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Effect of space charge on bunch compression near the transition
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It is shown that energy conservation in the longitudinal envelope equation can be used to derive
analytic expressions to model fast bunch compression and the effect of space charge in terms of a dimen-
sionless Coulomb parameter S �~ 1�h, with h the slip factor). For small jhj (below transition, hence
S ¿ 1), the rf voltage required is nearly independent of h and dominated by space charge repulsion.
The extra voltage generates the coherent momentum spread d ~ 1�

p
jhj required to compensate the

increasing space charge force gradient during compression. This sets a clear limit to the useful approach
to transition. An h jump scheme is discussed to minimize this effect. Particle-in-cell computer simu-
lation confirms the validity of our results also for more realistic beam distributions. Noticeable tails in
momentum space due to the nonlinear space charge force are found for Gaussian line density bunches
and S ¿ 1.

PACS numbers: 29.27.Bd
I. INTRODUCTION

Bunch compression against space charge is an important
issue in applications such as high-power proton drivers
(for neutrons, muon or neutrino facilities, etc.) or high-
intensity heavy ion rings as considered for radioactive
beam facilities or inertial fusion. In the absence of space
charge it may seem attractive (for particles of a few
GeV�u) to lower the stringent rf voltage requirements by
working closer to transition energy. For high-intensity
bunches, and below transition, this requires careful
study since space charge effects become enhanced when
approaching transition energy.

In this work we refer to the scheme of a 90± bunch
rotation by a fast jump of the rf voltage (alternatively, an
h jump at fixed voltage to increase the bucket height),
whereas adiabatic compression is not considered as it may
be impractical due to the high voltage requirement. For a
quantitative analysis it is convenient to use the standard
longitudinal envelope equation. It is a self-consistent
model of a bunch with parabolic current profile and
“square root” distribution in phase space [1] provided that
the bunch is sufficiently long, in terms of the beam pipe
diameter, to yield a linearly rising space charge force.
We note that part of the work presented here (the drift
approximation) follows earlier derivations for jh j�1
in the context of heavy ion fusion compression [2,3].
Following the notation of Ref. [4], and using the distance
s as an independent variable, we have for the envelope zm
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with k2
z0 � eZVhh��2pR2gb2Amc2� the linearized rf

focusing force constant for a voltage V at harmonic h,
the longitudinal perveance KL � 23gN�Z2�A�rph�
�2b2g3�, the g factor

g � 0.5 1 2 ln�Rp�Rb � (2)
1098-4402�00�3(8)�084201(10)$15.00 ©
(Rp and Rb the pipe and beam radii), N the bunch intensity,
Z the charge of an ion with mass A, and rp � 1.53 3

10218 m. The longitudinal emittance is defined as area
in z, z0 , hence eL � jhjzm�dp�p0�0, with the slip factor
given by h � 1�g2

t 2 1�g2. �dp�p0�0 is as shown in
Fig. 1, which becomes the maximum momentum deviation
Dp�p0 for an upright ellipse. It is noted that this emittance
is not an invariant if h changes.

Some caution is required when using this equation near
transition energy. We assume jhj is sufficiently large
that corrections to the momentum compaction factor from
Dp�p or a shift in the betatron tune by space charge can
be ignored (it is shown here that space charge may elimi-
nate the reasons that such small values of jhj should be
considered). An extension of our analysis to include the
case of arbitrarily small jhj or an h spread is left to future
studies.
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z

FIG. 1. Definition of parameters for a rotated ellipse in the fast
compression scheme.
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The plan of the paper is the following: In Sec. II we
discuss energy conservation, which is applied in Sec. III to
derive analytical expressions for the coherent momentum
spread, rf voltage, and compression time and a comparison
with examples of numerical integration of the envelope
equation. Results are compared with computer simulation
using a self-consistent particle-in-cell code in Sec. IV.

II. ENERGY PRINCIPLE AND SPACE CHARGE
PARAMETER S

Multiplying Eq. (1) by z0m and integrating it with respect
to s we obtain a longitudinal invariant IL which expresses
energy conservation
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The first term (ignoring mass) is equivalent to a kinetic
energy of coherent motion, the second term the “rf poten-
tial energy,” the third term the “Coulomb energy” of the
bunch, and the fourth term the “incoherent kinetic energy”
expressed by the emittance. Noting the dependence on h

of the space charge and emittance terms in the energy prin-
ciple, it is obvious that in the limit of jhj ! 0 the space
charge term by far dominates the emittance term, and com-
pression therefore only deals with space charge.

Here we introduce a dimensionless space charge pa-
rameter S, which is the ratio of the Coulomb energy over
the “thermal energy” (generalizing the nomenclature sug-
gested in Ref. [3], where jhj � 1 was assumed and a fac-
tor of 1�2 was included in the definition of S),

S �
2KLzm

e
2
L

. (4)

We observe that, due to the invariance of eL (for fixed h),
S ~ zm, hence space charge is even more dominant for
the uncompressed bunch. Below transition S . 0, which
corresponds to a repulsive space charge force, whereas
the changing sign above transition makes space charge
effectively attractive (see also Sec. III G).

For the rotated ellipse in the plane �z, dp�p0�, we de-
fine 6�dp�p0�m as the momentum offset of the bunch
ends and 6�dp�p0�0 as the maximum momentum devia-
tion in the bunch center (see Fig. 1). The total momentum
spread (abbreviated by D in the following) is then sub-
ject to the relationship D2 � �Dp�p0�2 � �dp�p0�2

m 1

�dp�p0�2
0. Using z0 � 2hdp�p0 we find
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By inserting Eq. (5) in Eq. (3) we express the energy prin-
ciple directly in terms of the total momentum spread
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III. COMPRESSION MECHANISM

For the compression by the factor x, we start from the
initial length zi and initial momentum spread Di and ob-
tain a final zf � xzi. Because of the invariance of the
longitudinal phase area the final momentum spread results
as Df � Di�x for the assumed ideal compression. With-
out space charge the reduction of the rf potential energy is
compensated by the increasing momentum spread.

With sufficiently strong space charge (and assuming we
are below transition), the total momentum spread adopts its
maximum before the end of compression. This is the case
at the point of compression where the repulsive Coulomb
force gradient equals the rf force gradient; in the remaining
part of the rotation the dominating Coulomb force reduces
this momentum spread to the final one. The intermediate
extra coherent spread is needed to balance the dominating
space charge repulsion while compression is completed.
An alternative to avoid this extra coherent spread—not fur-
ther considered here—would be an rf gradient increasing
during compression to match the space charge repulsion.

The bunch length z1 where the maximum coherent mo-
mentum spread Dmax occurs is obtained by taking the
derivative of Eq. (6) with respect to zm and requiring D0 �
0, which results in z1 � �KL�k2

z0�1�3. Using Eq. (6) we
then find

1
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h2D2
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�kz0KL�2�3 � IL , (7)

which is physical only if zf # z1 # zi. In the opposite
case we are in the regime, where the rf force gradient
always exceeds the Coulomb force gradient, hence the final
momentum spread adopts its maximum at the end of the
compression and Dmax � Df . This regime of rf gradient
dominance is characterized by a condition for the initial
space charge parameter

Si #
2x �1 1 x�

1 1 x 2 2 x2 . (8)

This implies that the need for an extra coherent momentum
spread vanishes for sufficiently weak compression. Note
that the second order derivative of D shows that the ex-
tremum calculated at z1 is always a maximum.

Using Eq. (7) and calculating IL from the parameters at
the final compression, we find for the maximum momen-
tum spread during bunch compression (except for the rf
gradient dominated regime)
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A. Drift rotation

Here we assume the ellipse is already rotated to a
sufficiently large initial Di; thereafter the rotation is
084201-2
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completed in the absence of (or with negligible) rf force,
hence kz0 � 0. The actually required initial Di to achieve
a drift compression with ratio x follows directly from
Eq. (6) by comparing quantities at the beginning (i) and
end (f) of the drift. Noting that Sf � xSi we find

D2
max � D2

f �1 1 Sf �1 2 x�� � D2
f �1 1 Si x�1 2 x�� .

(10)

A similar result, ignoring h, was derived in Ref. [2]. It
is noted that the second term on the right-hand side results
from the extra “energy” needed to compress against space
charge. The relative weight of this term in determining Di

shrinks with larger compression ratio.

B. rf rotation

To calculate Dmax for the rf rotation below transition we
use Eq. (9) and write it in similar form as Eq. (10):

D2
max � D2

f�1 1 l Sf �1 2 x�� , (11)

where l is expressed in terms of x and Si ,

l �
1 1

x2

11x 1
x
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2

3
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11x 1 2 x

Si
�1�3

1 2 x
. (12)

We generally have 0 , l , 1, with l ! 1 for x ! 0.
In the regime of large space charge with Si ¿ 1�x,

l becomes independent from Si and we obtain a useful
universal curve for l shown in Fig. 2,

l �
1 1

x2

11x 2
3
2 � 2 x2

11x �1�3

1 2 x
. (13)

One finds that for Si of the order of 100 or larger, Eq. (13)
is quite accurate for all values of x; for smaller values of
Si Eq. (13) overestimates the exact l.
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FIG. 2. The l factor according to Eq. (13).
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It is noted that, in the limit of strong compression,
Eq. (11) approaches the drift compression formula as one
might expect. For not too strong compression (x21 ,
3 · · · 4), one finds that Eq. (13) is well approximated by
the quadratic formula

l2 � 3�8�1 2 x� 1 1�4�1 2 x�2. (14)

C. rf voltage requirements

By using Eq. (3) at the beginning and at the end of the
rf rotation we obtain the required rf focusing constant as

k2
z0 �

jhj2D
2
i

z2
i x2

∑
1 1

Sf

�1 1 x�

∏
. (15)

The force constant to hold the initial bunch stationary
(matched rf bucket) is readily obtained by inserting x � 1,
hence

k2
z0 �

jhj2D
2
i

z2
i

�1 1 Si�2� , (16)

which indicates that the holding potential is even more
controlled by space charge than the one for compression.
These equations can be used also above transition, where
the rf gradients are reduced by space charge.

D. Compression time

The additional rf voltage reduces the time (or distance)
required for the bunch rotation. In the absence of space
charge the distance for the 90± rotation results readily from
the single particle tune as Ds � pz2

i x��2 eL�. With space
charge the fast compression is not a 90± rotation for the
single particles, but rather a half-period of the envelope
from a maximum to a minimum. For a small envelope
modulation (x � 1), it is straightforward to use Eq. (1)
with Eq. (16) and calculate the distance required for such
a half-period as Ds � pz2

i ��2 eL

p
1 1 3Si�8 �. Since the

distance required for a 90± rotation of the single particle in
the stationary bunch with space charge is pz2

i ��2 eL�, we
notice that the single particle motion is slower than the co-
herent motion by the above square root factor. For signifi-
cant compression including space charge we cannot find
an exact analytical expression. The limiting expressions
for S � 0 and x � 1 suggest, however, that an approxi-
mate expression could be of the form

Ds � pz2
i x��2 eL

q
1 1 3�8Six2�3 � , (17)

which has the feature of approaching the small envelope
modulation result for x � 1, as well as the zero space
charge result for infinite compression when the required
voltage is again independent of space charge according
to Eq. (15) (Sf ~ x � 0). Among various powers of x

we have found that 2�3 fits best the exact results from
numerical integration. The error for x . 0.1 is found
084201-3
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below 5%; in the examples presented in Sec. III H it is
actually much smaller.

E. Scaling with h

By noting V ~ k2
z0�jhj and that Sh is independent of

h, we readily find, for the dependence of the compression
rf voltage on h and x,

V ~
1

x2

∑
h 1

Sfh

�1 1 x�

∏
. (18)

The obvious advantage of small jhj disappears once the
space charge regime is entered, where the second (h-
independent) term dominates. The crossover where both
terms are equally large (doubling of voltage) occurs for a
value of h such that

Sf � 1 1 x (19)

holds. The intermediate coherent momentum spread at this
threshold is given by Dmax�Df �

p
2 2 x2. Further ap-

proaching transition at the most lowers the voltage by a
factor of 2, but leads to an increasing coherent spread ac-
cording to Eq. (11), which might result in an acceptance
conflict. This is not surprising since the Coulomb repul-
sion is a real force, which needs to be counteracted by an
equally large rf force gradient.

F. Two-step compression

Our findings suggest that due to space charge repul-
sion the rf voltage cannot be reduced by pushing towards
small jhj, as is frequently suggested. This insensitivity of
the space charge compression voltage to jhj ! 0 can be
avoided, in principle, by first carrying out at small jhj a
rotation to D1 � Df with only a weak compression ratio
x1. The second step is a jump to sufficiently larger jhj for
the remaining (major) part of the compression such that
S is significantly reduced. The actual D1 required can be
easily estimated by applying the drift approximation ac-
cording to Eq. (10), which is justified since the rf voltage
is of reduced effect at the large jhj.

For a simple estimate we now define l1 as the linearized
term of Eq. (14) and insert it into Eq. (11). The resulting
quadratic equation can be solved easily to calculate the
required precompression

x1 � 1 1
a

2
2

sµ
1 1

a

2

∂2

2 1 , (20)

with a � 8�3�D1�Di�2�Si. Using x1 we can readily
calculate kz0 from Eq. (15) and thus the precompression
voltage Vprec. It is convenient to express it in units of
the stationary holding voltage for the initial bunch from
Eq. (16),

�Vprec�Vstat� �
2

x1�1 1 x1�
, (21)
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which approaches unity for jhj ! 0. Hence in this limit
the required rf voltage is x�1 1 x��2 times the voltage
needed for compression at constant h.

G. Self-focusing above transition

Above transition S , 0, hence space charge is attractive
and enhances the applied potential according to Eq. (15).
This equation [equivalently, Eq. (10) with Di � 0] sug-
gests “self-focusing” by the factor x, without any applied
rf voltage (kz0 � 0), if h is chosen to satisfy

Si,sf � 2
�1 1 x�

x
. (22)

However, the self-focusing effect is not limited to the en-
velope motion, but also applies to all higher order modes
(note that the envelope motion is a quadrupole mode in
the longitudinal phase plane) usually called “negative
mass instability.” Since the growth rate increases with
the mode number, the instability on the shortest wave-
lengths is expected to suppress self-focusing of the bunch
length.

We note here that our space charge parameter S is
equivalent (besides a numerical factor �1) to the dimen-
sionless “impedance” parameter U (see Ref. [5]) used to
describe the threshold of onset of the coasting beam lon-
gitudinal instability (“local Keil-Schnell” or “Boussard”
criterion) if the impedance is assumed to be the “space
charge impedance” Zn�n � 377g��2bg2�. The criterion
jUj * 1, here applied locally to the bunch center, marks
transition to the negative mass instability. Bunches with
initial S * 1 are thus subject to this instability unless the
rotation is made fast enough to suppress its effect.

H. Numerical examples

As an example, we take a bunch of 1013 protons at
1.5 GeV, Di � 0.002, zi � 5 m, and Df � 0.01, zf �
1 m and assume Rp�Rb � 5 (hence g � 3.7). We find
that the compression voltage V is doubled by space charge
for Si � 6, hence h � 20.095, and the coherent momen-
tum spread is enhanced over the final momentum spread
by a factor of 1.22. According to Eq. (16), holding of
the stationary bunch prior to compression requires a volt-
age four times larger than ignoring space charge for the
above parameters. For h � 20.001 the compression volt-
age is practically half as large, but the coherent momen-
tum spread adopts a value as high as 0.07, which is not
practical.

We further assume a ring of 150 m radius and rf har-
monic h � 24, which allows us to determine voltages (per
turn) and revolution times (in turns). Below we list a
number of cases using variable h with exact values for
Dmax�Df and, in parentheses, the approximations using
Eq. (13).
084201-4
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FIG. 3. Momentum spread and envelope for case (i),
with h � 20.1.

(i) h � 20.1, with Sf � 1.14, requiring 9.5 MV and
Dmax�Df � 1.16 �1.22� (see Fig. 3).

(ii) h � 20.001, with Sf � 114, requiring 4.7 MV and
Dmax�Df � 7.02 �7.04� (see Fig. 4). It is seen that the
reduced voltage is compensated by an increased number
of turns and an unacceptably large coherent spread.

(iii) Using a two-step scheme starting with h � 20.01
and rotating to Dmax�Df � 1.2, we require 2.23 MV. Hav-
ing reached the peak of the coherent momentum spread
(turn 25) we complete the rotation (keeping the same volt-
age) at h � 20.1, which leads to the desired final length.
In Fig. 5 we show the result, along with a 650% varia-
tion about the nominal h. Such a spread may result from
the dependence of gt on the incoherent tune shift or a
combination of this and a dependence on the momentum
084201-5
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FIG. 4. Momentum spread and envelope for case (ii), with
h � 20.001.

spread. The resulting final spread in bunch length and
coherent momentum spread still appears tolerable. Sig-
nificantly larger spreads in h certainly need to be stud-
ied self-consistently with a simulation program. We also
show in Fig. 5 the result for a complete compression at
constant h � 20.01, which requires 5.1 MV and leads to
Dmax�Df � 2.4.

We notice that a two-step scheme jumping from h �
20.001 to h � 20.1 would lower the required voltage to
0.95 MV, but the inevitable spread in gt causes a signifi-
cantly larger spread than was the case in example (iii).
We also mention that the approximation in Eqs. (20) and
(21) leads to 1.0 MV in this case; for the case of ex-
ample (iii) the approximation significantly overestimates
the correct value and predicts 3.1 MV, which is 39%
too high.
084201-5
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FIG. 5. Momentum spread and envelope for the h-jump case
(iii), with h � 20.01� 20.1.

IV. COMPUTER SIMULATION

We have carried out a comparison with computer simu-
lation using our code PATRIC. This is a particle-in-cell
program solving the equations of motion in 3D, whereas
Poisson’s equation is solved in cylindrical �r 2 z� ge-
ometry assuming a perfectly conducting beam pipe [6].
PATRIC therefore treats the betatron motion in smooth ap-
proximation (symmetric in x and y). Space charge is
calculated correctly also for short bunches, where the g-
factor approximation to the space charge electric field be-
comes incorrect. For long bunches we have found that
the electric self-field on axis generated by a parabolic
bunch in PATRIC agrees with the g-factor expression g �
1 2 �r�Rb�2 1 2 ln�Rp�Rb� (r distance from axis) within
1% [6]. Note that the expression used in Eq. (2) is an aver-
age over a uniform transverse density. For the longitudinal
084201-6
motion in z we have introduced the zero-order slip factor
to model the real transverse lattice effect in lowest order
according to z0 � 2hdp�p0.

Using parameters of the above example and Rp �
0.1 m, we have carried out a direct comparison with 106

simulation particles on a r-z grid of 32 3 1024 cells. We
have reduced artificially the transverse betatron frequency
to reduce the CPU time, but still allowed for enough
betatron periods to keep a transverse averaging of the lon-
gitudinal force. The rotation is driven by a linear (in z) rf
electric field calculated by using the envelope model. The
case of moderate space charge (h � 20.05) is compared
with a strong space charge effect (h � 20.005).

A. Moderate space charge (h5 20.05,Sf 5 2.28)

Figure 6 shows that there is quite good agreement be-
tween the envelope solution and an initial self-consistent
parabolic bunch. The rms longitudinal emittance of the
simulation grows by about 1%, with the final momen-
tum spread about 3% larger and the bunch length about
2% shorter than for the envelope model. The slightly
larger coherent spread indicates that the effective space
charge in PATRIC is somewhat weaker than in the enve-
lope model. This may be attributed to the fact that our
simulation is in r-z, where finite beam pipe effects and
the spread of the g factor during betatron motion play a
role. The final half-length of 1 m suggests, in fact, that
the real space charge force is slightly reduced compared
with the g-factor approximation (used to calculate the rf
force), which explains qualitatively the slight additional
compression.

We have compared this result with an initial rms-
equivalent Gaussian bunch (same rms length and mo-
mentum width), starting with a Gaussian line density
and Gaussian velocity distribution with constant width
along the bunch, which shows a visible difference in
the final part of compression. The final rms momentum
spread is 4% and the rms bunch length 7% larger than
for the initially parabolic bunch (see Fig. 7). Note that
for parabolic bunches the rms bunch length is zm�

p
5,

and equally for the momentum width. We conclude that
the above derived analytical expressions can be used with
sufficient accuracy for nonparabolic bunches by using rms
quantities multiplied by

p
5.

A more noticeable effect is seen in the scatter plots of
Fig. 8, which show substantial momentum tails at final
compression (note that we plot relative velocities given
by bchdp�p, with b � 0.923 in our example). The
turning point in the Gaussian line density implies that the
space charge force is quite nonlinear and increases from
the center to a maximum, beyond which it drops to zero.
The phase space tails beyond this turning point are rotated
faster than the core and move inside the bunch (with re-
spect to z), where the profile flattens and space charge
repulsion nearly vanishes. As a result, the velocity spread
084201-6
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FIG. 6. Comparison of the envelope code result (dashed line) with a PATRIC particle-in-cell simulation for initial parabolic bunch
with h � 20.05.
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FIG. 7. Comparison of PATRIC simulation for initial parabolic and Gaussian bunch (dashed line) with h � 20.05.
gained in the early part of the rotation remains conserved
for the tail population. We have estimated that approxi-
mately 5% of the total intensity is found in the tails beyondp

5 zrms.

B. Strong space charge (h5 20.005,Sf 5 22.8)

For the parabolic bunch the conservation of emittance is
equally good (about 1%), but the final momentum spread
is found about 6% larger and the bunch length 6% shorter
084201-7
than in the envelope case. This trend is consistent with
the significantly enhanced space charge effect. In Fig. 9
we compare the parabolic bunch with the initial Gaussian
bunch and find an enhancement of the effect already ob-
served for h � 20.05. The rms final momentum spread
increases by 53%, and the bunch length increases by 13%.
The momentum tails are significantly more extended ac-
cording to the larger coherent D; yet they contain again
approximately 5% of the total intensity beyond

p
5 zrms

(see Fig. 10).
084201-7



PRST-AB 3 G. FRANCHETTI, I. HOFMANN, AND G. RUMOLO 084201 (2000)
z [m]
ve

lo
ci

ty
 (

km
/s

)

z (m)

lin
e 

de
ns

ity
 (

nC
/m

)

lin
e 

de
ns

ity
 (

nC
/m

)

0

200

400

600

800

1000

1200

-8 -6 -4 -2 0 2 4 6
0

200

400

600

800

1000

1200

-8 -6 -4 -2 0 2 4 6
0

200

400

600

800

1000

1200

-8 -6 -4 -2 0 2 4 6

-300

-200

-100

0

100

200

300

-8 -6 -4 -2 0 2 4 6

-300

-200

-100

0

100

200

300

-8 -6 -4 -2 0 2 4 6

-300

-200

-100

0

100

200

300

-8 -6 -4 -2 0 2 4 6

t=0.000 ms t=0.027 ms t=0.035 ms

z (m)

z (m)

lin
e 

de
ns

ity
 (

nC
/m

)

z (m)

ve
lo

ci
ty

 (
km

/s
)

ve
lo

ci
ty

 (
km

/s
)

z (m)

FIG. 8. Line density and scatter plot of longitudinal phase space for Gaussian bunch with h � 20.05 at different phases of
compression.
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FIG. 9. Comparison of PATRIC simulation for initial parabolic and Gaussian bunch with h � 20.005.
We have compared this result with a semiparabolic
bunch using an initial parabolic line density, but Gauss-
ian velocity distribution of constant width along the
bunch, and find excellent agreement with the parabolic
bunch (better than 0.3% everywhere). Here it should
be noted that the line density remains parabolic during
most of the compression history and changes only close
to completion of the 90± rotation when the Gaussian
velocity distribution folds visibly into real space. The
final longitudinal distribution is box shaped as is shown
in the scatter plots of Fig. 11, with practically no momen-
tum tails.
084201-8
C. Estimates for momentum tail

The maximum extent Dtail of the momentum tails can
be estimated analytically by assuming that the bunch ends
see practically no space charge force during the first part of
the rotation. They are then rotated by the full rf force given
from Eq. (15) until they reach a maximum momentum
deviation

Dtail � blDf

µ
1 1

Sf

�1 1 x�

∂1�2

, (23)
084201-8
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FIG. 10. Line density and scatter plot of longitudinal phase space for Gaussian bunch with h � 20.005.
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FIG. 11. Line density and scatter plot of longitudinal phase space for a semiparabolic bunch with h � 20.005.
where Df is the ideal final momentum spread of the rms
equivalent parabolic bunch (i.e.,

p
5 Drms). The factor

bl should take into account the effectively longer bunch
length of the rms equivalent nonparabolic bunch, which
leads to a correspondingly increased momentum gain
(bl � 1.4 for a Gaussian bunch). Applying this expres-
sion to the above examples we calculate a maximum
extent of 330 km�s for the case of Fig. 8 and 87 km�s
for the case of Fig. 10, which is well confirmed by the
scatter plots. We expect that Eq. (23) applies generally
to nonparabolic bunches with a turning point in the line
density.
01-9
V. CONCLUSION

By using energy conservation we have derived analyti-
cal expressions for the space charge effect during com-
pression. From a comparison with computer simulation
we conclude that these expressions (as well as the en-
velope equations) can be applied also to rms-equivalent
nonparabolic bunches by using zm �

p
5 zrms (and simi-

lar for the momentum spread), provided that space charge
is not too strong. We also confirm by simulation that
short bunch length effects are small for the considered
parameters.
084201-9
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The attractiveness of using small h is, however, lim-
ited in practice if space charge dominates the rf voltage
and leads to a significant coherent momentum spread prior
to completion of the compression. In our simulation of
Gaussian bunches we have found significant momentum
tails in the compressed bunches, containing typically 5% of
the total intensity, even for moderately large space charge.
From a practical point of view they might be beyond the
momentum acceptance of the ring (or extraction beam line)
and therefore add to the beam loss and activation problem
in a high power ring. The practical feasibility of the pro-
posed two-step scheme, by jumping from small to larger
jhj before the end of compression (thus avoiding the most
serious space charge issues), needs further examination.
Further complications arising from a spread in h due to a
betatron tune shift and spread caused by space charge, as
084201-10
well as higher order terms in D, will have to be considered
in future studies.
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