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Closed analytical expression for the electric field profile in a loaded rf structure
with arbitrarily varying yg and R000���Q
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The design of a detuned and damped accelerating structure implies variations in the geometry which
induce, in turn, a variation of the group velocity yg and the impedance per unit length R0, divided by
the quality factor Q. The resulting differential equation for the longitudinal electric field (fundamental
mode) contains coefficients that depend on the distance z along the structure. This report describes a
possible method to solve this nonlinear, first-order differential equation analytically and how to obtain
approximate closed algebraic forms, by using the sequence of Gauss integration methods. Analytical
expressions of the longitudinal field profile in a loaded or unloaded accelerating section are deduced for
both linear and arbitrary variations of yg and R0�Q. Simple relations between the average field �E�
and the field at the entrance of the structure E�0� make it possible to provide the dependence of the
field function E�z� on the design value for �E� and on the structure parameters. The results are in good
agreement with the direct numerical integration. Applications are presented for particular structure
designs.

PACS numbers: 29.17.+w, 96.50.–e, 42.60.–v, 41.20.–q
I. INTRODUCTION

In the design of a detuned and damped accelerating
structure [1], the variations in the geometry induce a
variation of the group velocity yg and the shunt
impedance per unit length divided by the factor of merit
R0�Q [2]. As a consequence, the differential equation
for the longitudinal electrical field E is modified into
an equation with coefficients that are dependent on
the coordinate z, i.e., the distance along the structure.
Though the resulting equation can be solved numerically,
it is always interesting to derive, whenever possible, an
analytical solution in a closed algebraic form. This can
provide insight into the dependence of the result on the
input parameters as well as the possibility of using a
short symbolic program for a rapid interactive analysis of
various structure designs. A method is proposed hereafter
to solve the differential equation for the electric field
of a loaded or unloaded structure and to find accurate
analytical approximations which can be written in a
closed form. A comparison with the direct numerical
integration of the basic equation (with Cauchy’s method)
shows a very good agreement with the analytical result in
the z interval of interest. The present analysis provides
relationships between, on the one hand, the field profile of
the fundamental mode and, on the other hand, the struc-
ture length, the average accelerating gradient required,
as well as the variations of the group velocity and R0�Q
along the cavity for tapered or detuned damped structures.
These variations serve as inputs for the analytical solution
of the problem, and they are derived from numerical
field computation programs. The presented analysis
gives a very useful complement to the common relations
widely used for constant impedance or constant gradient
structures and is applicable, in particular, to the (Compact
1098-4402�00�3(4)�042001(10)$15.00
Linear Collider) CLIC tapered damped structure [1].
This structure and a damped detuned structure of (Next
Linear Collider) NLC type [2] are used to illustrate the
application of our formalism and the accuracy of the
results.

II. BEAM LOADING EQUATION TO BE SOLVED

The derivation of the differential equation for the
longitudinal electric field as a function of the distance
z along an accelerating structure is given in Refs. [3,4].
An analytical solution is presented in [3] for the case of
constant R0�Q and linearly varying group velocity, and
the equation is solved numerically for the case where
both R0�Q and yg vary linearly. Ref. [4] proposes a
solution for a constant-gradient structure when the shunt
impedance per unit length does not change.

The present paper gives a general class of analytical
solutions valid for arbitrarily varying R0�Q and yg, not
necessarily constant quality factor Q, and for a flat beam-
current distribution with respect to z. With the assumption
that the power flow is constant except for the dissipation
in the wall (depending on the factor Q) and the power
exchange with the beam (proportional to the factor R0�Q),
the basic differential equation is written as [3,4]

d
dz

∑
E2�z�

yg�z�
R0�Q�z�

∏
1

E2�z� ? v

R0�Q�z� ? Q
1 E�z�Iv � 0 ,

(1)

where yg�z� is the group velocity and v the frequency of
the fundamental mode.

The question that arose was how to solve the differen-
tial equation (1) with linear variations with respect to z of
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yg and R0�Q, over the length L of the structure,

yg�z� � yg�0� 2 Dyg
z
L

,

R0

Q
�z� �

R0

Q
�0� 1 D

µ
R0

Q

∂
z
L

,
(2)

and for a given initial value (at z � 0) of the longitudinal
electric field defined by

E�z � 0� � E�0� . (3)

More generally, we are interested in trying to solve
Eq. (1) for any relevant functions F1���yg�0�, z�L��� and
F2���R0�Q�0�, z�L��� of z, representing possible variations of
the group velocity and the impedance factor, and this for
a given average longitudinal electric field over the length
of the structure. This means solving (1) with

yg�z� � c F1���yg�0�, z�L��� � cF1�z� ,

R0

Q
�z� � F2

∑
R0

Q
�0�, z�L

∏
� F2�z� ,

(4)

and assuming that we can find an explicit relation between
the initial value of the field and its average �E� taken over
the structure [see Eq. (10) below]

E�0� � E�0� ��E�� . (5)

In this report, a method is described that allows
the solution of Eq. (1) in the general case and gives
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an expression for the field E�z� containing, however,
integrals which cannot be fully evaluated analytically
for the assumed variations (2) or (4) of the coefficients.
Therefore, Gauss approximations of the integrals are
proposed, so as to obtain in both cases explicit analytical
solutions which provide very accurate estimates in the
parameter interval of interest (confirmed by comparison
with numerical quadrature) as well as the dependence of
the solutions on the accelerating structure parameters. For
any functions F1 and F2, the approximate solution E�z�
obtained for the field is a linear function of its initial
value E�0�. Therefore, the average field �E� obtained by
further integration upon z of E�z� will also be a linear
function of E�0� which can eventually be solved for E�0�
in order to provide the form (5). Again the integration
of E�z� is done using Gauss approximations that provide
a very good evaluation of the average as shown in the
applications.

III. CLOSED EXPRESSION OF THE BEAM
LOADING VOLTAGE

A. Solution for linear variations of yg and R000���Q

Solving Eq. (1) for the longitudinal electric field in the
case of the linear variations defined by (2) has been done
according to the derivation described in Appendix A. It
provides the following expression for the beam loading
voltage profile as a function of z, to the second order of
the Gauss approximation:
E�z� �

s
R0�Q�0� 1 D�R0�Q� ? z�L

yg�0� 2 Dyg ? z�L

µ
1 2

Dyg

yg�0�
z�L

∂p

3

(s
yg�0�

R0�Q�0�
E�0� 2

Iv

4
z

"µ
1 2

Dyga1

yg�0�
z�L

∂2p
s

R0�Q�0� 1 a1D�R0�Q� ? z�L
yg�0� 2 a1Dygz�L

1

µ
1 2

Dyga2

yg�0�
z�L

∂2p
s

R0�Q�0� 1 a2D�R0�Q� ? z�L
yg�0� 2 a2Dygz�L

#)
, (6)
with

p �
vL

2QDyg
, (7)

and

a1,2 �
1
2

7
1
6

p
3 , (8)

remembering that z remains smaller than the structure
length L,

0 # z # L . (9)

The next step consists of finding a relation between the
initial value E�0� of the electric field which appears in
(6) and its average �E� obtained by integration over the
structure length,

�E� �
1
L

Z L

0
E�z� dz . (10)
Using Gauss approximation of this integral to second
order gives the following expression:

�E� �
1
2

�E�a1L� 1 E�a2L�� . (11)

Since the field E�z� in Eq. (6) is a linear function
of E�0�, its average �E� in (11) will also be a linear
function of E�0�. This linear relation can be easily
inverted, in the way shown in Appendix A, in order to
provide the necessary expression for the initial field which
corresponds to a given average gradient. The initial value
so obtained can then be plugged into the solution for the
voltage profile which is eventually expressed as a function
of the average �E�, the quantity that is relevant for the
structure design.
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0
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9†=
†; , (12)
where the exponent p is equal to

p �
vL

2QDyg
. (13)

B. Solution for arbitrary variations of yg and R000���Q

Solving Eq. (1) for the longitudinal electric field in the
case of the arbitrary variations defined by (4) has been
done according to the derivation summarized in Appen-
dix B. The second-order approximation used in Appen-
dix B gives good accuracy for the final result, provided
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that the functions F1 and F2 have sufficiently slow varia-
tions, so that they have a behavior close to polynomials of
a degree 3. For functions with larger variations, the result
should be cross checked by numerical integration before
making general use of it and, if the accuracy is judged to
be inadequate, the next member in the sequence of Gauss
approximations should be tried. Taking this caveat into
account, the solution (B10) gives a closed expression for
the beam-loaded voltage profile as a function of z, which
now contains second-order Gauss approximations of all
the definite integrals including the one giving the expo-
nent of the solution of the homogenous equation,
E�z� �

s
F2�z�
F1�z�

exp

"
2

vz
4Q

√
1

F1�a1z�
1

1
F1�a2z�

!#

3

√√√s
F1�0�
F2�0�

? E�0� 2
Iv

4
z

(s
F2�a1z�
F1�a1z�

exp

"
va1z
4Q

√
1

F1�a2
1z�

1
1

F1�a1a2z�

!#

1

s
F2�a2z�
F1�a2z�

exp

"
va2z
4Q

√
1

F1�a1a2z�
1

1

F1�a2
2z�

!#)!!!
, (14)
with

a1,2 �
1
2

7
1
6

p
3 , (15)

and for
0 # z # L . (16)
As in the preceding case, it is now necessary to
express the initial field value as a function of the average
�E� required. This has been done and is documented
in Appendix B. The result, valid for arbitrary smooth
functions F1 and F2, is given here:
E�0� �

q
F2�0�
F1�0�q

F2�a1L�
F1�a1L� e

2 v

2Q
G1�a1L�

1

q
F2�a2L�
F1�a2L� e

2 v

2Q
G1�a2L�

3

2
642�E� 1

Iv

4
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2 v
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1 e
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042001-3



PRST-AB 3 G. GUIGNARD AND J. HAGEL 042001 (2000)
with the following expression for G1 (Appendix B),

G1�z� �
z
2

∑
1

F1�a1z�
1

1
F1�a2z�

∏
, (18)

and the numerical values of a1 and a2 recalled above and
in both Appendices.

Although the preceding results are given for a constant
Q value, it is simple to extend them to the case where
the quality factor Q varies. The rigorous mathematical
justification of this generalization of the results is given
in Appendix B. It is based on the fact that the general
solution (A11) in Appendix A requires an integration of
the ratio C1�F1 � v��QF1�. For an arbitrary varying
function F1 (i.e., yg), the integral must be done by
using the Gauss approximation method, as indicated by
Eq. (B2) in Appendix B. An additional variation of Q
does not require changing this treatment of the integral,
provided the whole variation of the product QF1 is
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taken into account when integrating C1�F1, as shown in
Eqs. (B5) and (B6) of Appendix B. Defining f as the
variation of Q relative to its average Q̄ and F3 as the
product of the variations f and F1 gives

Q � Q̄f�z�, F3 � f ? F1 ,

v

QF1
�

v

Q̄f ? F1
�

v

QF3
.

(19)

Because the factor Q never rapidly varies in the
practical cases, the product function F3 is expected to
typically have as slow variations as F1. Therefore, the
integral of 1

F3
can still be done by using a second-order

Gauss approximation, keeping in mind that a higher order
can be applied if the accuracy requires it. The result takes
the form of Eq. (B6) in Appendix B, and the beam-loaded
field profile for simultaneously varying Q, yg, and R0�Q
becomes
E�z� �

s
F2�z�
F1�z�

exp

"
2

vz
4Q̄

√
1

F3�a1z�
1

1
F3�a2z�

!#

3

√√√s
F1�0�
F2�0�

? E�0� 2
Iv

4
z

(s
F2�a1z�
F1�a1z�

exp

"
va1z
4Q̄

√
1

F3�a2
1z�

1
1

F3�a1a2z�

!#

1

s
F2�a2z�
F1�a2z�

exp

"
va2z
4Q̄

√
1

F3�a1a2z�
1

1

F3�a2
2z�

!#)!!!
. (20)
The associated relation between the initial field value
and its average over the structure keeps the same form as
in Eq. (17), after replacing the expression �v�Q�G1 in all
the exponential functions by

v

Q
G1�z� �)

vz
2Q̄

∑
1

F3�a1z�
1

1
F3�a2z�

∏
. (21)

These generalized expressions make it possible to fully
include variations of the quality factor in strongly detuned
structures.
IV. APPLICATIONS TO ACCELERATING
STRUCTURE DESIGNS

A. The CLIC tapered damped structure

The parameter values (22) retained for the application
discussed in this section are those of the CLIC design of
a tapered damped structure (TDS) [1,3]. This case can
be treated by considering linear variations of the group
velocity and the shunt impedance per unit length such
as the relations given in Sec. III A apply. The numerical
values actually introduced in Eqs. (2), (6), (7), and (12)
and corresponding to the CLIC TDS [3] are as follows:
yg�0� � 3.240 3 107 m�s, Dyg � 1.619 3 107 m�s ,

R0

Q
�0� � 2.23 3 104 V�m, D

R0

Q
� 0.78 3 104 V�m ,

v

Q
� 5.118 3 107 s21, Iv � 1.811 3 1011 A�s ,

(22)

E�0� � 1.866 3 108 V�m, L � 0.5 m .
The decimal values of the coefficients a1 and a2 are

a1 � 0.211325, a2 � 0.788675 . (23)

This application allows the comparison of the results
of a direct numerical integration with the analytical
approximation of the solution (6), in the case of a linear
variation of yg and R0�Q. The curves of Fig. 1 indicate
that the analytic expressions (6) depict extremely well the
voltage profile in the structures either unloaded (I � 0)
or loaded with the assumed beam current (I � 0.96 A).
The actual deviation never exceeds 0.2% in this particular
case. In addition, the average value given by (11) and
equal to 163.50 MV�m agrees very well with the one
obtained by numerical integration, i.e., 163.47 MV�m.
042001-4
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FIG. 1. Voltage profile for the CLIC structure with a field of
186.6 MV�m at the entrance. The full curves are given by the
formulas of Sec. III A for linear variations of yg and R0�Q,
while the crosses and the diamonds result from numerical
integration of the differential equation.

In practice, one would rather start from an average field
value, e.g., 150 MV�m, compute the corresponding initial
value E�0� with (12), and then deduce the voltage profile
with and without beam loading as illustrated in Fig. 2.
This provides a very direct and precise way to obtain
the electric field along the structure for a wanted average
accelerating gradient.

B. Damped detuned structure of the NLC type

In order to check the analytical expressions of
Sec. III B, which are valid for nonlinear variations of
the group velocity and the shunt impedance, we would
like to now consider a structure of the type studied at
SLAC and known under the name of RDDS (rounded
damped detuned structure) [2]. In such a structure,
the variation of yg can be large and strongly nonlinear
while the shunt impedance equally varies nonlinearly.
In the selected example, yg decreases from about 0.11c
to 0.03c and the impedance increases from 7.7 3 107

FIG. 2. Voltage profile for the CLIC structure with an average
accelerating field of 150 MV�m.
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FIG. 3. Group velocity of the RDDS structure of the NLC
type. The full curve is the fit obtained through the initial data
points.

to 1.03 3 108 V�m. To get the functions yg�z� and
R0�Q�z� generally defined by Eqs. (4), polynomial fits
of the curves yg�z� and R0�z� provided to us [5] were
made and the factor of quality Q was assumed to be
constant and equal to 7875. Retaining the average of Q
represents at this stage a good approximation (in fact, Q
may vary from about 8250 to 7500). This approximation
can, however, be removed at any time by applying the re-
lations (19) and using the actual function Q�z� � Q̄f�z�
to generate R0�Q�z� before doing the fit.

The results of the fits give the following functions F1
and F2:

F1�z� � �2.325 2 0.5z 1 0.345�1.111z 2 1.0�2

2 0.78�1.111z 2 1.0�3� 3 107, (24)

F2�z� � �10.857 1 0.705z 2 0.222�1.111z 2 1.0�2

1 0.857�1.111z 2 1.0�3� 1000 . (25)

Figures 3 and 4 illustrate the quality of the fits (24) and
(25) made for the relative group velocity and the shunt
impedance per unit length, respectively. In these graphs,
the full lines correspond to the polynomial fits of degree 3
while the diamonds correspond to the initial data.

FIG. 4. Shunt impedance per unit length of the RDDS of NLC
type in units of 107 V�m. The full curve is the fit obtained
through the initial data points.
042001-5
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FIG. 5. Voltage profiles of an NLC-type cavity. Full curves
result from the formulas of Sec. III B for nonlinear variations of
yg and R0�Q, while the crosses and the diamonds come from
numerical integration of the differential equation.

For the other necessary parameters of the structure, the
following values [5] were taken:

v

Q
� 0.9096 3 107 s21,

Iv � 0.7163 3 1011 A�s ,

�E� � 50 3 106 V�m ,
(26)

L � 1.8 m .

It is first necessary to use the relation (17) for deducing
the initial field value from its average, using the particular
functions (24) and (25) and the parameters (26). The
value so obtained is 55.62 MV�m. Equation (14) then
gives the electric field profile (to second order in the
Gauss approximation) with and without beam loading
along the structure (Fig. 5). Comparison in the same
conditions with numerical integration of the differential
equation indicates a very good agreement (Fig. 5). In this
nonlinear example, the maximum deviation which takes
place at the end of the strongly loaded structure reaches
approximately 4.5%. If necessary, this deviation could be
further reduced to a level comparable to the one of the
first application by working to the third order.

V. CONCLUSIONS

This paper describes the method proposed by the au-
thors to solve analytically the differential equation for the
longitudinal electric field as a function of the coordinate z
along an accelerating structure and to extend the range of
solutions. The method provides a closed expression of the
field profile for arbitrary but smooth variations of the group
velocity yg and the impedance per unit length, divided by
the quality factor, R0�Q. This expression results from an
approximation that is required to achieve the final quadra-
ture explicitly, but can be made as accurate as desired by
raising the order of this approximation. When dealing
042001-6
with the electric field profile in an rf cavity, it is shown that
a second-order approximation is already very good.

The first step consists of changing variables in order to
write the equation of the field in the form of Bernouilli’s
equation, which can then be transformed into a linear, in-
homogeneous equation by a standard substitution. The
latter equation is solved in the usual manner (Green’s
method) and the result is an expression for the field which
contains a double quadrature. This last quadrature can be
evaluated only in a closed form with some approximation.
For linear variations of yg and R0�Q, one integral can be
resolved and the double quadrature replaced by a single
one, while for nonlinear variations this is not possible.
In all cases, the remaining single or double quadrature
is achieved by using the Gauss integration sequence most
frequently introduced in numerical applications. Provided
the integrand function shows a sufficiently smooth varia-
tion with the independent variable, numerical integration
formulas can be applied for an analytical description of a
quadrature operation by using just one discretization step.
The remarkable result is that the second member of the
Gaussian sequence of approximations applied over the en-
tire interval of integration not only gives excellent estima-
tions in the single quadrature case (within 0.2%) but also
provides very good evaluations of the double quadrature
(within better than 4.5%). This accuracy can, of course,
always be improved by going to the next order of the
Gauss approximation though at the expense of a more
complex expression for the solution. More precisely, the
properties of the Gauss approximations are such that the
order n will give good results for functions F1 and F2
varying like polynomials of degree 2n 2 1.

The closed, analytical expressions of the field obtained
have been applied first to the tapered, damped structure
of CLIC (30 GHz) where linear variations of the key
quantities can be assumed and second to a damped, detuned
structure of NLC type, with strong nonlinear variations
of these same quantities. In both cases, checking with
a direct numerical integration of the differential equation
proves the noteworthy validity of the proposed solution.
Furthermore, this solution is, by nature of the problem, a
linear function of the field at the entrance of the cavity.
Therefore, an additional integration over the cavity length,
which is again done following the same method, provides
an explicit relation between this initial field and the field
average in the cavity. This allows the direct expression of
the voltage profile as a function of the average accelerating
field, which is one of the main characteristics of the design.

It is important to underline that all the obtained field-
profile expressions valid for a wide range of detuned ac-
celerating structures can be introduced, in their symbolic
form, into executable files of mathematical computation
applications such as MAPLEV, MATHCAD, and EXCEL. This
makes possible a rapid, interactive evaluation and opti-
mization of the characteristics of specific structures for
various design parameters, without resorting to any nu-
merical integration.
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The method described here for analytically solving
the nonlinear, first-order differential equation associated
with the field distribution in an rf structure is sufficiently
general to be applied to other problems of physics or
engineering provided the coefficients appearing in the
differential equation of the phenomenon vary smoothly
enough with the independent variable. It has proven to be
very successful in predicting the longitudinal field profiles
of different structures, with and without beam loading.

APPENDIX A: ANALYTICAL SOLUTION WITH
LINEAR VARIATION OF yg AND R000���Q

For the authors’ convenience, the nonlinear first-order
ordinary differential equation (1) has first been rewritten
by using the following definitions and changes of vari-
ables:

a0 � yg�0�, a1 � Dyg ,

b0 �
R0

Q
�0�, b1 � D

µ
R0

Q

∂
,

C1 � v�Q, C2 � Iv ,
(A1)

x � z, y � E�z� .

These variable definitions (A1) will be used, in the
limited interval 0 , x , L, to express the solution y�x�
of the differential equation

d
dx

µ
y2 F1

F2

∂
1 C1y2 1

F2
1 C2y � 0 (A2)

for the given initial condition

y�0� � y0 . (A3)

The quantities C1 and C2 are constant (if Q is not
constant, its average value has to be introduced into C1
as an approximation) and the functions F1 and F2 vary
linearly with x, in agreement with (2),

F1 � a0 2
a1

L
x , (A4)

F2 � b0 1
b1

L
x . (A5)
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In a first step, a simplification of the equation can be
obtained by performing a substitution of the dependent
variable y:

y2 F1

F2
� z . (A6)

This leads to the new equation

dz
dx

1
C1

F1
z 1 C2

s
F2

F1
z1�2 � 0 , (A7)

which can be identified as Bernoulli’s equation [6] with
exponent 1�2 in the new variable z � z�x�. As usual
for the analytic solution of this type of equation, we now
apply a second substitution of polynomial type which is
defined by

z � u12q, (A8)

where q is yet to be determined. The multiplication of
the equation thus obtained by uq gives

�1 2 q�
du
dx

1
C1

F1
u 1 C2

s
F2

F1
u

11q

2 � 0 . (A9)

The resulting equation becomes linear and inhomoge-
neous if q � 21 and can be written as

du
dx

1
C1

2F1
u � 2

1
2

C2

s
F2

F1
, (A10)

with the solution

u�x� � e
2
Rx

0

C1
2F1

dx

"
u0 2 C2

1
2

Z x

0
e
Rx

0

C1
2F1

dx

s
F2

F1
dx

#
.

(A11)

Using the definitions for F2 and F1 as listed above, two
of the three integrals are

2
Z x

0

C1

2F1
dx � ln

µ
1 2

a1x
a0L

∂ C1L

2a1
, (A12)

Z x

0

C1

2F1
dx � ln

µ
1 2

a1x
a0L

∂2 C1L

2a1
, (A13)

and using the notation j � x�L and p � C1L��2a1�,
u�x� becomes
u�x� �

µ
1 2

a1

a0
j

∂p
"

u0 2
L
2

C2

Z j

0

µ
1 2

a1

a0
j

∂2p
s

b0 1 b1j

a0 2 a1j
dj

#
. (A14)

Since the remaining quadrature cannot be evaluated in closed form, the function (A14) provides the most general
expression for the solution of (A10). Having in mind an interest in a simplified, closed analytical expression giving an
accurate estimate of the function (A14), we use the following two approximations of a general integral:

Z x

0
f�t� dt � xf

µ
x
2

∂
, (A15)
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and Z x

0
f�t� dt �

x
2

�f�a1x� 1 f�a2x�� , (A16)

where

a1,2 �
1
2

7
1
6

p
3 . (A17)

While Eq. (A15) represents the well-known “mean
value approximation” of an integral, Eqs. (A15) and
(A16) are generally known as the first two members of
the sequence of Gauss integration approximations [7].
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While (A15) is the exact integral of linear functions, the
approximation (A16) turns out to be exact up to third-
order polynomials. The constants a1,2 are the zeros of
the second-order Legendre polynomial [7]. The sequence
is such that, at the order n, the n values an to be used for
the evaluations f�anx� of the function are the zeros of the
nth order Legendre polynomial and the result is exact up
to the �2n 2 1�th order polynomials.

In this way and after transforming back the dependent
variable from u to y, we finally obtain two approximations
for the actual solution of Eq. (A2).

Using the first-order Gauss approximation (A15),
y1�j� �

s
b0 1 b1j

a0 2 a1j

µ
1 2

a1

a0
j

∂p
"r

a0

b0
y0 2

L
2

C2j

µ
1 2

a1

2a0
j

∂2p
vuutb0 1 b1

j

2

a0 2 a1
j

2

#
. (A18)

Using the second-order Gauss approximation (A16),

y2�j� �

s
b0 1 b1j

a0 2 a1j

µ
1 2

a1

a0
j

∂p

3

(r
a0

b0
y0 2

L
4

C2j

"µ
1 2

a1a1

a0
j

∂2p
s

b0 1 b1a1j

a0 2 a1a1j
1

µ
1 2

a1a2

a0
j

∂2p
s

b0 1 b1a2j

a0 2 a2a2j

#)
, (A19)
where

a1,2 �
1
2

7
1
6

p
3 , (A20)

j �
x
L

, 0 , j , 1 , (A21)

p �
C1L
2a1

. (A22)

A comparison has been made of the two analytic
approximations y1�x� and y2�x� given in Eqs. (A18) and
(A19) with a direct numerical integration of Eq. (A2),
using the numerical values listed in (22). The results
indicate that the numerical solution is indistinguishable
from the approximation y2�x� within the entire interval
of integration. In addition, even y1�x� differs from the
numerical integration results only by an amount which
never exceeds about 3% (value reached at the end of the
interval, when x � L).

As mentioned in Sec. II, it is then necessary to express
the field y2�j� as a function of the average field �y�
instead of its initial value y0 as in (A19). The average
is simply given by the following integral:

�y� �
Z 1

0
y2�j� dj . (A23)

Considering the curve shown in Fig. 1 for the voltage
profile, it is evident that the function y2 is smooth with no
zeros in the interval �0, 1�. As a consequence, the Gauss
approximation described above applies to the integral
(A23). Using it to second order, with the special value
x � 1 according to (A23), we obtain

�y2� �
1
2

�y2�a1� 1 y2�a2�� . (A24)

Since the differential equation for the dependent vari-
able u is linear, the solution is always a linear function
of the initial condition. This is obviously satisfied by the
approximate solution which takes the form

y2�j� � g�j�y0 2 h�j� . (A25)

The last equation gives the definition of the functions
g�j� and h�j�, by direct comparison with (A19). Intro-
ducing (A25) into (A24), the result for the average esti-
mate becomes

�y2� �
1
2

	�g�a1� 1 g�a2��y0 2 �h�a1� 1 h�a2��
 .

(A26)

The preceding relation can of course be easily solved
for the initial condition y0,

y0 �
2�y� 1 �h�a1� 1 h�a2��

g�a1� 1 g�a2�
, (A27)

where the notation �y2�, valid for the second-order ap-
proximation, is replaced by the more general notation �y�.
Hence, when designing a structure for a given average
field, the relation (A27) can be used to calculate the initial
value corresponding to the design characteristics. Once
the initial value y0 is known, the general expression (A19)
is applicable to find out the voltage profile related to the
specific linear variations assumed for yg and R0�Q.
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Inserting the explicit form of the functions g�j� and h�j� into the relation (A27) gives the full expression for the initial
value associated with a particular average. In the case of linear variations treated in this Appendix, this expression is

y0 �

s
b0

a0

2q
b01a1b1

a02a1a1
�1 2

a1

a0
a1�p 1

q
b01a2b1

a02a1a2
�1 2

a1

a0
a2�p

3

(
�y� 1

L
8

C2a1

"µ
1 2 a2

1
a1

a0

∂2p
s

�b0 1 b1a1a2�
�a0 2 a1a

2
1�

1

µ
1 2 a2a1

a1

a0

∂2p
s

�b0 1 b1a2a1�
�a0 2 a1a2a1�

#

3

p
b0 1 a1b1

p
a0 2 a1a1

�1 2 a1a1�a0�p

1
L
8

C2a2

"µ
1 2 a1a2

a1

a0

∂2p
s

�b0 1 b1a1a2�
�a0 2 a1a1a2�

1

µ
1 2 a2

2
a1

a0

∂2p
vuut �b0 1 b1a

2
2�

�a0 2 a1a
2
2�

#

3

p
b0 1 a2b1

p
a0 2 a1a2

�1 2 a2a1�a0�p

)
, (A28)
where the coefficients are defined in (A1), the parameters
a1 and a2 in (A20), and the exponent p in (A22).

APPENDIX B: ANALYTICAL SOLUTION WITH
ARBITRARY VARIATION OF yg AND R000���Q

Let us start again from the general form (A11) of the
solution obtained in Appendix A:

u�x� � e
2
Rx

0

C1
2F1

dx

"
u0 2 C2

1
2

Z x

0
e
Rx

0

C1
2F1

dx

s
F2

F1
dx

#
.

(B1)

The functions F1 and F2 are now arbitrary and not
explicitly defined, though assumed to have small enough
variations for using Gauss approximations of the integrals.
The last condition means that the functions F1 and F2 must
not have too many oscillations and zeros in the interval
of interest. More precisely, the use of the second-order
Gauss approximation gives exact results for polynomials
of up to degree 3. For the integral, which appears in
the exponential functions of (B1), we can write for con-
stant Q

G1�x� �
Z x

0

1
F1

dx �
x
2

∑
1

F1�a1x�L�
1

1
F1�a2x�L�

∏
,

(B2)

applying the second-order approximation defined in
Eq. (A16). This form of G1 strictly applies for a constant
Q. When Q varies, it is sufficient to modify (B2) accord-
ing to the following description. Let us first define the
variation of Q around its average value Q̄ by

Q � Q̄f�z� , (B3)

and the corresponding constant C1 by

C1 �
v

Q̄
. (B4)
042001-9
With these definitions and the introduction of the
function f�z� in the development of Appendix A leading
to the equation (A11), the function G1 is modified as
follows:

G1�x� �
Z x

0

1
fF1

dx �
Z x

0

1
F3

dx , (B5)

and (B5) defines F3 as the product fF1. The form of G1
remains unchanged with simply F3 replacing F1, i.e., for
varying Q,

G1�x� �
x
2

∑
1

F3�a1x�L�
1

1
F3�a2x�L�

∏
, (B6)

and the whole subsequent treatment applies with either
(B2) or (B6).

The next step consists of finding an approximation of
the second integral in (B1) which represents a particular
solution of the inhomogeneous differential equation and
contains the definite integral G1,

G2�x� �
Z x

0
e
Rx

0

C1
2F1

dx

s
F2

F1
dx

�
Z x

0
e

C1
2

G1�x�

s
F2�x�
F1�x�

dx . (B7)

Having included the approximation (B2) into (B7), the
expression of G2 has been reduced to a single integral
containing the three functions G1�x�, F1�x�, and F2�x�.
At this point it is once more possible to apply the second-
order Gauss approximation (A16) to the last form of G2
in (B7) and get

G2�x� �
x
2

"
e

C1
2

G1�a1x�

s
F2�a1x�
F1�a1x�

1 e
C1
2

G1�a2x�

s
F2�a2x�
F1�a2x�

#
. (B8)
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The solution (B1) now becomes

u�x� � e2 C1
2

G1�x�
∑
u0 2

C2

2
G2�x�

∏
� u�x� � e2 C1

2
G1�x�

"s
F1�0�
F2�0�

y�0� 2
C2

2
G2�x�

#
. (B9)

Introducing (B2) and (B8) into (B9) and back transforming the variable u into y provides the approximate expression
sought for the solution of (A2) in the case of a general variation of yg and R0�Q,

y�x� �

s
F2�x�
F1�x�

e
2 v

2Q
G1�x�

"s
F1�0�
F2�0�

y0 2
Iv

4
x

√
e

v

2Q
G1�a1x�

s
F2�a1x�
F1�a1x�

1 e
v

2Q
G1�a2x�

s
F2�a2x�
F1�a2x�

!#
. (B10)

As expected, the solution is again a linear function of the initial condition y0, and the functions g�x� and h�x� defined in
Eq. (A25) take the following forms:

g�x� �

s
F2�x�
F1�x�

e
2 v

2Q
G1�x�

s
F1�0�
F2�0�

,

h�x� �

s
F2�x�
F1�x�

e
2 v

2Q
G1�x� Iv

4
x

√
e

v

2Q
G1�a1x�

s
F2�a1x�
F1�a1x�

1 e
v

2Q
G1�a2x�

s
F2�a2x�
F1�a2x�

!
. (B11)

Having these two functions and following the deduction made in Appendix A, the application of Eq. (A27) gives the
explicit relation between the initial value y0 and the average value �y� required for designing a structure.

y0 �

q
F2�0�
F1�0�q

F2�a1L�
F1�a1L� e

2 v

2Q
G1�a1L�

1

q
F2�a2�
F1�a2� e

2 v

2Q
G1�a2�

3

"
2�y� 1

s
F2�a1L�
F1�a1L�

e
2 v

2Q
G1�a1L� Iv

4
a1L

√
e

v

2Q
G1�a2

1L�

vuutF2�a2
1L�

F1�a2
1L�

1 e
v

2Q
G1�a1a2L�

s
F2�a1a2L�
F1�a1a2L�

!

1

s
F2�a2L�
F1�a2L�

e
2 v

2Q
G1�a2� Iv

4
a2L

√
e

v

2Q
G1�a1a2L�

s
F2�a1a2L�
F1�a1a2L�

1 e
v

2Q
G1�a2

2L�

vuutF2�a2
2L�

F1�a2
2L�

!#
. (B12)
0
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