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Comment on “Nonlinear Compton scattering and electron acceleration
in interfering laser beams”
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We point out that, the way it is reported, the solution to the equation of motion of a relativistic electron
in the field of two electromagnetic waves advanced recently by Amatuni and Pogorelsky [Phys. Rev. ST
Accel. Beams 1, 034001 (1998)] does not handle the case of two copropagating waves differing in
frequency. An equivalent form for that solution is rigorously developed.

PACS numbers: 13.60.Fz, 41.20.Jb, 03.65.Ge, 14.60.Cd
In an interesting and potentially important article,
Amatuni and Pogorelsky [1] have recently discussed in
detail various situations involving the acceleration of,
and the (nonlinear Compton) scattering of radiation by, a
single electron in two interfering plane-wave laser beams.
Their discussion is based on an exact solution to the
Lorentz equation of the electron in the given fields which
they develop following an approach advanced for the
single plane-wave case many years ago [2]. In [1] the
Lorentz equation is broken into two coupled nonlinear
equations holding under conditions that apply to situations
involving two waves polarized linearly along the same
direction or to two collinear (or anticollinear) waves of
arbitrary linear polarization.

The purpose of this paper is to demonstrate that, in the
way it is reported in [1], the solution in question does not
seem to handle the case of two copropagated (collinear)
waves of different frequencies. We develop a form for
the solution to the problem at hand that is capable of
handling the cases considered in [1] as well as the one
just described. Our form of the solution reproduces all
the working equations derived and discussed with con-
siderable detail in [1] for the cases considered there and,
in this sense, the present paper does not raise any ques-
tions about the validity of the conclusions of Amatuni
and Pogorelsky.

We employ the system of units in which h̄ � c � 1
throughout this paper, and we start by slightly changing
the notation from that of Ref. [1]. The scalar product of
two four-vectors a � �a0, a� and b � �b0, b� will be de-
noted by a ? b � �a0b0 2 a ? b�. A dot on a four-vector
will denote differentiation with respect to t, the proper
time of the particle, such as �a1 � da1�dt, and so on.
On the other hand, a prime will mean differentiation
with respect to the phase h, as in a0

1 � da1�dh1, … ,
etc. The particle’s four-vector momentum at any (proper)
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time t will be given by p�t� � �E , p� and its initial
value by p�ti� � pi � �Ei , pi�. Let the two plane waves
be modeled by the vector potentials a1�h1� and a2�h2�,
where the phases are h1 � k1 ? x and h2 � k2 ? x;
x � �t, x� being the particle’s coordinate four-vector and
kj � �vj ,kj� � vj�1, êj �, j � 1, 2, the waves’ propaga-
tion four-vectors. Furthermore, êj is a unit vector in the
direction of propagation of the jth wave.

With A � a1 1 a2, the Lorentz equation of motion of
the particle, whose mass is m and whose (negative) charge
is e, in the two waves reads

dpm

dt
�

e

m
Fmnpn , (1)

where m � 0, 1, 2, 3, and the electromagnetic field tensor
is given by

Fmn � ≠mAn 2 ≠nAm

� �k1ma0
1n 1 k2ma0

2n� 2 �k1na0
1m 1 k2na0

2m� . (2)

In principle, a solution to Eq. (1) will yield the particle’s
momentum four-vector p. From p one then works out a
parametric representation, using t as a parameter, for the
associated coordinate four-vector x via

x � xi 1
Z t

ti

p�t0� dt0

m
, (3)

where xi is the value of x initially, at ti or before the
particle has been injected into the region of interaction with
the waves. Following Amatuni and Pogorelsky [1] we will
seek a solution to Eq. (1) of the form

p�t� � pi 2 e�a1 1 a2� 1 k1f1�t� 1 k2f2�t� , (4)

where f1 and f2 are unknown functions of the proper
time which will be determined by substituting Eq. (4) into
Eq. (1). Note that the initial conditions at ti, before the
particle is subjected to the waves, demand that these two
functions vanish identically as t ! ti , owing to the fact
that k1 and k2 are independent. Substituting Eq. (4) into
Eq. (1), and after some lengthy algebra, one obtains

��k1 ? pi� 1 �k1 ? k2�f2� �f1 � e�pi 2 e�a1 1 a2�� ? �a1 ,
(5)
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��k2 ? pi� 1 �k1 ? k2�f1� �f2 � e�pi 2 e�a1 1 a2�� ? �a2 .
(6)

Apart from the slight change in notation, Eqs. (5) and (6)
are identical, respectively, to the two lines of Eq. (9) in
Ref. [1]. Adding them as suggested in [1], carrying out the
single integration, and solving the result for f2 in terms of
f1 yields

f2 � a1

"
b 2 f1

a2 1 f1

#
, (7)

where

a1 �
k1 ? pi

k1 ? k2
, (8)

a1�k1 ? k2�b � epi ? �a1 1 a2� 2
e2

2
�a1 1 a2�2, (9)

a2 �
k2 ? pi

k1 ? k2
. (10)

Alternatively, the same result could have been arrived at
earlier by squaring both sides of Eq. (4), taking note of
the fact that p2 � p2

i � m2.
Because of the exchange symmetry exhibited by

Eqs. (5) and (6), namely, that one of them may be ob-
tained from the other by merely interchanging the indices
1 and 2, one needs only to find a solution to one of them;
the solution of the other then follows by letting 1 ! 2 and
2 ! 1. To find an exact expression for f1, for example,
one first uses Eq. (7) in order to eliminate f2 from Eq. (5).
With the subscripts temporarily suspended, the resulting
differential equation is then written in the form

df

dt
1 Pf � R . (11)

This equation has the following solution, obtained via the
standard integrating-factor technique,

f�t� � e2I

∑Z t

R�t0�eI�t0� dt0 1 C

∏
, (12)

I�t� �
Z t

P�t0� dt0, (13)

where C is a constant to be determined from the initial
condition, namely, the vanishing of f at ti. Employing the
initial condition formally amounts to giving (for f1)

f1�t� � e2I1

Z t

ti

R1�t0�eI1�t 0� dt0, (14)

where

P1�t� � 2
e �a1 ? �pi 2 e�a1 1 a2��

a3 1 �epi ? �a1 1 a2� 2
e2

2 �a1 1 a2�2�
,

(15)

R1�t� �
e �a1 ? �pi 2 e�a1 1 a2��a2

a3 1 �epi ? �a1 1 a2� 2
e2

2 �a1 1 a2�2�
.

(16)
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In these equations,

a3 �
�k1 ? pi� �k2 ? pi�

k1 ? k2
. (17)

As was noted above, similar expressions for f2 and the
related quantities may easily be written down from their
f1 counterparts by interchanging the indices 1 ! 2 and
2 ! 1.

With the change in notation introduced above, the cor-
responding expressions for f1 and f2 reported in Ref. [1]
as Eqs. (10) and (11), respectively, may alternatively be
written as

f1 � a2

∑
exp

µZ t

ti

F1 dt

∂
2 1

∏
, (18)

f2 � a1

∑
exp

µZ t

ti

F2 dt

∂
2 1

∏
, (19)

where

F1 �
e �a1 ? �pi 2 e�a1 1 a2��

a3 1 �epi ? �a1 1 a2� 2
e2

2 �a1 1 a2�2�
, (20)

F2 �
e �a2 ? �pi 2 e�a1 1 a2��

a3 1 �epi ? �a1 1 a2� 2
e2

2 �a1 1 a2�2�
. (21)

It may easily be shown that Eqs. (18)–(21) satisfy
Eqs. (5) and (6). They also satisfy the initial condition,
namely, f1�ti� � f2�ti� � 0. As a check, two special
cases are considered in Ref. [1], namely, the case of a
single plane wave and that in which the two waves are
components of the same wave. According to [1] the
first case, obtained a long time ago [2], may be realized
by letting a2 � 0, thus eliminating the second wave.
Note that this elimination may not be complete without
simultaneously setting k2 � 0, which in turn leads to inde-
terminate values for f1 and f2. Fortunately, one need not
do that; rather, k2 may be left everywhere in place in this
special case, as the integration in Eq. (18) (with a2 � 0)
may be carried out, and when the result is substituted
into Eq. (20) all dependence upon k2 drops out naturally.
The same thing also applies verbatim in the second case.
However, other cases not considered in [1] and of which
an example will be considered here shortly cannot be
treated in this way. Rewriting Eqs. (8), (10), and (17)
explicitly, the terms that stand to cause trouble are

a1 �
�Ei 2 ê1 ? pi�
v2�1 2 ê1 ? ê2�

, (22)

a2 �
�Ei 2 ê2 ? pi�
v1�1 2 ê1 ? ê2�

, (23)

a3 �
�Ei 2 ê1 ? pi� �Ei 2 ê2 ? pi�

1 2 ê1 ? ê2
. (24)
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Recall that êj is a unit vector in the direction of propagation
of the jth wave. Obviously, a1, a2, and a3 all diverge
in the case of two collinear beams ê1 ? ê2 � 1. An exact
solution to this case along the lines outlined above, for the
two special cases, does not seem to be possible. Worse
yet, if one lets, say, a3 ! ` in Eq. (20) one gets F1 �
0, a2 ! `, and, hence, f1 will be indeterminate. So a
different trick seems to be needed in this particular case.
The otherwise useful trick, based on Eq. (32) of [1], which
merely reproduces our Eq. (7), does not help either.

This case is important in, for example, the vacuum beat
wave laser accelerator [3]. Our equations offer to handle
the problem as follows. Letting a3 ! ` in Eq. (15) gives
P1 � 0 and, hence, I1 � 0. Furthermore, when one di-
vides the numerator and denominator of Eq. (16) by a2
and subsequently takes the limit ê1 ? ê2 ! 1 in the result,
one gets

R1�t� �
e �a1 ? �pi 2 e�a1 1 a2��

�k1 ? pi�
. (25)

Hence, assuming a1�ti� � a2�ti� � 0, one finally obtains

f1�t� �
e

k1 ? pi

Z t

ti

�a1 ? �pi 2 e�a1 1 a2�� dt

�
�e�pi ? a1� 2

e2

2 a2
1�

k1 ? pi

2
e2

k1 ? pi

Z t

ti

� �a1 ? a2� dt . (26)

This result could have been obtained from Eq. (5) by set-
ting k1 ? k2 � 0 and subsequently carrying out the remain-
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ing integration. One may now suspect that the two forms of
the solution, Eqs. (14) and (18), are equivalent. They are.
Close inspection of Eqs. (14)–(16) reveals that P1 � 2F1
and that R1 � a2F1. Hence, the integrand in Eq. (14) is
actually a total differential

R1�t0�eI1�t0� � 2a2
d

dt0
�e2

R
t

F1 dt 0

� . (27)

Recognizing this, one may now rewrite Eq. (14) in terms
of F1 alone and establish its equivalence with Eq. (20).

For the sake of completeness, note that the special case
of only one wave present and the (related) situation in
which the two waves are components of the same wave
follow immediately from Eq. (26). In general, however,
the remaining integral in Eq. (26) needs to be evaluated,
perhaps utilizing further restrictions on the two waves. For
example, it vanishes if the two waves are modeled by vec-
tor potentials polarized, say, linearly, perpendicular to each
other.
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