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Particle dynamics in multistage wakefield collider
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The dynamics of particles in laser pulse-driven wakefields over multistages in a collider is studied.
A map of phase space dynamics over a stage of wakefield acceleration induced by a laser pulse (or
electron beam) is derived. The entire system of a collider is generated with a product of multiple maps
of wakefields, drifts, magnets, etc. This systems map may include offsets of various elements of the
accelerator, representing noise and errors arising from the operation of such a complex device. We find
that an unmitigated strong focusing of the wakefield coupled with the alignment errors of the position
(or laser beam aiming) of each wakefield stage and the unavoidable dispersion in individual particle
betatron frequencies leads to a phase space mixing and causes a transverse emittance degradation. The
rate of the emittance increase is proportional to the number of stages, the energy of the particles, the
betatron frequency, the square of the misalignment amplitude, and the square of the betatron phase shift
over a single stage. The accelerator with a weakened focus in a channel can, therefore, largely suppress
the emittance degradation due to errors.

PACS numbers: 52.40.Nk, 52.65.Cc, 52.75.Di, 05.40.–a
I. INTRODUCTION

The use of plasma waves excited by laser beams for elec-
tron acceleration was proposed by Tajima and Dawson [1].
Many variants of this are currently under consideration:
plasma beat wave accelerator (PBWA), laser wakefield
accelerator (LWFA), and plasma wakefield accelerator
(PWFA). These schemes are to excite the wakefield or
accelerating structure based on different ways, but the
basic idea is common. Thus, a common mathematical
treatment of the acceleration process is possible when it
is considered as an element of a system of a large scale
high energy accelerator. Existing designs [2] of e1e2

accelerators based on conventional technology aim at a
center-of-mass energy of up to 1 TeV. However, to reach
higher energy frontiers new acceleration methods seem
to be needed. The feature of plasma based accelerators
(for a review see [3]) is their ability to sustain extremely
large acceleration gradients (�100 GV�m). In principle,
it means several orders of magnitude higher energy gain
than the ones achieved by rf technology. For an accel-
erator in high energy physics, the energy is one of the
important parameters, but many others are also crucial for
such an accelerator. Since the decrease of cross sections
is generally inversely proportional to the energy of the
beams, high luminosity is required to detect new physics.
The requirement for luminosity, in turn, demands for low
beam emittance. The geometrical luminosity is given by
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where fc is the collision frequency, N is the particle num-
ber per bunch, sx and sy are the rms beam sizes at the
interaction point (IP), b�

x and b�
y are the betatron lengths

at the IP, and ex and ey are the normalized transverse
emittances of the beams. Thus, the analysis of the per-
formance of laser wakefield accelerators should consider
all relevant beam parameters, such as emittance, in addi-
tion to the beam energy [4]. Emittance is the measure of
the phase space volume of the beam so that it is directly
related to the entropy of the beam (through a logarithm).
A complex system of a collider, such as the laser wakefield
collider, is bound to generate entropy over multiple stages
of acceleration. Thus, the understanding of the emittance
degradation and possible ways to suppress it is of principal
importance.

The essence of mathematics is to extract a map from
the particle dynamics in phase space over one stage and
then to multiply over as many elements as there are in
the system to yield the final overall map. The properties
of this map are generically the same for many schemes
of the wakefield based accelerators, as mentioned above.
We first derive the ideal map in which no disturbance or
noise is present in each element of the accelerator. We
survey the mathematical properties of the ideal map. Then
we go on to study a realistic or nonideal map in which
the disturbance or noise of the system such as the ground
shake, plasma noise, collisions, laser misalignment, etc. is
incorporated. To make our discussion concrete, we take
in most of our discussions the example of laser wakefield,
following the approach described in [5,6].
© 2000 The American Physical Society 071301-1
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We note that with a short pulse laser driver the whole
acceleration process takes place over a period too short
for plasma ions to move. Therefore the analysis is lim-
ited to considering electron motion only in a background
of immobile ions. This not only simplifies the analy-
sis, but (generally speaking) stabilizes the system. In
most scenarios the desired final energy of accelerating par-
ticles (�TeV) cannot be achieved over a single accelera-
tion stage. Thus we need to evaluate the effects associated
with multistaging and analyze the complete acceleration
process. In the present investigation we limit ourselves to
the linear regime of wakefield generation.

A major simplification arises from the separate treat-
ment of beam electrons and plasma electrons. The plasma
electrons are supporting the wakefield but not trapped by
it. On the other hand, the beam electrons are affected
(accelerated and focused) by the wakefield. To formu-
late our map approach, we need analytical expressions for
the wakefields in homogeneous plasma for the ideal case.
Following [7] we obtain the longitudinal and radial wake-
fields in the case of cylindrical geometry. Several simpli-
fying assumptions valid in the ultrarelativistic case allow
us to integrate the single particle motion for the acceler-
ated beam particles. Based on these results, we derive a
map for a multistage LWFA which is used as a base for
orbital tracking in Sec. III. In Sec. IV we introduce ran-
dom errors in the accelerator stage alignment. We con-
sider their effects on the transverse rms beam emittance
over multiple stages through our map code for different
conditions. These errors combined with the spread in in-
dividual particle betatron frequencies can lead to a con-
siderable emittance growth. To understand, optimize, and
improve the performance of the LWFA based collider, it
is necessary to study the statistical mechanics behavior of
these particle dynamics. From this we obtain analytical ex-
pressions of emittance degradation in the accelerator map
in Sec. V. The case with mitigated focusing force is dis-
cussed in Sec. VI to alleviate the emittance degradation.
Conclusions are drawn in Sec. VII.

II. WAKEFIELD MODEL

A short high power laser pulse propagating in plasma
can excite wakefields. The plasma response can be ob-
tained from the cold fluid equations [7]:

d
dt

v � 2
e

meg

∑
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1
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v 3 B 2
1
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v�v ? E�
∏

, (2)

≠

≠t
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where n is the electron density and g is the Lorenz fac-
tor. These equations may be solved perturbatively, assum-
ing that the density perturbation is relatively small. In the
leading order the motion of the plasma electrons is gov-
erned by the ponderomotive force
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F � e=Fl�r, z, t� , (4)

where the ponderomotive potential Fl is related to the laser
vector potential Al,
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2e
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(5)

and a0 is the normalized vector potential.
Using a Gaussian laser pulse of the form (with a pulse

length ll, spot size rs)
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where j � z 2 ygt and the group velocity yg is very
close to the speed of light and the maximum electric field
in the z direction, behind the pulse (j2 ¿ l2

l ), is
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where E0 �
mewpc

e is the so-called wave breaking field
and we used the approach of [8]. The maximum field (7)
is reached when the resonance condition [3] is satisfied:
ll � lp��p

p
2�, where lp is the plasma wave wavelength

2pc�vp . A transverse electric field Er and magnetic field
Bu are generated according to the Panofski-Wenzel theo-
rem [9],
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For a relativistic particle (yz � c) the transverse force is
proportional to �Er 2 Bu� and there is a region in the wake
(quarter period) where a relativistic electron experiences
simultaneous acceleration and focusing. This feature of the
LWFA makes it different from the conventional accelera-
tors. The wakefield structure of this model is common to
other sisters of wakefield accelerators such as PBWA and
PWFA (see, for example, [10]). In general, it is a typical
feature of plasma based accelerators that the accelerating
field is independent of the transverse coordinates (up to
second order) and the focusing force is linear in transverse
coordinates (up to third order):

Ez ~ cosC, Er 2 Bu ~ r sinC . (10)

We assume that we have an electron injector which can
be used as a charged particle source for our accelerator.
Designing such an injector is a task in itself (see, e.g.,
[11–13]), but we are not going to investigate it here.
Motion of the high energy electrons of the beam in the
plasma wakefield is analyzed based on the following
assumptions: (i) The phase space area occupied by the
071301-2
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beam particles is small; (ii) the wakefield is not affected
by the beam (however, the beam loading can be included
[6]); (iii) the particles in the beam are highly relativistic
and move predominantly in the z direction (which is the
direction of propagation of the laser pulse),

�z ¿ �x, �y, �z � c ;

(iv) the particle motions in x and y are decoupled and can
be considered independently; (v) there is no interaction
among the beam particles; and (vi) the laser pulse does not
evolve. It is important, however, to ascertain mathematical
and physical properties of a simplified accelerator system
first in order to isolate and gain insight into the essential
mechanism of the emittance degradation. To lift some of
these assumptions is relatively straightforward and work
in progress on the problem will relax some of them. The
wakefield generated by the beam can be included in the
considerations using the results in [14]. Assumption (v)
is justified for high energy particles and relatively low
currents, because the space charge force diminishes by a
factor of 1�g2. Assumption (vi) is related to the pump-
depletion problem [15] and will be taken into account in
the future.

Starting with the single particle equation of motion
dp
dt � 2e�E 1

v3B
c � and assuming that the beam par-

ticles are close to the z axis, we obtain the following
basic system of differential equations for the longitudinal
motion:

dg

dz
� kpF0 cosC , (11)
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where C � kp z 2 vp t�z� is the particle phase with re-
spect to the wakefield. For the transverse motion
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mec
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Here E0 � cm0vp�e, kp � vp�c, yp is the phase
velocity of the wake and u and pu stand for transverse
variables x and px or y and py . After convenient normal-
izations, the important points are that we use z as our time
coordinate and the energy and phase of the particles with
respect to the wake are our “longitudinal” variables.
Equations (11) and (12) decouple from (13) and (14),
and we can consider these two sets independently. The
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first set is conveniently analyzed using the following one-
dimensional Hamiltonian [16]:

H � kpg�1 2 bbp� 1 kpF�C� , (17)

where

F�C� � 2F0 sin C . (18)

In the phase space formed by the first pair of vari-
ables �g, C� we have stable fixed points, g � gp and
C � p�2 1 2np, and unstable fixed points, g � gp

and C � 2p�2 1 2np, where gp � 1�
q

1 2 b2
p is the

Lorenz factor corresponding to the phase velocity of
the plasma wave. There are two phase space regions—
the trapped region, where the particles execute bounded
motion, and the untrapped one, where the motion is un-
bounded in the C direction (see Fig. 1). Because we are
primarily interested in high energy physics applications
of LWFA here, we consider the untrapped case, where
the particle orbits are well above the separatrix. We can
further simplify the equations of motion for g and C by
putting b � 1 for ultrahigh energy particles to obtain

dg

dz
� kpF0 cos�C� , (19)

dC

dz
�

kp
2g2

p
. (20)
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FIG. 1. The longitudinal phase space: electron Lorenz factor
g vs its phase with respect to the wakefield C. The parameters
used were gp � 15, F0 � 0.2.
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These equations are integrated directly to give

Dg � 2F0g2
p�sinC 2 sinC0� , (21)

C � C0 1
kpz

2g2
p

, (22)

where C0 is the initial phase of the particle with respect
to the wakefield. First, we observe that the maximum
energy gain in (21) is 2F0g2

p . We call this an energy
gain per unit stage. In order to gain more energy, we need
multiple stages. Taking typical values of the parameters
F0 � 0.2 (which corresponds to a0 � 0.5, corresponding
to the intensity of about 3 3 1017 W�cm2 for 1 mm laser
wavelength) and gp � 100 we see that the above gain is
about 4 3 103 in units of electron’s rest energy, or about
2 GeV. This energy is achieved over a distance z of about
50 cm. We take a � 0.5 to be still in the “controlled”
linear regime. The actual gain is smaller if the pump
depletion [15] is taken into account. Last, we note that
by properly choosing F0, rs, and gp we can analyze other
plasma based accelerators, e.g., PWFA.

III. MULTISTAGE ACCELERATION AND THE
MAP

If we are to accelerate particles to TeV energies, we need
to investigate problems associated with the multistaging.
Such a design based on the LWFA acceleration method
has been devised in [4] to satisfy all the known accelera-
tor physics constraints. In order to analyze the properties
and efficacy of the so-designed accelerator we character-
ize the beam dynamics to obtain a map which describes
the one-to-one correspondence between the entrance phase
space coordinates and the exit coordinates of the beam
particles during the propagation of the beam through each
accelerating stage and concatenate these maps over many
stages. We use the multiple product of maps to build a sys-
tems code for a LWFA collider. As in the standard rf linac
theory [17,18], we have a reference particle moving along
the ideal (design) orbit. All other particles in the bunch
are described by their relative position with respect to the
reference particle.

The linearized equations of motion for the longitudinal
degrees of freedom are

dCn11 � dCn , (23)

dgn11 � 2g2
pF0�cos�Cs 1 D� 2 cos�Cs��dCn 1 dgn ,

(24)

where the subscript n enumerates the stage (n the entrance
and n 1 1 the exit), Cs is the “synchronous” phase, and D
is the phase slippage per accelerating stage (actually, it can
also depend on n). Because of the fact that we are consid-
ering extremely high energy particles (g � 105 107), the
equation (23) is decoupled from (24). Formally, the equa-
tions look the same as in standard linac theory when the
071301-4
synchrotron oscillation frequency approaches zero. How-
ever, the physical regime of operation for the LWFA is
different from the rf linac—we have a significant phase
slippage over a stage (it is precisely this slippage which
gives us the energy gain)—and it also limits the maxi-
mum possible gain per stage. This difference comes from
the fact that the plasma wave is relatively slow (gp � 100,
instead of `). For the PWFA, however, the Lorenz factor
of the driver can be much higher (for instance, the current
Stanford linear collider beam energy [2] corresponds to a
Lorenz factor of about 105) and then the dephasing is not
significant. From Eqs. (23) and (24) we see that, in the ap-
proximation we are working in, the phases of the particles
do not change and the absolute energy spread increases
linearly with the stage number (actually, this is the begin-
ning of a very slow synchrotron oscillation which happens
on a time scale much greater than the time it takes a par-
ticle to travel the whole accelerator).

Now let us consider the transverse motion. If we assume
that the particle energy does not change significantly over
a single stage (which is valid in our case), this motion is
described by

¨̃u 1

∑
v2

b sin�vsz 1 Cs 1 dCn� 2

1
2

g̈

g
1

1
4

�g2

g2

∏
ũ � 0 , (25)

where

vs �
kp

2g2
p

, (26)

vb �

√
4F0

gr2
s

!1�2

(27)

are the “slippage” and maximum betatron frequencies, re-
spectively, in units of 1�m, and ũ �

p
g u. In the high

energy regime the third term in the square brackets in (25)
is negligible and the second term is usually also small be-
cause of the proportionality to 1�g2

p . Still, in the cases of
very weak focusing we have to take it into account (for
instance, in plasma channel).

An analytic solution can be found when some additional
approximations are made. The simplest and first thing to
do is to approximate the sine function in (25) by some
constant value (known as the “smooth” approximation)
and then the equation describes just a simple harmonic
oscillator. We adopt this. We also assume a free drift (in
vacuum) of the particles between the stages. Let us forget
for a moment that the particles are being accelerated and
that the strength of the focusing force actually depends on
the stage even if the stages are physically identical. To get
stable solutions, we need to satisfy

jTrMj , 2 , (28)

where M is the transfer matrix:
071301-4
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FIG. 2. (Color) The rms beam size sx and normalized rms x emittance ex vs stage number N . The parameters used were gp � 100,
drift � 17 cm, e0

x � 2.2 nm, rs � 0.5 mm, sdg�g � 0.01, and sdC � 0.01. (a) No acceleration and no dislocations, (b) no
dislocations.
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where L is the drift distance between the wakefield stages
and 1�v is the betatron length in the wakefield. The matrix
(29) may be also written as

M �

√
cos� v

vs
D� 1

v sin� v

vs
D� 1 L cos� v

vs
D�

2v sin� v

vs
D� 2Lv sin� v

vs
D� 1 cos� v

vs
D�

!
.

(30)

The transverse map M for the whole accelerator system
is

M � MN , (31)

where N is the total number of stages when each stage has
identical physical parameters.

When we do not have any drift space, the solutions
of orbits are always stable. If we increase L, keeping
the other parameters fixed, at some point we encounter a
“blowup” of the amplitude of the betatron oscillations. So
the maximum distance between the stages is limited. The
trace of M is

TrM � 2 cos

µ
v

vs
D

∂
2 vL sin

µ
v

vs
D

∂
, (32)

and for stability it should satisfy (28). We constructed the
map code (31). The relation (28) is used to check the
map code. Up to some value of L the motion is stable
071301-5
(see Fig. 2a), and after that we indeed find the amplitude
blowup. This consideration does not take into account the
fact that particles accelerate and vb is decreasing (vb ~

1
p

g ). Also, in reality, particles have different (random)
energies and different (random) phases with respect to the
wakefield. Therefore, the above analysis should be carried
out for each particle separately, but, if the differences in
their phases are small, the conditions for stable motion are
practically the same for all the particles. In general,

M � MNMN21 · · · M2M1 , (33)

where the transfer matrices depend on the stage number
and the positions of the individual particles in the longitu-
dinal phase space. We note that, because of the common
structure of the wakefield in all plasma based accelera-
tors, the obtained map with just slight modifications can
be used to analyze their performance as well. We coded
the map in the case (33). In [4] three sets of scenarios for
5 TeV collider parameters are presented (see also Table I).
Case I calls for the tightest emittance, with the least driver
power. We take this case for most of the time as a con-
crete example. We also assume that the accelerated beam
is initially matched to the focusing channel of the accel-
erator. Our runs show that when we start with a normal-
ized emittance of eu � ex � 2.2 nm (the case I scenario
of [4]), up to some value of the drift space the normalized
rms emittance is well preserved (see Fig. 2b) and the trans-
verse particle motion is stable. This does not surprise us
because the map is volume preserving, so the phase space
area (emittance) is constant.
TABLE I. The 5 TeV e1e2 , Lg � 1035 cm22s21 collider parameters according to [4].

Case Pb (MW) N �108� fc (kHz) ex (nm) b�
x �mm� sx �nm� sz �mm�

I 2 0.5 50 2.2 22 0.1 0.32
II 20 1.6 156 25 62 0.56 1
III 200 6 416 310 188 3.5 2.8
071301-5
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IV. ALIGNMENT ERRORS

For a complex system, cumulative errors can give rise
to an unpleasant result such as emittance dilution. We
identify that one of the most important such effects stems
from the alignment errors by whatever mechanism of the
wakefield with respect to the design particle orbit stage
by stage. The problem here is that up to this point we
have not considered possible misalignments of the conse-
quent stages. This, combined with the fact that the fo-
cusing force is different for different particles, can lead
to a severe transverse emittance growth. Basically, what
happens is that the particles rotate at different angular ve-
locities in the transverse phase space and, if there is a
stage position shift present, we get a characteristic banana-
shaped distribution (see Fig. 3c) (it is banana shaped only
if the dislocation size is larger than the beam size, but in
any case the particle distribution gets diluted because of
the misalignments). This process critically depends on the
magnitude of the betatron frequency spread. This means
that the typical strength of the focusing force is of great
importance. Of course, additional information can be ex-
tracted from the other total phase space cross sections; see
Fig. 4. However, here we concentrate on the transverse
emittance as a figure of merit due to its importance to the
final luminosity of the collider. The effect of plasma noise
(or other noise, such as laser or the boundary) on the par-
ticle dynamics over a stage may also be incorporated in a
071301-6
map similar to the stage-by-stage alignment errors. Such
dynamics results in a fuzzy or stochastic [19] map. The
longitudinal stage errors may be incorporated in a similar
manner; preliminary analysis shows that their importance
is not so critical.

We consider the case of transverse stage misalignments.
The dislocation of the aligned position of each stage n
is given in our code as a stochastic variable Dn which we
impose to have a Gaussian distribution with zero mean and
standard deviation sD which we assume to be independent
of the stage numberµ

x̃n11
�̃xn11

∂
� Mn

µ
x̃n 2 D̃n

�̃xn

∂
1

µ
D̃n

0

∂
, (34)

where Dn is the stochastic misalignment (D̃n �
p

gn Dn). The longitudinal degrees of freedom are not
affected. For this map to describe realistically the electron
motion, we assume that sD ø rs. The total transverse
map (in the presence of errors) can be written in the formµ

x̃n11
�̃xn11

∂
� MnMn21 · · ·M2�1 2 M1�

µ
D̃1
0

∂

1 · · · �1 2 Mn�
µ
D̃n

0

∂

1 MnMn21 · · ·M1

µ
x̃1
�̃x1

∂
. (35)
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FIG. 3. (Color) Weak and strong focusing cases: (a) The normalized x emittance ex vs stage number N . The parameters used for
the strong focus case were gp � 100, drift � 17 cm, e0

x � 2.2 nm, rs � 0.5 mm, sD � 0.1m, sg�g � 0.01, and sdC � 0.01.
For the weak focus case see Sec. VI. (b) The phase space px vs x for the weak focus case. (c) The strong focus case. The initial
(in blue) distribution (Gaussian and the beam is assumed initially matched to the focusing properties of the channel) and the final
(in red) after 1000 acceleration stages.
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FIG. 4. (Color) Additional cross sections of the initial (black) and final (red) phase space: (a) transverse coordinate vs longitudinal
phase, (b) transverse momentum vs longitudinal phase.
V. EMITTANCE DEGRADATION

The stochastic map (35) leads to a transverse emittance
degradation. A run with small random dislocations of mag-
nitude sD � 1 3 1027 m is presented in Figs. 3a and 3c.
We see that in this case (corresponds to design I in [4])
we have a severe emittance growth (the initial normalized
emittance is 2.2 nm). Additional results can be found in
[5,6]. We have to point out that, even though there are
cases corresponding to large laser spot sizes which pre-
serve the normalized emittance quite well, their practical
realization would require a huge laser power probably well
above any future experimental limits. Some alternative ap-
proaches to reduce the emittance growth are discussed in
[5,6]. In general, the problem can be cured by decreas-
ing the focusing of the accelerator system. One possible
way is to use a plasma channel [20,21]. It provides a lin-
ear weak focusing, and we showed in [6] that its perfor-
mance in a collider application is promising. In Sec. VI we
briefly discuss this issue. Here we concentrate on the map
properties.

We observe a certain random feature over shorter time
scales; runs with different misalignment distributions (just
different sequences, otherwise the same macroscopic prop-
erties) give different e � e�N� behavior. This is due to the
fact that the practical number N is too small with respect
to the long-range stationary behavior of the map. Even
though the emittance is a cumulative quantity which char-
acterizes the particle ensemble as a whole, it still has a
stochastic nature. Only in the limit of large N and long
enough transverse phase space mixing the final emittance
distribution shrinks and we obtain an approximately deter-
ministic value for a given set of parameters and sD . For
large N we observe a typical diffusion process; the emit-
tance growth is linearly proportional to N [it is correct only
in a constant energy approximation, in the case of adia-
batic energy increase the dependence is more complicated;
see (44)].

The dependence of the emittance growth on the beta-
tron frequencies spread is quadratic in the beginning (see
Fig. 5c), but if the parameters are such that full phase space
mixing occurs,
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sdvNl . 2p , (36)

where sdv is the betatron frequency spread and l is the
length of a single stage, then the emittance growth rate is
practically independent of the particular value of sdv�v.
The continuous growth of the emittance is maintained un-
der the presence of betatron frequency spread. In the limit
of small betatron frequency v, namely, v l , 1, and small
distance between the stages the map reduces to a stochas-
tic differential equation,

¨̃x 1 v2x̃ � v2D̃ . (37)

The right-hand side of the above equation represents the
noise (alignment errors) which drives the oscillation. Con-
sidering white noise, we observe

�D 	 � 0 , (38)

�D �z1�D �z2�	 � s
2
D ld�z1 2 z2� . (39)

Applying the theory of random walk of a harmonic oscil-
lator driven by a random force, we obtain

�x̃	 � 0, � �̃x	 � 0, �x̃ �̃x	 � 0 , (40)

�x̃2	 � Dz � DNl, � �̃x
2
	 � Dv2z , (41)

where the diffusion coefficient D is given by

D �
1
2

gv2ls2
D . (42)

We are also assuming that the emittance growth is large
(compared to the initial emittance). So, using (40) and
(41), we obtain

De � vD z �
1
2

gv�vl�2s
2
DN . (43)

The averages in (40) and (41) are twofold: over the par-
ticle ensemble and over the noise realizations. However,
in the limit of a significant phase mixing and large N the
average over the noise realizations can be dropped (in this
limit only sD is important). The alignment errors intro-
duce randomness in the phase space particle positions upon
reentry to the next stage; the differential betatron oscil-
lations mix these positions causing an emittance growth.
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FIG. 5. (Color) Emittance degradation scalings: (a) dependence of the normalized emittance growth Dex on the magnitude of the
transverse stage offsets sD . Blue diamonds represent the code results and the red line is a quadratic fit. ( b) Scaling of the emittance
growth with the laser spot radius (which determines the wakefield curvature and, correspondingly, the betatron frequency). The
red line is a 1�r3

s [as dictated by (45)] fit to the numerical data (blue diamonds). (c) Scaling of the emittance growth with the
phase spread. The change is from quadratic to linear dependence and finally saturation. (d) Long range behavior of the emittance
degradation. Two fits to the numerical results (in blue): first (red) based only on the derived N dependence and second (green)
based on the complete theoretical prediction.
In fact, the energy increases (Dg per stage). In the adia-
batic limit we obtain

De �
1
2

gv�vl�2s
2
D

µ
g

Dg

∂1�2
s
N ln

µ
1 1

DgN
g

∂
,

(44)

where g is the initial particle energy. Typically, Dg �
a2

0E0l and v ~
a0

rs , so we obtain

De ~
l3�2a2

0s
2
D

r3
s E

1�2
0

s
N ln

µ
1 1

DgN

g

∂
. (45)

A very important and expected point is the strong depen-
dence of the emittance growth on the magnitude of the
betatron frequency (or wakefield curvature); see Fig. 5b.
Discrepancy for small rs (large betatron frequency) be-
tween the numerical and analytical results is caused by
violation of our vl , 1 assumption. Of course, better
control of the errors reduces the emittance degradation as
shown in Fig. 5a. This important issue will be discussed
in a future publication. We can also see from (45) that,
for a fixed final energy, reducing the length of a single
stage decreases the emittance growth. This point was ex-
ploited in Ref. [22]. When the number of stages is rela-
071301-8
tively small and the phase space mixing is not complete,
numerical results appear to be the only reliable way to
analyze the properties of the map; analytical estimations
are rather difficult. We note that analytical estimations of
emittance growth due to stage misalignment valid in the
case of full filamentation (phase space mixing) in a single
stage can be found in [23]. In this limit (corresponds to
a very strong wakefield focusing), control over the emit-
tance growth can be achieved only by precise handling of
the beam (namely, error control better than the beam size).
The results in this limit can be reproduced in our theory
by replacing the factor vl in (43) by unity.

With the notion of final emittance scaling with the
relevant parameters we can start to optimize in the multi-
dimensional parameter space of the future collider. From
the computer simulations for the small emittance design
[4] for a multi TeV collider, the conclusion is that in the
case of initially homogeneous plasma it is difficult to avoid
a severe emittance growth of the accelerated beam in the
presence of small alignment errors stage-by-stage based
on reasonable parameters (laser spot size, dislocation size,
and number of stages). The difficulty is primarily due to
the fact that the wakefield focusing force is too large in
this case. The above considerations do not include the
transverse nonlinear effects which also contribute to the
emittance increase.
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VI. MITIGATED FOCUSING FORCE

A possible way to decrease the wakefield focusing is
the “hollow channel” design [20] in which a preformed
vacuum channel in an underdense plasma (the overdensed
case was studied in [24]) is discussed. This case offers sev-
eral important advantages: the focusing force is almost ex-
actly (because the phase velocity of the wake mode is very
close to the speed of light) linear and weak in the channel
(the weak focusing is a very important improvement over
071301-9
that of a uniform plasma case), there exists a stable propa-
gation solution for the laser mode, and the acceleration
gradient is very uniform in transverse coordinates within
the channel. A drawback is the loss in the magnitude
of the accelerating field. The equations for the wakefield
in the channel are [20]

Ez�j, r� � 2k2
ch

Z `

j
cos�kch�j 2 j0��Fl�a, j0� dj0,

(46)
Er �j, r� 2 Bu�j, r� �
kchr
4g2

p
k2
ch

Z `

j
sin�kch�j 2 j0��Fl�a, j0� dj0, (47)
where a is the channel radius, Fl is the ponderomotive

potential, and kch is given by kch � kp�
r

1 1 kpa
K0�kpa�
2K1�kpa� ,

where K0 and K1 are the modified Bessel functions of the
zeroth and the first order, respectively. For instance, if we
choose kpa � 1 then the electric field in the z direction
will be reduced by a factor of 0.6 [20] compared to the
initially uniform plasma. So, formally there are no major
changes to our previous map scheme. There is a reduction
in F0 and the magnitude of the focusing changes,

v � kch

√
F0

2g g2
p

!1�2

.

Since the gp factor is usually large, the magnitude of the
focusing force decreases significantly. We are able to in-
vestigate the accelerator performance in this case using the
same approach as before.

The run shown in Figs. 3a and 3b indicates a very
significant improvement over the previous design. Here
we are able to preserve even design I emittance of 2.2 nm.
The stage considered is gp � 150, the channel radius
a � 30 mm, the laser spot size rs � 50 mm, the plasma
density (outside the channel) n � 5 3 1016 cm23, the
laser wavelength l � 1 mm, and the drift space is 0.3 m.
The magnitude of the stage dislocations is larger than
before—sD � 0.5 mm. From the graphs we see that the
emittance growth of the accelerated beam is now much
smaller and the design is more promising. Unfortunately,
there is an additional effect: because in reality we have
a finite density gradient it leads to a resonant absorption
where the local plasma frequency matches the wakefield
frequency. This effect has been studied in [21], where an
expression for the quality factor of the hollow channel
is derived. Possible low values of this factor limit the
acceleration of multiple bunches in a single shot created
wakefield.

Another way to decrease the wakefield curvature is
through the use of transversely shaped laser pulses. A
“flattop” laser pulse would produce a small curvature
wakefield and correspondingly small focusing force. Crea-
tion and propagation of such pulses needs to be studied.
In the case of PWFA the density shaping of the driver
electron bunch can be achieved by using octuple magnets.

The most reasonable scenario at present might be the
following. We note the results in [25] for monomode
laser guiding in a hollow capillary dielectric tube. A
femtosecond 1016 W�cm2 laser pulse is guided over
10 cm with low losses. The transverse intensity pro-
file of such a pulse is ~ J2

0 �an,0r�a�, so the focusing
force on the trailing bunch would be proportional to

2
a2

n,0

a2 r. A small focusing force requires a large fiber
radius a � 0.5 1.0 mm. The normalized vector potential
corresponding to I � 1016 W�cm2 is a0 � 0.1, which
is relatively low. We can achieve required wakefield by
a train of properly spaced pulses [26]. The power of a
single pulse is P � 20 80 TW. There are other technical
difficulties. Design I, for instance, requires a collision
repetition rate of 50 kHz. Even loading multibunches in
a single shot wakefield still requires high laser repetition
frequency. In addition to this, the efficiency of the
production of TW pulses is currently low—about 1024.
This figure needs to be improved by at least 2 orders of
magnitude to keep the operating cost of the collider in
reasonable limits.

Finally, we note that, in the weak focusing cases
achieved in plasma, the collision-induced emittance
degradation becomes important since it is inversely
proportional to the betatron frequency. Correspondingly,
there is an optimal wakefield focal strength. We will
present the results on this in a follow-up paper.

VII. CONCLUSION

We investigated the cumulative effects of the successive
acceleration, transport, and focusing in the laser wakefield
(or its sister methods) over multiple stages. Such cumu-
lative processes are important for the real world accelera-
tors such as high energy colliders. Errors arising from the
misalignments of each stage or equivalently (in our map
approach) the noise in the system can accumulate in such
a way to degrade some of the parameters of the beam. The
most crucial of these may be the normalized transverse
rms emittance of the beam. We showed that a set of stages
071301-9
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with an ideal wakefield acceleration, drift, and focusing
can preserve even a very small emittance over a thousand
stages.

When we have stochastic variables on the wakefield
(we chose the stage errors of the axis of the wakefield,
in particular), the emittance can significantly increase over
the many stages due to the strong focusing of the wakefield.
This is probably the most serious effect on the long range
behavior of the beams in this kind of accelerator for high
energy applications.

We studied the emittance degradation numerically and
analytically obtaining important conclusions about its scal-
ings with respect to the relevant parameters. Based on
that we considered several mitigated focusing scenarios in
Sec. VI. Using the presented approach, we plan to perform
a further optimization in the multidimensional parameter
space of a large scale accelerator, taking into account, to
our best notion, future experimental limits and restrictions
which might come from them.
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