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The transverse coherent motion of two colliding proton beams at the Large Hadron Collider is
studied by multiparticle tracking. We use the beam-beam force for a Gaussian beam distribution with
variable barycenters and rms beam sizes, and optionally include the effect of long-range collisions
and external impedance. The simulation yields the coherent and incoherent oscillation frequencies,
the emittance growth of either beam, and evidence for the existence or lack of Landau damping. For
head-on collisions of beams with equal sizes, we find that the p-mode frequency lies outside of the
continuum frequency spread, if the ratio of the beam-beam parameters exceeds 0.6, in accordance with
predictions. For smaller ratios of the beam-beam parameters, or if, for equal beam-beam parameters,
the beam sizes are widely different, the p mode is Landau damped. When long-range collisions are
also included, undamped coherent modes do still exist outside the continuum, both with and without
alternating crossing planes at two interaction points. However, separating the tunes of the two beams
restores the Landau damping, provided the external impedance is sufficiently small.

PACS numbers: 29.27.Bd, 29.20.–c
I. INTRODUCTION

Two colliding beams exert a force on each other which is
focusing for beams of opposite polarity and defocusing for
those of equal polarity, as for the two proton beams at the
Large Hadron Collider (LHC). Solutions of the linearized
Vlasov equation suggest that in the case of one bunch
per beam with equal parameters (intensity, beam size,
betatron tune) two dipole coherent modes of oscillation
appear: the s mode, whose frequency is equal to the
unperturbed betatron tune, and the p mode with a tune
shift of 1.21–1.33 times the beam-beam parameter j [1].
The exact value of the tune shift depends on the beam
aspect ratio.

In addition to the two coherent modes, there is a contin-
uum spectrum representing the incoherent oscillations of
individual particles in each beam. The incoherent spec-
trum extends from 0 to j for particles at large and small
betatron amplitudes, respectively. Landau damping occurs
for oscillation modes whose frequency lies inside this con-
tinuum band. It is less effective for the p mode since this
mode can be farther apart from the continuum. Although
the beam-beam interaction itself does not lead to instabil-
ities, unless the tune is near a resonance [2], the loss of
Landau damping may result in an instability driven by any
small impedance component of the vacuum chamber.

The beam-beam interaction in the LHC is complicated
by a nonzero crossing angle at the collision points and the
large number of bunches. These lead to about 30 long-
range beam-beam collisions in each interaction region,
where the two beams are not fully separated into different
vacuum chambers. The parasitic collisions increase the
number of coherent modes and give rise to additional
tune shifts.

The question whether colliding proton beams with large
and equal coherent tune shifts are stable is a concern for
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the LHC [3]. It is predicted that, in the case of equal beam
sizes, for current ratios r . 0.6 the frequency of the p

mode lies outside of the continuum tune spread [4]. The
design current ratio is 1. A potential cure is to decouple
the oscillations of the two beams by separating their tunes
[5,6]. Few theoretical predictions exist on the effect of
the parasitic collisions.

In this report, we investigate the frequency spectrum of
the centroid bunch motion using a multiparticle tracking
code. The simulation model is described in Sec. II.
Section III presents results for head-on collisions of
bunches with equal tunes, considering both round and
flat beams. Here, the coherent mode frequencies are
compared with those predicted from the linearized Vlasov
equation, and, for round beams, we study the dependence
of the coherent-mode frequencies on the intensity ratio
and its consequences for Landau damping and emittance
growth. We also compare simulation results for different
beam sizes, keeping the beam-beam parameters constant.
In Sec. IV we discuss simulations including long-range
collisions. In Sec. V we consider two beams with unequal
tunes. Finally, in Sec. VI we study the impact of coherent
tune shifts caused by the machine impedance.

II. MODEL

We simulate the collision of two strong proton beams.
Our system of normalized variables is x � X�s0X , yx �
bX 0�s0X , y � Y�s0Y , yy � bY 0�s0Y , where s0X �
s0Y � s are the nominal horizontal and vertical rms
sizes and b is the beta function at the interaction
point. The prime denotes the derivative with respect to
longitudinal position s, so that, e.g., X 0 is the slope of the
horizontal trajectory.

Each of the beams is represented by a set of N macropar-
ticles, whose trajectories are followed over n turns,
© 2000 The American Physical Society 044401-1
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assuming linear betatron motion and a beam-beam colli-
sion at one or two interaction points (IPs). At the IP, each
particle in the bunch experiences a deflection in the field
of the counterrotating beam with barycenters at �x�i�, y�i��
and squared transverse sizes M�i�

xx � ��x�i� 2 x�i��2�,
M�i�

yy � ��y�i� 2 y�i��2�. This deflection is computed
assuming that the opposing beam has a Gaussian shape.
044401-2
Thus, for M�i�
xx . M�i�

yy we apply a horizontal beam-beam
kick [7]
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where W denotes the complex error function [8] (if M�i�
yy . M�i�

xx we substitute x by y on both sides of the two equations,
and vice versa). The vertical beam-beam force is described by the real part of the same expression. In these maps the
super index �i� indicates variables of the counterrotating beam.

In the case of nearly equal horizontal and vertical squared beam sizes, M�i�
xx � M�i�

yy , Eq. (2) is ill defined. We then
use a simpler expression for the force:
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We have performed some simulations using this formula only, even for (slightly) different vertical and horizontal spot
sizes. The results for initially round beams and equal transverse tunes are qualitatively and quantitatively the same as
obtained using the exact expression, Eq. (2). This seems to indicate that small variations in the relative transverse beam
sizes do not much affect the coherent modes.

Denoting the horizontal betatron tune by Qx , the linear map from one IP to the next isµ
x�n 1 1�
yx�n 1 1�

∂
�

µ
cos�2pQx� sin�2pQx�

2 sin�2pQx� cos�2pQx�

∂ µ
x�n�

yx�n� 1 Dyx�n�

∂
(4)
for the horizontal motion. An equivalent map is applied
for the vertical plane, �y, yy�.

In the simulation, the initial coordinates �x, yx , y, yy�
for two groups of N macroparticles representing the two
beams are selected from a Gaussian random distribution
in each variable with �x� � �yx� � �y� � �yy� � 0 and
�x2� � �y2

x� � �y2� � �y2
y� � 1.

A similar multiparticle tracking model was used by Keil
for the study of coherent oscillations of head-on collisions
[9] and later by Matsumoto and Hirata [10]. There,
good agreement was found between simulation results and
analytical predictions, for the vertical motion of flat beams.

To simulate parasitic (long-range) collisions, the same
model is employed. The two beams collide with a hori-
zontal separation Lx (in units of sx). There is about 90±

betatron phase advance between the IP and the region
of long-range collisions. The actual number of parasitic
crossings per side of each IP is npar�2. The betatron
phase advance between the long-range collision points on
one side of the interaction region is small. The effects
of long-range collisions on the two sides of an IP are
roughly equivalent because the betatron phase advance of
180± compensates for the opposite direction of the beam-
beam separation. Thus, in the worst case all the kicks
experienced before and after the IP are added coherently.
In the simulation, we lump all npar parasitic collisions
into a single kick 90± with npar times enhanced strength,
applied behind the IP. This may slightly overestimate
the effect of the long-range collisions, because it ignores
possible phase differences between bunches [11]. A static
dipole kick would induce a change in the closed orbit. In
the simulation the static kick from the long-range collision
must be subtracted to have the correct reference system.
The long-range beam-beam kick is then
Dyx�n� � 1npar
2rpN

�i�
p

g

b

s2

(
�x 2 x�i� 2 Lx�

R2

"
1 2 exp

√
2

R2

M�i�
xx 1 M�i�

yy

!#)

2 npar
2rpN

�i�
p

g

b

s2

(
2

1
Lx

"
1 2 exp

√
2

L2
x

M�i�
xx 1 M�i�

yy

!#)
, (5)
044401-2



PRST-AB 3 SIMULATIONS OF COHERENT BEAM-BEAM MODES AT … 044401 (2000)
where

R2 � �x 2 x�i� 2 Lx�2 1 �y 2 y�i��2. (6)

An equivalent expression will be used for vertical long-
range collisions with separation Ly .

In the simulations we assume the following typical
LHC parameters: fractional betatron tunes of Qx � Qy �

0.32, bunch population N
�1�
p � 1.05 3 1011 for beam 1,

and N
�2�
p � rN

�1�
p for the second beam with r varying be-

tween 0 and 1, proton beam energy of 7 TeV, unperturbed
horizontal and vertical rms beam sizes at the primary col-
lision point s � 16 3 1026 m, and an IP beta function
bx,y � 0.5 m. The beam-beam parameters are defined by

j�i�
x,y �

N
�i�
p rpbx,y

2pgsx,y�sx 1 sy�
, (7)

with i � 1 for beam 1, and i � 2 for beam 2. With
the above LHC parameters, we find j � 0.0034. For
equal beam sizes, the ratio of the beam currents, r �
N

�2�
p �N

�1�
p � j�2��j�1�, determines the behavior of the

system [4]. The case r � 1 is called the strong-strong
limit. At the LHC, there are about 16 parasitic encounters
on each side of an IP, with a minimum transverse
separation of Lx � 7.5 and Ly � 7.5 (in units of sx).

III. HEAD-ON COLLISION WITH EQUAL TUNES

A. p and s modes for round beams

We first consider the strong-strong case, r � 1, and
head-on collisions of two bunches, propagating particles
through the maps in Eqs. (1) and (4), with the beam-
beam force F�x, y� of Eq. (2). The statistical fluctuation
in the macroparticle distribution is sufficient to excite
the coherent modes. The transverse squared beam sizes,
Mxx and Myy, oscillate around 1 (in units of s2) with
a maximum deviation of 2%. Hence the beams stay
approximately round.

Fourier analyzing the motion of the barycenter of
one bunch reveals two coupling modes. One is located
at Q; the other has a lower frequency. In Fig. 1 the
simulated frequency spectrum of one beam is plotted
on a logarithmic scale, as determined by a fast Fourier
transform (FFT). Here and in the following, when
the frequency spectra of the horizontal and vertical
centroid motion, Sx�w� and Sy�w�, are equivalent, we
depict the quadratic sum of both amplitudes, SA�w� �q

Sx�w�2 1 Sy�w�2. The horizontal axis gives the tune
shift from the unperturbed tune Q in units of j.

If we Fourier analyze the centroid distances (�x�1�� 2

�x�2�� or �y�1�� 2 �y�2��), the coherent mode at the un-
perturbed frequency disappears. Conversely, when we
Fourier analyze the sum of the centroids �x�1�� 1 �x�2��
or (�y�1�� 1 �y�2��) the lower-frequency mode disappears.
044401-3
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FIG. 1. Frequency spectrum of the bunch centroid motion
(over 217 turns, N � 104 macroparticles) for round beams with
jx � jy � j � 0.0034 and Q � 0.32. The horizontal axis
gives the distance w to the unperturbed tune Q in units of j,
i.e., w � �n 2 Q��j. The vertical axis is the corresponding
amplitude on a logarithmic scale. The p and s oscillation
modes are clearly visible.

We thus identify the mode at the unperturbed frequency
as the so-called s mode, for which the centroids of the
bunches oscillate in phase with equal frequencies and am-
plitudes. The lower frequency mode is known as p mode.
In this mode the centroids oscillate also with equal fre-
quencies and amplitudes, but out of phase. The motion of
the bunch centroids is a superposition of these two modes.

Between the p and the s mode in Fig. 1 we also see
the continuum. This is related to the incoherent oscillation
frequencies of individual particles. A single particle of
beam 1 traversing beam 2 experiences a focusing force
which leads to a change in its tune. For particles near the
center of the counterrotating beam this tune shift is equal
to 2j. For particles further away, the focusing force is
smaller, due to the nonlinearity of the beam-beam force.
The result is an incoherent tune spread, which extends
from 0 to 2j.

In our simulations the p mode is shifted by 21.1 in
units of j. Hence, the p mode is outside of the con-
tinuum. Theoretical studies predict a tune shift between
the s and p modes equal to Yj [1,12]. The coefficient
Y describes the frequency change caused by the distor-
tion of the beam distribution due to the beam-beam col-
lision. This factor can be calculated from the linearized
Vlasov equation, assuming a Gaussian stationary distribu-
tion. For the case of round beams this factor is predicted
to be Y � 1.21 [1]. The shift obtained in our simula-
tions corresponds to Y � 1.1. The difference is due to ei-
ther the simplifying assumptions of our model, where the
beam-beam forces are calculated assuming that the beams
are of Gaussian shape, or is caused by approximations in
the theoretical derivation, where, e.g., the stationary dis-
tribution is assumed to be Gaussian, and the beam-beam
collisions are averaged over the circumference.
044401-3



PRST-AB 3 M. P. ZORZANO AND F. ZIMMERMANN 044401 (2000)
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

125 126 127 128 129 130 131 132

cu
m

ul
an

ts
 (

n)

n [103 turns]

<<x3 (n)>>
<<x4 (n)>>

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

125 126 127 128 129 130 131 132

cu
m

ul
an

ts
 (

n)

n [103 turns]

<<x3 (n)>>
<<x4 (n)>>

FIG. 2. (Color) Evolution of the cumulants of order 3 and 4 in the collision of two distributions of N � 104 macroparticles, for
the smallest amplitude of centroid oscillation of order d � 0.01 (left) and for an initial offset of d � 0.1 (right). The deviation
from Gaussian shape is dominated by statistical fluctuations due to the finite number of macroparticles and is independent of the
amplitude of centroid oscillation.
In a Gaussian distribution, the cumulants of order
higher than 2 are exactly equal to zero. To quantify
how closely our macroparticle density resembles a Gauss-
ian we evaluate the third and fourth order cumulants
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(��x3�� � �x3� 2 3�x2� �x� 1 2�x�3 and ��x4�� � �x4� 2

4�x3� �x� 2 3�x2�2 1 12�x2� �x�2 2 6�x�4) for two differ-
ent initial oscillation amplitudes. First, we consider the
natural amplitude of centroid oscillation due to the finite
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FIG. 3. Dynamics of the two strong beams (N � 105 macroparticles, Q � 0.32) in a one-dimensional simulation for round
beams. The horizontal axis is the normalized position x. The vertical axis shows the macroparticle distribution as obtained from
the simulation. (a) Initial state, (b) after 217 2 2 turns, (c) after 217 2 1 turns, (d) after 217 turns. The core of the beam oscillates
coherently and the tails do not move.
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number of macroparticles. The simulation uses N � 104

particles per bunch, with a Gaussian distribution with
standard deviation of 1, which gives an rms spread in the
centroid position of 1�

p
N � 0.01. For this amplitude

of centroid oscillation, ��x3�� and ��x4�� oscillate from
turn to turn around zero with rms value, evaluated
over 6600 turns, ��x3��rms � 0.023 and ��x4��rms � 0.046.
When the centroid oscillation is excited by an initial
horizontal offset of dx � 0.1s, the rms cumulants are
about the same ��x3��rms � 0.029 and ��x4��rms � 0.042.
In Fig. 2 we show the turn by turn evolution of the
cumulants of order 3 and 4 over 6600 turns for these
two cases. The instantaneous deviation from Gaussian
shape is of the order of a few percent, independent of the
amplitude of the centroid oscillation. We conclude that,
for small centroid oscillation amplitudes, as considered
here, the deviation from the Gaussian shape is dominated
by statistical fluctuations due to the finite number of
macroparticles. For this number of macroparticles and
small offsets, it would be difficult to correctly represent
any dynamic deformation of the bunch distribution and to
go beyond the Gaussian approximation.

To study in more detail the dynamic changes of the
bunch distribution, we consider an even larger offset of
0.4 (in units of s), which strongly excites the coherent
modes in a one-dimensional simulation over 217 turns.
Figure 3(a) depicts the initial Gaussian distribution of
the two beams, while the other three pictures in Fig. 3
show the distribution on the last three of 217 turns.
Comparing 3(c) with the initial distribution in 3(a) reveals
that, primarily, the core of the beam participates in the
oscillation.

The beam-beam interaction can also induce higher-
order coherent modes. For the quadrupole mode a
tune shift of Dp � 22 3 1.022j is predicted. The
frequencies of the higher modes are even closer to the
044401-5
continuum. Thus, these modes are more easily Landau
damped than the dipole mode, which could explain
why, in the simulation, we have not observed coherent
quadrupole oscillations. Note that the quadrupole-mode
continuum ranges from 2Q to 2Q 2 2j.

The calculations of this section have been repeated
using the round-beam formula for the beam-beam kick,
Eq. (3), instead of Eq. (2). The results are indistinguish-
able from those shown here.

We have also checked the dependence on the working
point. The size variations as a function of tune are in
good agreement with the dynamic-beta effect. The factor
Y also changes slightly. These results have been reported
in [13].

B. p and s modes for flat beams

The tune shift of the coherent p mode depends on the
vertical-to-horizontal aspect ratio at the collision point.
Simulating the collision of two flat beams with sx �
16sy (which is a rather typical parameter for e1�e2

storage rings) and Nb � 1.01 3 1013 (we artificially
increased the number of particles per bunch in order
to maintain a large j parameter and a large frequency
spread), we find a vertical coherent p mode with a tune
shift of 21.09jy and a horizontal tune shift of 21.15jx .
In the case of very flat beams the linearized Vlasov theory
predicts a tune shift of 21.24jy for the vertical p mode
and 21.33jx for the horizontal p mode. Figure 4 shows
the spectrum of the centroid motion of one of the two
beams.

Similar simulations were presented in Ref. [14] for
the collision of e1�e2 following the evolution of 500
macroparticles over 500 turns. There, for Qx � 0.25,
Qy � 0.3, and jy � 0.0306, a vertical p-mode tune shift
of 1.06jy was obtained.
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FIG. 4. Frequency spectrum of the vertical (left) and horizontal (right) bunch centroid motion for flat beams (calculated over 217

turns, with N � 104 macroparticles) for jy � 0.036 91 and jx � 0.002 466. The horizontal axis is the distance to the unperturbed
tune in units of the corresponding beam-beam parameter; the vertical axis gives the oscillation amplitude on a logarithmic scale.
The tune shift of the p mode with respect to the s mode is different in the two planes.
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C. Landau damping

The case of interest for proton colliders is the round
beam limit. From now on we will consider only round
beams.

In the s mode the beams oscillate in phase at the
IP without changing their shape. Participating in the p

mode are mainly particles with small betatron amplitudes.
These are most strongly affected by the movements of
the opposing beam, which may explain the large value of
the coherent tune shift [1,4]. In the limit r ! 0 such a
mode does not exist (unlike the discrete s mode which
exists at any value of the intensity ratio). Therefore,
for decreasing intensity of one of the beams there is a
point at which the discrete p mode disappears. Once
the frequency of the p mode lies within the incoherent
tune spread its energy is absorbed by individual particles
with similar oscillation frequencies. This phenomenon is
known as Landau damping. As a consequence, an initial
p-mode oscillation will disappear and the beam emittance
will grow until the p-mode energy has been completely
absorbed.

The disappearance of the p mode is studied by varying
the parameter r . We launch the two beams with an
initial horizontal offset d � 0.2 (in units of sx). The
frequency spectrum for an intensity ratio r � 1 is shown
in Fig. 5. The figure depicts the amplitudes of both s

and p modes, obtained from an FFT of the beam centroid
sum and difference, respectively. The p mode is outside
the continuum and not damped. Figure 6, for r � 0.6,
compares the frequency spectrum of the centroid distance
(p mode) at two consecutive time intervals of 216 turns,
demonstrating that the amplitude of the p mode decreases
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FIG. 5. Frequency spectrum of the centroid motion (over 217

turns, N � 104) for the case of round beams colliding head-
on with an initial offset of d � 0.2 (in units of sx). The
ratio of the currents is equal to r � 1. The horizontal axis
gives the tune shift from the unperturbed tune Q in units of j,
i.e., w � �n 2 Q��j. The vertical axis is the corresponding
amplitude obtained from an FFT, on a linear scale. The p
mode at w � 21.1 is not damped and its amplitude is constant
over this time.
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FIG. 6. Frequency spectrum of the centroid motion at two
successive time intervals of 216 turns (N � 104), considering
head-on collisions of two round bunches with current ratio
r � 0.6 and initial offset of d � 0.2 (in units of sx). The p
mode at 20.9 is Landau damped. Solid line and plus symbols:
first time interval; dashed line and crosses: second interval.

in time. Since for r � 0.6 the p-mode frequency lies
near the edge of the continuum, it is marginally Landau
damped. For the case r � 0.3 (not shown), the p mode
is well inside the continuum and rapidly damped. These
results confirm the prediction that for current ratios r #

0.6 the p-mode frequency falls in the incoherent tune
spread of the weaker beam [4].

D. Emittance growth

The kinetic energy of a kick is distributed among
the different oscillation modes: the coherent s mode,
the coherent p mode, and the incoherent oscillation
spectrum. The fraction of energy which is absorbed
by the continuum leads to an irreversible emittance
growth. In simulations for different intensity ratios r , we
studied the emittance growth and energy distribution after
applying a horizontal kick.

For comparison with analytical results, we introduce
several emittancelike quantities. We characterize the total
kinetic oscillation energy by generalized “emittances,”
defined as

e�i�
x � �x2 1 y2

x �, e�i�
y � �y2 1 y2

y � , (8)

where the angular brackets denote an average over
the distribution of bunch i. The initial (unperturbed)
bunch emittance is e0 � ex 1 ey � 2 1 2 � 4. After
applying a horizontal kick, the beams start to oscillate
coherently. A fraction of this energy is absorbed by
the continuum leading to a growth of the emittances.
The incoherent or intrinsic emittance is estimated by
subtracting the centroid motion:

e
I�i�
x � ��x 2 x�2 1 �yx 2 yx�2� ,

e
I�i�
y � ��y 2 y�2 1 �yy 2 yy�2� ,

(9)
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Without correlation between position and velocity (i.e.,
�xyx� � 0 and �yyy� � 0), and if the dynamic beta effect
is small, this definition agrees with the usual definition of
emittance

ex � ���x 2 x�2� ��yx 2 yx�2� 2 �xyx�2�1�2, (10)

except for a factor of 2.
The oscillation spectrum for r � 1 and an initial offset

d � 0.2 is shown in Fig. 5. The energy is distributed
among the s mode of amplitude A � 0.2, the p mode of
approximate amplitude B � 0.13 (notice the broad base
of the p-mode peak), and the continuum. The fraction of
energy absorbed by the continuum leads to an irreversible
emittance growth. The relative increment of emittance is

DeI

e0
�

"
�eI ,�1�

x 1 e
I ,�1�
y �

e0
1

�eI ,�2�
x 1 e

I ,�2�
y �

e0
2 2

#
.

(11)

For r � 1, the relative irreversible emittance growth is
DeI�e0 � 0.004, as illustrated by the lower curve in
Fig. 7.

For r # 0.6 the frequency of the p mode lies in the
continuum and is Landau damped. The emittance grows
until the energy of this mode is completely absorbed. Ex-
amples are the two upper curves in Fig. 7. As expected,
the final emittance is larger than for r � 1, namely,
DeI�e0 � 0.01.

These simulation results can be compared with analyti-
cal predictions. The beam response to a kick can be cal-
culated from the linearized Vlasov equation [4], and the
predicted emittances after a horizontal kick of magnitude
d (in units of sx) are [4]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20000 40000 60000 80000 100000 120000 140000
n

r=0.3
r=0.6
r=1.0

∆ε/ ε0
I

FIG. 7. Irreversible emittance growth DeI�e0 (vertical axis)
as a function of time (horizontal axis, time in turns) for three
different current ratios, r � 0.3, r � 0.6, and r � 1. The
beams are perturbed by an initial offset of d � 0.2 (in units
of s). For r # 0.6 the frequency of the p mode lies in the
continuum, and, thus, the mode is Landau damped, and the
intrinsic emittance grows until the p-mode energy has been
fully absorbed. For r � 1 the p mode is not Landau damped
and carries part of the kick energy. The emittance growth is
significantly smaller.
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e
�1�
x 1 e

�1�
y

e0
1

e
�2�
x 1 e

�2�
y

e0

� 2 1
d2

2
�0.5 1 0.32 1 0.18� . (12)

The first term in the brackets describes the fraction of
energy carried by the s mode, the second represents the
energy of the p mode, and the last is the fraction which
is imparted on the continuum leading to an irreversible
emittance growth. The s mode, with amplitude A, carries
an energy A2 � e0

d2

2 0.5. The energy of the p mode

with amplitude B is B2 � e0
d2

2 0.32, and the relative

irreversible emittance growth is DeI�e0 �
d2

2 0.18.
For d � 0.2 we then expect A � 0.2, B � 0.16, and

DeI�e0 � 0.0036, in good agreement with the oscillation
amplitudes shown in Fig. 5 and with the emittance growth
for the lower curve in Fig. 7 (r � 1). For r # 0.6, the
energy of the p mode is transferred to the continuum.
The expected relative emittance growth is DeI�e0 �
d2

2 �0.18 1 0.32� � 0.01, again in good agreement with
the simulation results of Fig. 7 (the two upper curves).

E. Beam size ratio

We have seen that for equal beam sizes the frequency
of the p mode moves out of the continuum for current
or beam-beam parameter ratios r . 0.6, as expected from
the linearized Vlasov equation [4]. Experience from the
SPS collider indicates, however, that factors other than
the ratio of beam-beam parameters may determine the
coherent stability or instability of the colliding beams
[15]. When the SPS operated as a pp collider with
j�2��j�1� � 0.8 the p mode was never observed. Table I
lists some typical parameters for 1988 pp runs [15]. The
symbol Nb is the number of particles, while eh and ey

are the normalized emittances (with s in mm) in the
horizontal and vertical plane, respectively. The beams
collided in two physics interaction points (bh � 1 m,
by � 0.5 m) and one mid-arc interaction where b �
40 m. The fractional part of the tune was roughly 0.681.
For these parameters the ratio of beam-beam parameters
in both planes was j�2��j�1� � 0.8, and the beam sizes of
the proton and antiproton beams differed by about 50%.

Can we reproduce the absence of the p mode in our
simulation? We first simulate the head-on collision of two
round bunches at one interaction point with bh � by �
0.5 m and beam-beam parameter ratio 0.8. As shown
in Fig. 8 (left), with r � 0.8 we can clearly distinguish
the s and p mode. Next, we simulate the collision of
two bunches assuming the same ratio of beam-beam pa-
rameters, j�2��j�1� � 0.8, but unequal sizes s�2�

x � as�1�
x ,

s�2�
y � as�1�

y with a � 1.5 (the current of bunch 2 is

scaled as N
�2�
p � ra2N

�1�
p , in order to maintain a constant

ratio of beam-beam parameters). The right-hand picture
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TABLE I. Typical parameters at the start of a 1988 pp run in the SPS. The ratio of
beam-beam parameters in the two planes was j�2��j�1� � 0.8; the beam-size ratio was roughly
a � 1.5.

Parameter p p p p p p p p p p p p

Nb �1010� 10.9 3.8 10.1 4.2 10 4.6 9.8 4.6 10.8 4.4 9.7 3.8
eh 4.5 2 3.8 · · · 2.6 · · · 2.6 · · · 2.6 · · · 2.6 · · ·
ey 2.7 1.2 2.3 1.3 2.3 1.3 2.4 1.4 2.4 1.4 2.3 1.2
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FIG. 8. Two-dimensional strong-strong simulation with j�2��j�1� � 0.8. Spectral density of centroid motion on a logarithmic
scale, as a function of the distance to the nominal tune in units of j�1�. Left: N �2�

p � rN �1�
p , s�2�

x � s�1�
x � 1, s�2�

y � s�1�
y � 1.

Right: N �2�
p � ra2N �1�

p , s�2�
x � as�1�

x , s�2�
y � as�1�

y , a � 1.5 (parameters similar to the 1988 SppS run). If the beams sizes are
sufficiently unequal, the p mode disappears.
in Fig. 8 shows that in this case the p mode (on the left
of the spectrum) is absorbed by the continuum.

These results suggest that the beam-beam parameter
ratio alone does not determine the location of the p mode
with respect to the continuum. A heuristic explanation of
the beam-size effect is the following. Primarily, particles
with small betatron amplitudes participate in the p-mode
oscillation, because they are most strongly affected by
the movements of the opposing beam. In the second
simulation, where the size of beam 2 is increased, the
fraction of particles affected by the oscillation of the
counterrotating beam is smaller. Since fewer particles
take part in the coherent oscillation, Landau damping is
more easily established.

The LHC design requires equal beam sizes and currents
(r � 1). In the following we will concentrate on this
case.

IV. LONG-RANGE COLLISIONS

In this section we investigate the role of the long-range
collisions, both with crossing in one plane only and with
alternating crossing planes at two IPs. The vertical and
horizontal tunes are chosen equal (Qx � Qy � 0.32).
044401-8
A. Horizontal crossing (no head-on collisions)

Figure 9 shows the horizontal and vertical spectrum
of centroid oscillation of a bunch undergoing long-range
collisions with a horizontal separation of Lx � 7.5 (in
units of sx). In the horizontal plane, the spectrum is
shifted in the positive direction, and the coherent dipole p

mode is visible at about twice the incoherent tune shift. In
the vertical plane, the spectrum is shifted toward negative
values, and again the coherent p mode is shifted twice as
much as the incoherent spectrum.

The simulation results are easily interpreted. Since the
transverse distance between two bunches in the long range
collision is much larger than the rms beam size, the effects
are similar to the coherent interaction of rigid pointlike
bunches, and the coherent tune shifts due to parasitic
crossings are approximately

Dnp � 2�incoherent tune shift� , (13)

Dns � 0 . (14)

For beam separations larger than �1.5s, the slopes of
the beam-beam force versus the transverse amplitude are
of opposite sign in the two transverse directions, which
explains the opposite sign of the tune shifts.
044401-8
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FIG. 9. Spectrum of the vertical (left) and horizontal (right) centroid motion for a long-range collision with horizontal separation
Lx � 7.5 (in units of sx) and no head-on collision (calculated over 217 turns with N � 103 macroparticles). The horizontal axis
gives the tune distance to the unperturbed tune Q in units of j: w � �n 2 Q��j. The vertical axis gives the oscillation amplitude
on a logarithmic scale. The tune shifts due to long-range collisions are of opposite direction in the two transverse planes. The
frequency of the coherent p mode is at twice the incoherent tune shift.
B. Head-on collisions with alternating crossing

Next we simulate the combined effect of head-on and
long-range interactions. Since the tune shifts from long-
range collisions have opposite signs in the two transverse
planes, an alternating crossing scheme was proposed
for the LHC [16], where the beams are separated in
orthogonal planes at the two main IPs. This reduces
the overall incoherent tune shift and tune spread by
cancellation of the tune shift between IPs. Also the
coherent-mode frequency shifts caused by the long-range
collisions should be much reduced.

We consider two closely spaced bunches per beam,
and two interaction regions. The bunches in beam 1

10

10

0.0001

0.001

0.01

0.1

1

-3 -2 -1 0 1 2 3
w

S   (w)A

-5

-6

FIG. 10. Spectrum in the case of head-on and long-range
collisions with alternating crossing when each bunch collides
head-on at two interaction points, and undergoes long-range
collisions with npar � 32 bunches behind each IP. The
horizontal axis is the tune distance to the unperturbed betatron
frequency in units of the new incoherent tune shift 2j: w �
�n 2 Q��2j. Tracking was performed for 217 turns using
N � 104 macroparticles.
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are denoted as a and b, and those in beam 2 as c and
d. First the bunches are collided head-on (for instance
a-c and b-d). We then apply a phase advance of 90± to
reach the long-range collision region. There the bunch
pairs (a-d) and (b-c) are collided with a horizontal
separation of Lx and a beam-beam parameter which
is npar times stronger than for the primary collision,
representing the accumulated effect of npar � 32 parasitic
collisions around each IP.

Subsequently, we advance the phase of the beams to
reach the other interaction region and evaluate the head-
on collisions (a-d) and (b-d). This is followed by another
phase advance of 90± to the long-range collision point,
where again long-range collisions of the pairs (a-d) and
(b-c) are applied, but this time with a vertical separation
of Ly .

The spectrum of the bunch motion is illustrated in
Fig. 10. Coherent modes still survive outside the con-
tinuum. Collision schemes with and without alternat-
ing crossing were compared in Ref. [13], with similar
conclusions.

V. SEPARATED TUNES

Hofmann [6] pointed out that the coherent frequency
shifts can be reduced by separating the tunes of the two
beams [17]. The case of equal tunes for both beams is
well known and leads to s and p modes. Separating the
tunes can decouple the coherent motion of the two beams,
so that the beams oscillate independently. In the LHC,
with two independent rings, this could easily be realized,
choosing two of the three proposed working points [18].

We simulate this situation for the head-on case with
beam 1 at a tune Q�1� � 0.32 and beam 2 at a tune Q�2� �
0.31. An initial offset of 60.1 (in units of sx) is applied
to each beam. Figure 11 shows that the continuum
044401-9
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FIG. 11. Beam 2 (left) and beam 1 (right) spectrum of centroid oscillation for head-on collisions with unequal tunes (Q�1� � 0.32,
Q�2� � 0.31) and initial offset 60.1 (sx), (217 turns, N � 103 macroparticles). Along the horizontal axis we plot the tune, and
along the vertical axis the corresponding FFT amplitude. The new coupling modes are inside the continuum and are Landau
damped.
of beam 2 extends from �0.31 2 j � 0.3066� to 0.31, and
that of beam 1 from �0.32 2 j� � 0.3166 to 0.32. Both
coupling modes are now inside the incoherent spread of
one or the other beam, and Landau damping is restored.
For example, the continuum of beam 2 absorbs the energy
of the lower-frequency coupling mode, leading to an
intrinsic emittance increase of beam 2. The same is true
for beam 1, which absorbs the energy of the higher-
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frequency coupling mode. Now we do not find any
narrow peaks corresponding to coherent modes, and we
observe only a finite emittance growth.

The new coherent-mode frequencies can be calculated
analytically with a simple model of two coupled oscilla-
tors with frequencies Q�1� and Q�2� (notice that this model
does not include the Yokoya factor). The frequencies of
the two eigenmodes are [6,17]
Q2
a,b �

�Q�1��2 1 �Q�2��2

2
1

�2j� �Q�1� 1 Q�2��
2

6
1
2

q
��Q�1��2 2 �Q�2��2�2 1 2�2j� �Q�1� 1 Q�2�� �Q�1� 2 Q�2��2 1 �2j�2�Q�1� 1 Q�2��2 . (15)
As the unperturbed tunes move apart, the eigenmode fre-
quencies Qa and Qb become more and more associated
with the tunes of the two individual beams, approaching
Q1 2 j�2.0 and Q2 2 j�2.0. As a numerical example,
for Q�1� � 0.32 and Q�2� � 0.31 the coupled mode fre-
quencies are at Qa � 0.3186 and Qb � 0.3080 (Qa

inside the continuum of beam 1 and Qb inside the contin-
uum of beam 2). The situation is similar when we include
long-range collisions [13].

VI. IMPEDANCE

External impedances cause additional coherent tune
shifts. These could push the p-mode frequency away
from the incoherent spectrum and result in loss of Landau
damping even when the tunes of the two beams are
separated.

We model the effect of the ring impedance in an
approximate manner. At every turn we apply a localized
kick that depends linearly on the bunch centroid position:

Dyx � 24pDQZ,x�x� , (16)

Dyy � 24pDQZ,y�y�. (17)
This results in a coherent tune shift of the centroid
motion (dipole mode), but has no effect on the tunes
of individual particles (incoherent spectrum). We have
simulated cases with negligible horizontal tune shift
(DQZ,x � 0) and different values of the vertical tune shift
DQZ,y . For increasing magnitude of the coherent tune
shift, we observe the emergence of coherent modes from
the incoherent spectrum, as illustrated in Fig. 12.

To preserve the Landau damping established by
tune separation, the additional impedance tune shift
should be smaller than the distance between the co-
herent mode frequencies (without impedance) and the
continuum boundary, which, for the case of suffi-
ciently unequal tunes, is roughly j�2.0 � 15 3 1024.
The total effective LHC impedance at 7 TeV has
been estimated to be about bav Im�ZT �eff � 718 MV

[19], this gives rise to a coherent tune shift of Dn �
2IbR��2E�e4ss�bavZ � 21.3 3 1024. It is expected
that this estimate will be at least doubled when other
machine components are taken into account. Therefore
we can assume for the LHC at top energy an impedance-
induced tune shift of the order of Dn � 22.5 3 1024

(about 10% of the beam-beam parameter). This is small
044401-10
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FIG. 12. Two-dimensional strong-strong simulation of the collision of bunch 1 with tune Q�1�
x,y � 0.32 and bunch 2 with tune

Q�2�
x,y � 0.31 for j � 0.0034. Along the horizontal axis the tune is plotted, and along the vertical axis is the corresponding

oscillation amplitude for the horizontal (left) and vertical (right) motion of beam 1. Top: an additional vertical coherent tune shift
DQZ,y of 114 3 1024, which pushes one of the vertical coherent modes away from the continuum. Bottom: a vertical coherent
tune shift of 120 3 1024; now both vertical coherent modes are outside of the continuum.
enough that the coherent mode frequencies stay inside the
continuum, for the tunes chosen here with a factor of 4
safety margin, and for sufficiently separated tunes with a
factor of 6 margin.

VII. CONCLUSIONS

Using a simplified multiparticle simulation, we have
studied the coupled coherent beam-beam modes at
the LHC.

For the case of head-on collisions the energy partition
between continuum, s and p modes after an initial trans-
verse offset agrees well with theoretical predictions [4].
We have also confirmed another prediction [4] that, for
equal beam sizes and current ratio 0 , r # 0.6, the p

mode lies within the continuum and is Landau damped.
Its energy is transferred to the continuum, leading to an ir-
reversible finite emittance growth. For equal beam-beam
parameters of the two beams, we find a p-mode tune
shift of 21.1 in units of j, sufficiently large to place
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it outside of the continuum and to lose Landau damping.
A 50% unevenness in the beam size restores Landau
damping even for a beam-beam parameter ratio as large
as 0.8.

In the case of two equally strong beams with head-on
and long-range collisions, coherent modes exist outside
of the continuum, even with alternating crossing at two
IPs. In general, these modes are not Landau damped.
However, if the betatron tunes of the two beams are
sufficiently different, the frequencies of the coherent
modes are shifted toward the continuum of one or the
other beam and Landau damping can be restored.

Impedances give rise to additional coherent tune shifts.
For the expected coherent tune shift at top energy of
22.5 3 1024, Landau damping is still retained with some
safety margin.

In conclusion, there are many scenarios where Landau
damping of the coherent beam-beam modes may be lost,
but, according to our simulations, separating the tunes of
the two rings will stabilize the colliding LHC beams.
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