
k2�2� .
(49)

Because of the decoupling of the drift and cyclotron de-
grees of freedom, the 4D emittance follows as

e � eDeC � d2k2�4 . (50)

The last result can be found in a different way. Generally,
the 4D emittance is calculated by means of the 4 3 4 cor-
relation matrix Sik � 
xixk�, as e �

p
jSj. For arbitrary

axially symmetric beams, this results in [16]

e � �
r2� 
k2� 2 
rkr�2 2 
rku�2��4 , (51)

with kr and ku being the radial and the axial components of
the kinetic momentum. For the matched beam, this expres-
sion can be presented in terms of the drift and cyclotron
variables (34). When vanishing correlations between the
drift and the cyclotron degrees of freedom are taken into
account, 
dikj� � 0, the previous result (50) follows.

Normally, the hadron beams have equal transverse emit-
tances. Then, the axial symmetry of the transverse mo-
mentum distribution of the hadron beam in the cooler is
beneficial for the cooling process. Thus, the optimal cross
section of the hadron beam is also axially symmetric there.
That is why a round shape of the electron beam in the
cooling section is also optimal. Taking into account that
a round shape of the cathode is also preferable, it leads to
a conclusion that in the optimum the drift matrix �DD� is
rotationally invariant (48). If the cyclotron motion (tem-
perature) can be neglected in the initial state, no require-
ments are imposed on the matrix �CC�, so it can be an
arbitrary matrix with unit determinant. In an opposite case,
the electron cyclotron motion depresses the cooling rates.
This depression is minimal for rotationally invariant beam
distribution in the cyclotron phase space. For the 2D trans-
formations �CC�, it means that the transformation itself has
to be invariant (47) in this case. The total transformation
(45) is rotation invariant if and only if the invariance of
both of its components �DD� and �CC� is provided.

B. Invariant matrices

According to the above description, the decoupled in-
variant beam transformations preserve the CAM. Thus,
it would be convenient for the electron transport line to
consist of the invariant blocks, i.e., groups of the optic
elements described by the CAM-preserving matrices. A
group of such linear mappings was considered by Pozdeev
[17] and Perevedentsev [18] and was discussed in [19].
It was proved that all CAM-preserving matrices are de-
scribed by the following 2 3 2 block-diagonal form:
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T � U�c�
µ

T 0
0 T

∂
. (52)

Here U�c� is a 4D rotation matrix providing separated
rotations in the coordinate and momentum subspaces by
the same angle c, and T is an arbitrary 2 3 2 matrix with
jTj � 1 required by the phase volume preservation. Note
that the group (52) can also be described as a group of
rotation invariant transformations because of UTT U �
T , where the superscript T stands for transposing. This
condition is equivalent to a commutation of the matrices
T and U due to the rotation unitarity, U21 � UT . It
follows that the mapping (52) transforms any round beam
distribution into round again. Note that matrices

T � U�c�
µ

T 0
0 2T

∂
(53)

also transform any round beam into round again, but they
change the sign of the CAM. It can be shown that apart
from the sets (52) and (53) there are no other matrices
transforming any round beam into round again.

Without coupling of the transverse degrees of freedom
�c � 0�, the invariance requires for x and y matrices to be
identical, which constitutes three independent conditions.
Thus, two variable quadruples with one variable drift (or
three variable quadruples) are sufficient to transmute any
initial mapping into an invariant one.

V. NONINVARIANT TRANSFORMATIONS

A transport scheme above requires the cathode im-
mersed in a proper solenoidal field. A question arises
as to whether the magnetic field at the cathode is really
inevitable. If one assumes the (global) rotation invariance
for the transport mapping, the answer is clearly positive:
this immediately follows from the CAM conservation for
these transformations. But is it still possible to eliminate
this field for some noninvariant transport?

Note that a noninvariant mapping can transform a par-
ticular calm and round beam into calm and round state
again. An example of this was actually shown in the pre-
vious section. It was pointed out there that the cyclotron
motion is not excited by the decoupled transformations.
If this motion were not excited initially, an invariant drift
transformation �DD� is sufficient to have final beam round
when the initial beam was round too. Invariance of the cy-
clotron matrix �CC� is not required here; this matrix can
be arbitrary. In this case, the total transformation T is not
invariant, but it still provides a round-to-round beam trans-
formation for a particularly initial state.

A relationship between the group of transformations pre-
serving the symmetry of a particular beam state and the
group of invariant transformations, which preserves the
symmetry of any beam state, can be considered in a more
general way. Let x be a vector in the 4D phase space. A
particular symmetric beam state can be constructed as a set
of points obtained from this vector by rotations, U�c�x.
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A transformation T preserves the symmetry for this par-
ticular state when the image of the rotated vector equals
the rotated image of the initial vector:

T U�c�x � U�c�T x , (54)

which can also be formulated as a commutation of the map-
ping T and the rotations U�c� on the particular vector x.
The transformations (54) are not invariant generally: their
commutators with the rotations do not give zero when ap-
plied to an arbitrary phase space vector, as the invariant
transformations do. Instead, these commutators give zero
only at the particular subspace or phase space projection
related to the vector x. That is why these transformations
can be called projective invariant.

To describe the projective-invariant group in more detail,
the one-parametric group of rotations can be expanded as

U�c� � I cos�c� 1 Ĩ sin�c� , (55)

with I as the identity and Ĩ as the 90± turn 4 3 4 matrices.
After this substitution, the projective invariance condition
(54) reduces to

T Ĩx � ĨT x , (56)

where the rotation angle c does not enter any more. For
the given vector x, this gives four additional independent
equations on the matrix elements of T . Remembering that
an arbitrary symplectic 4 3 4 matrix has 16 2 3 2 2 2

1 � 10 free parameters, it follows that the 4D projective-
invariant group has 10 2 4 � 6 free parameters, two
parameters more than its subset, the group of invariant
transformations (52) and (53). Thus, the projective-
invariant group is significantly wider than its subset, the
invariant group. Therefore, a question of CAM preserva-
tion for it is not trivial.

A. Generalized Busch’s theorem

Thus, the problem can be rephrased in the following
manner: do the projective-invariant mappings preserve the
CAM? In other words, assuming the beam to be round
at the cathode, does it have to be properly magnetized (4)
to get the beam quiet and round inside the downstream
solenoid? Remember that the mapping invariance is not
employed in this section.

A positive answer to this question follows from the gen-
eralized Busch’s theorem [20]. The theorem states that, for
a hydrodynamic, or laminar, beam transported by means of
arbitrary static electric and magnetic fields, the contour in-
tegral I

G

�p �dl �
I

G

�k �dl 2 eF�c (57)

is conserved. Here the contour G bounds an arbitrary tube
of trajectories in the 3D coordinate space x, y, z. If the
initial and final beam states are rotationally invariant, the
contour G is a circumference in the transverse plane, and
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the CAM preservation follows. Note that the field linearity
is not required here.

Below, this theorem is extended from the electrostatic
and magnetostatic fields to arbitrary Hamiltonian systems.
This extension, however, requires the assumption of the
linearity of the transformation. Thus, the statement to be
proved claims the following: if a particular round beam is
transformed by a symplectic linear mapping into a round
state again, the CAM of every particle is restored. Note
that the beam is not supposed to be laminar here.

A property of the symplectic transformations to
conserve skew-scalar products is used here (see, e.g.,
[15]). The skew-scalar product of two vectors in the
4D transverse phase space x1 � �x1, px1, y1, py1� and
x2 � �x2, px2, y2, py2� is an antisymmetric bilinear form
�x1, x2�. Expressed in terms of the usual scalar product, it
can be written as �x1, x2� � �x1, Sx2� with S as a rotation
by 90± in each of the phase planes, or

�x1, x2� � 2x1px2 2 y1py2 1 x2px1 1 y2py1 .

Let x1i and x2i be two arbitrary vectors of the initial
state finally transformed into x1f and x2f . Because of the
symplecticity,

�x1i, x2i� � �x1f , x2f� (58)

for any choice of x1 and x2. It can be seen that the angles
between their 2D x-y components are conserved by the
transformation. This property is an obvious consequence
of the rotation invariance of both states; without it, there
would be an angular asymmetry of the final beam den-
sity distribution. However, the sign of this angle can be
changed that would not contradict the angular symmetry
of the final state. The two initial vectors can be taken as
2D orthogonal:

x1i � �ri , pir , 0,pit � ,

x2i � x̃1i � �0, 2pit , ri, pir � ,
(59)

having the angular momentum Mi � ripit where ri is the
initial beam radius. Because of the angle conservation,
these two vectors are 2D orthogonal again after the trans-
formation. Without a lack of generality, the x axis can be
assumed to go along the vector �x1 both for the initial and
the final states; this follows from symplecticity of the ro-
tations. So the final states can be presented as

x1f � �rf ,pfr , 0,pft � ,

x2f � 6x̃1f � 6�0, 2pft , rf , pfr � ,
(60)

with Mf � 6rfpft as the final angular momentum.
In fact, the symplecticity condition (58) for a given

vector x1 and arbitrary x2 is equivalent to the particular
choice (59) and (60). Indeed, for a given x1, any x2 can
be expanded over the two orthogonal vectors: x1 and its
orthogonal counterpart x̃1 . Then, the part of x2 parallel
to x1 gives an identical zero for both sides of the symplec-
ticity condition (58), while the component along x̃1 gives
the same result as (59).
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Conservation of the skew-scalar product

�x1i, x2i� � �x1f , x2f�

for the orthogonal pair x1, x2 immediately yields Mi �
6Mf , as was to be shown.

Actually, the statement just proved means that the prop-
erty of the canonical momentum conservation goes beyond
the mapping (or Hamiltonian) invariance. For the invari-
ant mappings, any initially symmetric state of beam trans-
forms into a symmetric state again. It was shown above
that the mapping invariance does not follow from the sym-
metry preservation for one beam state, a property which
was referred to as the projective invariance. It was proved
in fact that the mapping invariance is a somewhat surplus
requirement for the momentum conservation; the projec-
tive invariance for a particular initial ensemble is sufficient
to claim that every particle of this ensemble restores the
value of its CAM as well. Note, however, that the sign of
the final CAM is not fixed.

Turning back to the specific question at the beginning of
this section, it can be concluded that there is no mapping,
invariant or not, transforming a round but not properly
magnetized (4) beam at the cathode into a calm round
beam in the cooler. No transformation can change an
absolute value of the canonical angular momentum of a
particle without breaking the rotational symmetry of their
ensemble.

B. Canonical emittances and beam adapters

Therefore, the generalized Busch’s theorem asserts that
a round electron beam at the cathode has to be properly
magnetized. However, it says nothing about nonround
beams at the cathode. In particular, what type of non-
round, nonmagnetized beams can be transformed into a
calm state in the cooling solenoid? By the definition, the
drift emittance of a calm, or a magnetized, state is much
higher than the cyclotron emittance. It seems rather obvi-
ous that for this beam there is a specific choice of canonical
variables when the ratio between two independent canoni-
cal emittances at the initial state is equal to the ratio of
the drift and cyclotron emittances in the cooler. Thus, to
become magnetized in the cooler, the beam has to be de-
scribed initially by the two canonical emittances of very
different values. Obviously, a similar statement is related
to a reverse transition. In particular, it can be expected that
a flat beam ´x ¿ ´y can be injected into a solenoid with
a proper optical adaptation to become a magnetized beam
with solenoidal emittances ´C and ´D [10,21,22] having

´C

´D
�

r̄
2
L

a2 �
´y

´x
. (61)

Such schemes can be used in order to optimize the fea-
tures of electron storage rings and recirculators as coolers
for high-GeV hadron beams [9,23–25] and for other appli-
cations [26]. The transformation from the ribbon state in
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a free space into the magnetized state inside the solenoid
looks promising for high-energy electron cooling projects
(g � 100 2 1000) where a natural flat shape of an elec-
tron beam in a storage ring can be utilized. However, it
does not look as promising for the medium energy elec-
tron cooling where it would require a threadlike cathode
with a too high aspect ratio �sy�sx � r

2
L�a2�.

VI. FERMILAB ELECTRON COOLING PROJECT

To increase Tevatron luminosity, Fermilab is developing
a high energy electron cooling system to cool 8.9 GeV�c
antiprotons in the recycler ring [4]. A scheme of the elec-
tron transport proposed for this project incorporates many
of the above ideas. This scheme is presented here as an
example of how these ideas can be implemented.

The electron transport line employs an electrostatic
accelerator Pelletron with the gun immersed into a longi-
tudinal magnetic field. For the cathode radius of 2.5 mm,
the field of 600 G on its surface was chosen to provide the
magnetic flux sufficient to suppress the space charge drift
motion inside the cooler (5). The magnetic field extends
up to an end of the first acceleration section where it is al-
ready reduced to 200 G while the electrons have 0.43 MeV
of the kinetic energy [see Eq. (7) and the estimations
after it].

When the electron beam exits this field region, it contin-
ues to be accelerated in the Pelletron, having two focusing
kicks by thin solenoid lenses during the acceleration. Af-
ter that, the beam is to be delivered to the cooling section.
This part of the transport line includes two 90± bending
blocks with solenoid lenses before and after every one of
them. To deliver the beam from the accelerator to the cool-
ing section, it must be turned in two different planes: first
in the vertical and then in the horizontal. Each of the two
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FIG. 3. (Color) Beam envelopes (green as vertical and red as
horizontal) and the dispersion functions (magenta as vertical and
blue as horizontal) for the Fermilab electron cooling project.
The two bending blocks shown consist of two separated 45±

bends with a symmetric triplet in between and a couple of quads
downstream/upstream of them. A major part of the cooler and
the return line are not shown.
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FIG. 4. Designed layout of the electron cooling beam line at
Fermilab.

mirror-symmetric blocks consists of two 45± bending mag-
nets with a symmetric quadrupole triplet between them and
two quadrupoles after (before) the resulting 90±bend. This
construction allows one to reach several goals.

First, it allows one to have zero dispersion downstream
of the block, which is important both for the cooling con-
ditions and for the electron beam stability. To eliminate
dispersion, a 90± bend has to be separated into two halves
with a focusing element inserted in between. In principle,
this central focusing element could be either a solenoid,
a single quadrupole, or a symmetric triplet. The triplet is
chosen because the required solenoid would be too heavy,
while the single quadrupole would give too wide beam
inside of the downstream dipole.

Second, this bending scheme provides an invariant map-
ping for the whole bending block (the mapping is block
invariant). Beam parameters at the exit of the Pelletron
cannot be current independent. Thus, tunable optical ele-
ments are necessary in the beam line for beam match-
ing (4). To keep the line block invariant, these tunable
elements can be either solenoids or invariant quadrupole
blocks. Use of the solenoids looks more preferable for
this purpose because technically it is easier to tune them.
Finally, the beam must be small enough inside the dipoles
and other elements to suppress nonlinear aberrations.

The two solenoids between the bending blocks allows
one to have reasonable beam envelope for the second bend-
ing block and the matched beam radius at the entrance of
the cooling section. The last solenoid upstream of the cool-
ing section provides the zero radial divergence inside the
cooler.

TABLE I. Electron cooling system parameters.

Parameter Value Units

Electron kinetic energy 4.3 MeV
Electron beam current 0.5 A
Cathode radius 2.5 mm
Cathode solenoid field 600 G
Cooling length 20 m
Cooling solenoid field 100 G
Beam radius 6.1 mm
Electron beam angles ,100 mrad
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The electron transport simulations were done with the
program OPTIM [27], which is an interactive Windows ap-
plication allowing a visual optics design. The beam en-
velopes from the exit of the gun solenoid to the beginning
of the cooling section are presented in Fig. 3.

Figure 4 shows the schematic layout of the system. Its
main parameters are summarized in the Table I.

VII. SUMMARY

The main purpose of this paper was to show how an
electron beam for relativistic electron cooling can be trans-
ported by means of isolated focusing elements and bends,
without any excitation of the cyclotron motion in the cool-
ing solenoid. The introduced concepts of the angular mo-
mentum dominated beam and the effective beta function
showed the region of parameters where the lumped focus-
ing can be used. For the beam lines consisting of the op-
tically symmetric elements (local invariant lines), the two
Courant-Snyder invariants were found and conditions for
the beam matching between the cathode and the electron
cooler were discussed.

For the general kind of beam lines, it was demonstrated
that the beam matching can be formulated as uncoupling
of the drift and the cyclotron canonic degrees of freedom
under the beam transportation. For rotationally invariant
mappings, it again leads to the same matching condition
and temperature transformation as for the locally invari-
ant case. The concept of a block-invariant line was in-
troduced, the general form of the invariant matrices was
discussed, and utility for the whole line that consists of
invariant blocks was pointed out. It was shown that any
transformation can be transmuted to an invariant one by
means of three free quadrupoles.

The generalized Busch’s theorem was extended to the
whole class of linear Hamiltonian systems. It was pointed
out that according to this theorem the identical matching
condition is valid when any hydrodynamic round beam
is transformed into round beam again. Possibilities were
discussed to use initially flat beams converted into round
in the cooler. A general condition on the initial beam
state was formulated for having a magnetized beam in the
cooler. As an example of application of the developed
ideas, the electron transport scheme for the Fermilab cool-
ing project was presented.

The described methods of matching between the sole-
noid of the cooling region and the rest of the electron beam
track (with a round or flat beam) can also serve as guiding
principles for a design of recirculators and storage rings
for high energy electron cooling.
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