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Spread-frequency model of the fast beam-ion instability in an electron storage ring
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When a gap in the electron bunch train prevents the trapping of ions, a transverse electron-ion in-
stability may result from the ions created and lost during a single passage of the bunch train. A
spread-frequency model is used to study this instability when the ions have a broad distribution of
natural oscillation frequencies about the center of the electron beam. A growing disturbance saturates
from Balakin-Novokhatsky-Smirnov damping at approximately the same time, and with the same total
growth, as in the case without an ion frequency spread. At the tail of the bunch train, an unstable dis-
turbance is amplified by a factor � exp�vitb� before saturation occurs, where vi is a typical ion oscil-
lation frequency and tb is the duration of the bunch train. Initially, the instability displays exponential
growth in time, unlike the case where the ion-frequency spread is neglected. For a broad distribution
of ion frequencies, instability may be prevented by a betatron damping rate that exceeds the incoherent
betatron frequency shift induced by ions at the tail of the bunch train.

PACS numbers: 29.27.Bd, 29.20.Dh, 41.75.Ht
I. INTRODUCTION

The space charge of electrons circulating in an elec-
tron storage ring may attract ions created by electron-
neutral collisions, resulting in a channel of trapped ions
[1]. The trapped ions produce a tune shift of the circu-
lating electrons and may cause a transverse ion-electron
instability, predominantly in the vertical direction when
the beam width exceeds its height. By introducing a
gap in the bunch train, the trapped ion density may be
greatly reduced. However, transient ions (which are cre-
ated and lost within a single bunch train) may still give
rise to an instability, termed the “fast beam-ion insta-
bility” [2–9]. In this paper, we model the fast beam-
ion instability when there is a broad distribution of
ion “bounce” frequencies, where the bounce frequencies
are the natural frequencies of transverse ion oscillations
about the electron orbit [10]. The results are compared
with modeling that neglects the spread in ion bounce
frequencies.

In both cases, the amplitude of an unstable disturbance
saturates after growing by a factor � exp�vitb� at the tail
of the bunch train, where vi is a typical ion oscillation
frequency and tb is the duration of the bunch train. The
saturation is a result of Balakin-Novokhatsky-Smirnov
(BNS) damping [8,11] because the ion-induced incoherent
betatron frequency shift (i.e., the tune shift) increases
toward the tail of the bunch train.

With a large spread in ion bounce frequencies, the
instability initially displays exponential growth in time,
with a growth rate comparable to the ion-induced in-
coherent betatron frequency shift. Consequently, the
fast beam-ion instability may be prevented by betatron
damping (or feedback) that exceeds the incoherent be-
tatron frequency shift induced by ions at the tail of the
bunch train.
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II. SINGLE BOUNCE FREQUENCY

Let us first consider the case where there is no spread
in ion bounce frequencies, for an ion density that grows
linearly with the passage of the bunch train, using a
smooth approximation for the betatron focusing. We
model the bunch train as an electron beam of duration
tb , using the propagation time Z � z�n to describe the
propagation distance z divided by beam velocity n, while
coordinate T � t 2 z�n denotes the time after passage
of the head of the electron bunch train. For small rigid
displacements of the electrons and ions, we have the
approximate equations of motion for the electron beam
vertical position b�Z, T� and average ion vertical position
c�Z, T�,∑

≠2

≠Z2 1 v2
b 1 v2

e�T �
∏
b�Z, T� � v2

e�T �c�Z, T� ,

∑
≠2

≠T 2
1 v2

i

∏
c�Z, T� � v2

i b�Z, T� ,
(1)

where vb is the electron betatron frequency in the
absence of ions and vi is the vertical ion bounce
frequency given by

vi �

µ
�ne�tZe2

´0mi

sx

sx 1 sy

∂1�2

, (2)

in which �ne�t is the time-averaged electron density on
axis during the passage of the bunch train, mi is the ion
mass, Z is the ion charge, and sx and sy are the
horizontal and vertical beam dimensions. Because of the
dependence upon the ion mass and the position-dependent
quantities �ne�t , sx , and sy , a large range of ion bounce
frequencies may be expected in a typical electron storage
ring. The electron bounce frequency in the ion channel
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(for vb � 0), denoted ve�T�, is

ve�T� �

µ
Ze2

´0gme

ni�T �sx

sx 1 sy

∂1�2

, (3)

where ni�T� is the ion density. For ions created by
collision of the electrons with neutral molecules and lost
on a time scale large compared to the bunch train duration
tb , ni�T � is proportional to T , so we have

v2
e�T � � KT , (4)

where K � v2
e �tb��tb .

When vb � 0, Eq. (1) describes the “ion hose” insta-
bility of an electron beam focused by an ion channel [12–
15]. In an electron storage ring, where ion effects are a
perturbation to the betatron motion in applied magnetic
fields, we instead have vb ¿ ve�T�. In the left-hand
side of the lower equation in Eq. (1), we have neglected
the term �1�T �≠Tc�Z, T � which describes the damping of
collective ion oscillations that results from the constant
creation rate of stationary ions [13]. This term is rela-
tively small for viT ¿ 1; neglecting it restricts the va-
lidity of our results to T ¿ 1�vi , i.e., more than one ion
oscillation period behind the head of the bunch train.

Because Eq. (1) is not invariant in T and Z, a solution
of the form exp�2iVZ 2 ivT�, which applies in a
region where v2

e�T � is approximately constant, will not
suffice to describe the entire bunch train region 0 ,

T , tb. We instead consider a disturbance with slowly
varying envelope of the form [2]

b�Z, T � � b0 exp�g0�Z, T�	 exp�ivbZ 2 iviT� , (5)

and similarly for c�Z, T �. Assuming that g0�Z, T� is
nearly constant over the betatron wavelength and the ion
oscillation period, Eq. (1) becomes

�2ivb≠zg0 1 KT �b � KTc ,

�22ivi≠T g0�c � v2
i b .

(6)

Eliminating c�Z, T � yieldsµ
≠zg0 1

KT
2ivb

∂
≠Tg0 �

KTvi

4vb

. (7)

Provided that j≠Zg0j ¿ KT�2vb, Eq. (7) reduces to

�≠Zg0�≠Tg0 �
KTvi

4vb

. (8)

We look for a solution of the form g0�Z, T� �
a�Z�b�T � 1 const. Substituting into Eq. (8) yields

a�Z�≠Za�Z� �
viKT

4vbb�T�≠T b�T �
� k , (9)

where k is also a constant. Equation (9) can be
solved for k �

1
2 to yield a�Z� � 6Z1�2 and b�T � �

6�Kvi�2vb�1�2T , so that we have solutions with
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g0�0, 0� � 0 given by

g0�Z, T� � 6

s
Kvi

2vb

Z1�2T . (10)

The positive solution, previously obtained in Ref. [2],
describes growth. Equation (10) is valid for j≠Zg0j ¿
KT�2vb ; i.e.,

Z ø
vivb

2K
. (11)

Equation (11) may also be written as

4

"
v2

e �T �
2vb

#
Z ø viT , (11a)

suggesting that the range of validity of Eq. (10) is limited
by BNS damping, i.e., the dephasing between the ion
and electron oscillations when the betatron frequency
shift v2

e �T ��2vb increases toward the tail of the electron
beam.

Our derivation was also based on the assumption that
g0 is nearly constant over a betatron wavelength and ion
oscillation period, i.e., j≠Zg0j ø vb and j≠T g0j ø vi .
This further limits the validity of Eq. (10) toµ

KT

4v
2
b

∂2

Z0 ø Z ø
Z0

4
, (12)

where

Z0 �
2vivb

K
. (13)

At the lower limit of this validity range, ≠Zg0 � vb ,
indicating a growth rate on the order of the betatron
frequency. Because of the resonant interaction with a
single ion bounce frequency, a betatron damping rate on
the order of the betatron frequency would be needed to
prevent growth of the disturbance throughout the above
range in Z.

For j≠Zg0j ø KT�2vb , Eq. (7) becomesµ
KT

2ivb

∂
≠T g0 �

KTvi

4vb

, (14)

with solution g0�Z, T � � �iviT�2� 1 f�Z�, which does
not obey the assumption that g0�Z, T� is nearly constant
over the time scale of ion oscillations. Thus, we have no
solution for large values of Z.

A more complete result may be obtained if Eq. (5) is
replaced with the ansatz

b�Z, T� � b0 exp�g0�Z, T �	

3 exp

∑
i

µ
vb 1

v2
e �T �

2vb

∂
Z 2 iviT

∏
. (15)

For g0�Z, T� � const, the betatron motion described by
Eq. (15) includes the incoherent betatron frequency shift
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v2
e �T ��2vb that results from stationary ions. The oscil-

lation frequency in the laboratory depends upon Z, and is
given by

ṽ�Z� � vi 2
KZ
2vb

, (16)

which equals the ion bounce frequency for Z � 0, and
equals 0 for Z � Z0. Provided that g0�Z, T� is nearly
constant over a betatron wavelength and ion oscillation
period, Eq. (1) becomes

�2ivb≠Zg0�b � KTc ,

�22iṽ�Z�≠T g0 2 ṽ2�Z� 1 v2
i 	c � v2

i b .
(17)

Eliminating c�Z, T � yields

�2ivb≠Zg0� �22iṽ�Z�≠T g0 2 ṽ2�Z� 1 v2
i 	 � KTv2

i .

(18)

When j≠T g0j ¿ j�v2
i 2 ṽ2�Z�	��2ṽ�Z�	j and ṽ�Z� 


vi , Eq. (18) reduces to Eq. (8), so that g0�Z, T � is again
given by

g0�Z, T� � 6

s
Kvi

2vb

Z1�2T , (19)

valid in this case forµ
KT

4v
2
b

∂2

Z0 ø Z ø Z0 �
2vivb

K
. (20)

For large values of Z where j≠Tg0j ø j�v2
i 2

ṽ2�Z�	�2ṽ�Z�j, Eq. (18) yields

≠Zg0 �
2iv2

i vbT

KZ2 , (21)

with solution

g0�Z, T� �
22iv2

i vbT

KZ
1 f�T � , (22)

valid for slowly varying f�T � and

Z ¿ 2Z0 �
4vivb

K
. (23)

For large Z, jexp�g0�Z, T�	j is unchanged with increasing
Z, indicating that the disturbance has saturated. For
Z � Z0 � 2vivb�K , a rough estimate of g0�Z, T� may
be obtained from Eq. (19), which gives g0�Z, T� � viT .

Thus, a disturbance in which ions initially oscillate at
the ion bounce frequency grows with increasing propaga-
tion time Z until Z reaches Z0 � 2vivb�K , at which
point the disturbance has been amplified by a factor
� exp�viT �. For much larger Z, the disturbance has satu-
rated from BNS damping and an approximately constant
level of disturbance is maintained.

The saturation of the fast beam-ion instability from
BNS damping when Z 
 2vivb�K , with a total amplifi-
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cation of the disturbance by the factor � exp�viT�, is con-
firmed by several examples of growing disturbances that
have been previously calculated (see Figs. 3, 4, 6, and 7
of Ref. [8] and Ref. [9]). For large oscillation amplitudes
comparable to the beam height, nonlinear saturation may
also limit the instability growth [3,4,6,9].

III. A SPREAD IN ION BOUNCE FREQUENCIES

Let us now consider the case where there is a spread
in ion bounce frequencies, for an ion density that grows
linearly with the passage of the bunch train. In a spread-
frequency model [10,16], ions with the bounce frequency
vij . 0 may be described by an ion channel with vertical
position cj�Z, T�. Letting c�Z, T� denote the average
vertical postion of all ions, we have∑

≠2

≠Z2 1 v2
b 1 v2

e�T �
∏
b�Z, T� � v2

e�T �c�Z, T� ,∑
≠2

≠T 2 1 v2
ij

∏
cj�Z, T� � v2

ijb�Z, T� .
(24)

As in Eq. (1), we have neglected the ion damping
term �1�T �≠Tcj�Z, T� in the left-hand side of the lower
equation in Eq. (24), which results from an ion density
that increases linearly in T , described by Eq. (4). We
consider a disturbance of the form

b�Z, T� � b0 exp�g�Z, T �	

3 exp

∑
i

µ
vb 1

v2
e �T �

2vb

∂
Z 2 iviT

∏
, (25)

where vi is a typical ion bounce frequency. We obtain a
result similar to Eq. (17)

�2ivb≠Zg�b � KTc ,

�22iṽ�Z�≠T g 2 ṽ2�Z� 1 v2
ij	cj � v2

ijb .
(26)

in which ṽ�Z� is again given by Eq. (16).
For a distribution over positive ion bounce angular

frequencies fi�h�, normalized so that its integral is 1, the
second line of Eq. (26) becomes

c � b
Z `

0

h2fi�h� dh

22iṽ�Z�≠Tg 2 ṽ2�Z� 1 h2
, (27)

so that eliminating c�Z, T� from Eq. (26) yields

≠Zg �
KT

2ivb

Z `

0

h2fi�h� dh

22iṽ�Z�≠T g 2 ṽ2�Z� 1 h2
. (28)

For a sufficiently broad distribution of ion bounce
frequencies, we consider the weak growth limit
�Re�≠T g� ! 0	 given by the Plemelj formula [17]
for 2 sgn�ṽ�Z�	 Im�≠T g� # jṽ�Z�j,
≠Zg �
KT

2ivb

∑
P

Z `

0
dh

fi�h�h2

h2 2 v̂2�Z, T�
1 i

p

2
sgn�ṽ�Z� Re�≠T g�	 jv̂�Z, T�jfi���jv̂�Z, T�j���

∏
, (29)
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(where P denotes principal value), where

v̂�Z, T� � �ṽ2�Z� 2 2ṽ�Z� Im≠T g�Z, T�	1�2. (30)

When 2jIm�≠T g�j ø jṽ�Z�j, we have v̂�Z, T� 
 jṽ�Z�j,
and Eq. (29) yields

≠Zg �
KT

2ivb

∑
P

Z `

0
dh

fi�h�h2

h2 2 ṽ2�Z�

1 i
p

2
sgn�Re�≠T g�	ṽ�Z�fi���jṽ�Z�j���

∏
.

(31)

Equation (31) also approximates Eq. (28) when ṽ�Z� 

0, i.e., for Z 
 Z0.

For Z 
 0, ṽ�Z� 
 vi , so that

≠Zg �
KT

2ivb

∑
P

Z `

0
dh

fi�h�h2

h2 2 v
2
i

1 i
p

2
sgn�Re�≠Tg�	vifi�vi�

∏
, (32)

which integrates to give solutions with g�0, 0� � 0,

g�Z, T� �
KTZ
2ivb

∑
P

Z `

0
dh

fi�h�h2

h2 2 v
2
i

6 i
p

2
vifi�vi�

∏
. (33)

For a normal distribution of ion bounce frequen-
cies with mean vi and standard deviation sv ,
�p�2�vifi�vi� � �p�8�1�2vi�sv . In this case, the as-
sumptions 2jIm�≠T g�j ø jṽ�Z�j and fi���ṽ�Z���� 
 fi�vi�
are obeyed for Z ø �sv�vi�Z0. Thus, we have so-
lutions for Z ø �sv�vi�Z0, one of which displays
exponential growth in both Z and T . The instability
growth is given by

exp�Re���g�Z, T����	 � exp

µ
KT
2vb

r
p

8
vi

sv

Z

∂

� exp

µ
v2

e �T �
2vb

r
p

8
vi

sv

Z

∂
, (34)

where v2
e �T��2vb is the incoherent betatron frequency

shift resulting from the ions. For a “broad” distribution
of ion bounce frequencies with standard deviation com-
parable to the mean, �p�8�1�2vi�sv is approximately
equal to 1, and the growth rate in Z approximately
equals the incoherent betatron frequency shift due to
ions. A growth rate comparable to the incoherent betatron
frequency shift has been previously estimated for a large
spread in ion bounce frequencies [18].

Because we neglected the ion damping term
�1�T �≠T cj�Z, T � in the lower equation in Eq. (24),
which describes an instantaneous ion damping rate
�1�T , the unstable solution of Eqs. (32)–(34) is valid
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only where the growth rate in T exceeds �1�T ; i.e.,
�KZ�2vb� ��p�8�1�2vi�sv	 ¿ 1�T . This criterion
may be written as Z ¿ Z0���viT � �p�8�1�2vi�sv	;
combined with the requirement Z ø �sv�vi�Z0, we
have the region of validity for exponential growth in Z
described by Eqs. (32)–(34),

1
viT

sv

vi
Z0 ø Z ø

sv

vi
Z0 . (35)

For Z 
 �sv�vi�Z0, Eq. (34) gives an approxi-
mate value for the amplification of the distur-
bance during the exponential growth regime of
exp�Re���g�Z, T ����	 � exp�viT �. The approximate ampli-
fication is independent of the ion frequency spread sv .

For Z 
 2Z0, ṽ�Z� 
 2vi . For an unstable distur-
bance that has grown in both Z and T for Z , Z0,
Re�≠T g� . 0. Equation (31) gives, for Z 
 2Z0,

Re�≠Zg� � 2
KT
2vb

∑
p

2
vifi�vi�

∏
, 0 , (36)

indicating that the magnitude of the disturbance decreases
with increasing Z for Z 
 2Z0. This consequence of
BNS damping when Z � 2Z0 has been previously cal-
culated for the case of a single ion bounce frequency (see
Figs. 4, 6, and 7 of Ref. [8] and Ref. [9]).

For Z ¿ 2Z0, ṽ�Z� 
 2KZ�2vb obeys jṽ�Z�j ¿
vi . When Z is sufficiently large that there are no ions
with bounce frequency jṽ�Z�j so that fi���jṽ�Z�j��� � 0,
Eq. (31) gives

≠Zg 

KT

2ivb

"
v

2
i

2� KZ
2vb

�2

#
, (37)

with solution

g�Z, T � 

22iv2

i vbT

KZ
1 f�T � , (38)

in which f�T � is a slowly varying function of T . The
assumed inequality 2jIm�≠Tg�j ø jṽ�Z�j is obeyed, so
we have a valid solution for Z ¿ 2Z0. This solution,
whose magnitude remains constant with increasing Z, is
the same as in the case without a spread in ion bounce
frequencies, obtained in Eq. (22).

For a broad spread in ion frequencies with standard
deviation comparable to the mean, the instability grows
exponentially in Z for Z ø Z0, and the growth rate
in Z at time T behind the head of the bunch train is
approximately v2

e�T ��2vb , the ion-induced incoherent
betatron frequency shift. In this case, instability growth
may be prevented for all of the bunch train �0 , T , tb�
when the betatron damping rate exceeds the incoherent
betatron frequency shift induced by ions at the tail of the
bunch train.

As was the case with no spread in ion bounce frequen-
cies, a disturbance in which ions initially oscillate at a
typical ion bounce frequency vi grows with increasing
034402-4
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Z until Z reaches Z0 � 2vivb�K , at which point the
disturbance has been amplified by a factor � exp�viT �.
For Z � 2Z0, the disturbance decreases with increasing Z
because of BNS damping. For larger Z, the disturbance
has saturated and an approximately constant level of dis-
turbance is maintained. For large oscillation amplitudes
comparable to the beam height, nonlinear saturation may
also limit the instability growth [3,4,6,9].

When the instability “rise time” Zrise is defined as
the propagation time required for an initial disturbance
to grow by a factor of e at the tail of the bunch train,
Eq. (10) yields Zrise � 2vb��Kvit

2
b� for a single

ion bounce frequency [2], valid for vitb ¿ 1.
For a sufficiently large spread in ion bounce fre-
quencies so that the weak growth assumption of
Eq. (29) applies (e.g., sv�vi � 1), Eq. (34) yields
Zrise � �2vb�Ktb� ��8�p�1�2sv�vi	. The rise time is
increased by a factor of �8�p�1�2svtb by the spread in
ion bounce frequencies.

For a broad distribution of ion bounce frequencies with
standard deviation comparable to the mean, the rise time
is increased by a factor of vitb ¿ 1. Accordingly, the
rate of betatron damping (or feedback) required to prevent
instability is greatly reduced by the ion frequency spread.

IV. SUMMARY

The fast beam-ion instability has been considered for
a single ion bounce frequency and for a spread in ion
bounce frequencies. In both cases, a disturbance in
which ions initially oscillate at a typical ion bounce
frequency vi grows with increasing propagation time Z
until Z reaches �Z0 � 2vivb�K , at which point the
disturbance has been amplified by a factor � exp�viT �.
For Z � 2Z0, BNS damping may cause the magnitude of
the disturbance to decrease with increasing Z. For larger
Z, the disturbance has saturated and an approximately
constant level of disturbance is maintained.

For a broad distribution of ion bounce frequencies
whose standard deviation is comparable to the mean,
the instability grows exponentially in propagation time Z
for Z ø Z0; therefore, it grows exponentially with the
propagation distance z � nZ of the bunch train. The
growth rate in Z at time T behind the head of the bunch
train is approximately v2

e�T ���2vb�, the ion-induced
incoherent betatron frequency shift. Instability growth
may be prevented for all of the bunch train �0 , T , tb�
when the rate of betatron damping (or feedback) exceeds
the incoherent betatron frequency shift induced by ions at
the tail of the bunch train.
034402-5
ACKNOWLEDGMENTS

The author would like to thank W. S. Trzeciak for
valuable discussions. This work was supported by NSF
Grant No. DMR-95-31009.

[1] Y. Baconnier, in Proceedings of the CERN Accelera-
tor School: General Accelerator Physics, Gif-sur-Yvette,
1984, edited by P. Bryant and S. Turner (CERN, Geneva,
1985), p. 267.

[2] T. O. Raubenheimer and F. Zimmermann, Phys. Rev. E
52, 5487 (1995).

[3] G. V. Stupakov, T. O. Raubenheimer, and F. Zimmer-
mann, Phys. Rev. E 52, 5499 (1995).

[4] K. Ohmi, Phys. Rev. E 55, 7550 (1997).
[5] J. Byrd, A. Chao, S. Heifets, M. Minty, T. O.

Raubenheimer, J. Seeman, G. Stupakov, J. Thom-
son, and F. Zimmermann, in Proceedings of the 1997
Particle Accelerator Conference, Vancouver, Canada
(IEEE, Piscataway, NJ, 1998), p. 1563; Phys. Rev. Lett.
79, 79 (1997).

[6] S. Heifets, in Proceedings of the 1997 Particle Accelera-
tor Conference, Vancouver, Canada (Ref. [5]), p. 1620.

[7] J. Y. Huang, M. Kwon, T.-Y. Lee, I. S. Ko, Y. H. Chin,
and H. Fukuma, Phys. Rev. Lett. 81, 4388 (1998).

[8] D. V. Pestrikov, Phys. Rev. ST Accel. Beams 2, 044403
(1999).

[9] G. V. Stupakov, Phys. Rev. ST Accel. Beams 3, 019401
(2000).

[10] E. Keil and B. Zotter, Report No. CERN-ISR-TH/71-58,
1971.

[11] V. E. Balakin, A. V. Novokhatsky, and V. P. Smirnov, in
Proceedings of the 12th International Conference on High
Energy Accelerators, Batavia, Illinois (Fermilab, Batavia,
IL, 1983), p. 119.

[12] H. L. Buchanon, Phys. Fluids 30, 221 (1987).
[13] K. T. Nguyen, R. F. Schneider, J. R. Smith, and H. S. Uhm,

Appl. Phys. Lett. 50, 239 (1987), Eq. (4b).
[14] K. J. O’Brien, G. W. Kamin, T. R. Lockner, J. S. Wagner,

I. R. Shokair, P. D. Kiekel, I. Molina, D. J. Armistead,
S. Hogeland, E. T. Powell, and R. J. Lipinski, Phys. Rev.
Lett. 60, 1278 (1988).

[15] R. F. Lucey, Jr., R. M. Gilgenbach, J. D. Miller, J. E.
Tucker, and R. A. Bosch, Phys. Fluids B 1, 430 (1989).

[16] R. A. Bosch and C. S. Hsue, Chin. J. Phys. (Taipei) 31,
313 (1993).

[17] D. R. Nicholson, in Introduction to Plasma Theory (Wiley,
New York, 1983).

[18] G. V. Stupakov, in Proceedings of the International Work-
shop on Collective Effects and Impedance for B-Factories
(CEIBA95) (KEK, Ibaraki, Japan, 1996), p. 243; in Pro-
ceedings of the 1997 Particle Accelerator Conference,
Vancouver, Canada (Ref. [5]), p. 1632.
034402-5


