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Extended definitions of wake fields and their influence on beam dynamics
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Based on experience gained from present machines, a new generation of accelerators with high
intensities and low losses is being designed. For example, the design for the Spallation Neutron Source
storage ring specifies fractional beam losses of the order of 1024, so that even small instabilities or
resonances can lead to the violation of this number. The purpose of this paper is to show that there exist
potentially important beam fields, missing from standard analyses, that can lead either to instabilities or
to large deviations of instability thresholds from their conventional values. Some of these fields and
related effects, e.g., “fast damping,” were discovered earlier and are presented here in more standard
form as an extension of the wake field’s definition. In addition, nonrelativistic collective phenomena
are analyzed. It is shown that the nonrelativistic case could be significantly different from the rela-
tivistic case.

PACS numbers: 29.27.Fh, 41.85.Ew
I. INTRODUCTION

A complete representation of electromagnetic fields in
vacuum chambers is very complicated, but for specific
applications simplified descriptions often suffice. For
example, to describe collective effects in practical cases
one can often use simplified wake functions, which are
electromagnetic forces integrated over the considered vac-
uum chamber element. In the case of transverse oscilla-
tions, one normally uses only the first term in the Tay-
lor expansion of wakes over the transverse coordinate to
calculate the linear eigenvalues of the collective motion.
The integrated transverse force F caused by a slight offset
r0 of the leading particle is conventionally related to the
wake function W by the following expression [1]:Z

L
F ds � 2q2r0W �z� , (1)

where q is the particle’s charge and z is the distance
between head and tail particles.

It has been found [2] that consideration of fields
proportional to the transverse velocity of the leading
particle is necessary to explain one observed significant
collective phenomenon, namely, “fast damping,” which
is an intensity dependent dipole oscillation damping that
exists even for zero chromaticity. This term, proportional
to the angle of the leading particle, has been included in
some previous research [3]. It has been found recently
[4] that in asymmetric structures the force from the tail
particle depends on its own displacement, a fact that has
proven to be significant [5]. One can summarize all the
above statements in one general formula for the integrated
transverse force in terms of the transverse offsets of the
leading and trailing particles, r0 and r , and their angles,
r 00 and r 0: Z

L
F ds � 2q2r0W�z� 2 q2r 00G�z�

2 q2rD�z� 2 q2r 0A�z� , (2)
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where the functions W �z� and D�z� can be referred to
as the driving and detuning wake functions, and the
functions G�z� and A�z� as the angular1 driving and
trailing wake functions.

In the next section, we present simplified calculations
of the TEM line wake functions and give examples
of driving and angular wakes for particles of arbitrary
longitudinal velocity. The influence of all four terms on
the beam dynamics is analyzed in the final section. It
is shown also that nonrelativistic collective phenomena
can be significantly different from those obtained in the
ultrarelativistic case.

II. SIMPLIFIED CALCULATION OF TEM LINE
WAKES

A TEM line is an element that displays both conven-
tional and angular wakes. Moreover, one can easily cal-
culate all the wakes for the nonrelativistic case. For this
calculation we use the simplest model of two flat plates
inserted into a vacuum chamber. We assume the plates
are separated by a vertical distance a, their width is equal
to b ¿ a, and the total length is equal to l. The electric
and magnetic fields E and H in the TEM line can be rep-
resented as

�E � V �s, t� �́ , �H � 2I�s, t� �h, (3)

where �́ is proportional to the solution of the electrostatic
problem of two plates with an opposite charge (in the line
�́ is the vertical vector with the total length j �́ j � 1�a)
and �h is the solution to the similar mangetostatic problem
(in the line �h is the horizontal vector with the length
j �hj � 1�b).

1The name is proposed by M. Blaskiewicz.
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The calculation presented below is simplified in the
sense that we isolate the TEM fields and derive formu-
las only for them. The remaining fields are related to the
space charge of the beam, and they give conventional con-
tributions to the beam dynamics.2 To obtain the TEM field
equations we substitute (3) into Maxwell equations and in-
tegrate over the TEM line cross section. This procedure
corresponds to the standard expansion of the particle fields
into the sum of the element’s electromagnetic modes. The
separated equations for V , I are

≠V
≠s

1 L0
≠I
≠t

� 0 ,

≠I
≠s

1 C0
≠V
≠t

� 2
Z

s�

�j ? �́ ds� ,
(4)

where L0 � m0a�b, C0 � ´0b�a are the inductance
and capacitance per length unit and �j is the current
density.

Consider a particle in an infinitely long TEM line
with velocity ns parallel to the plates. Assume that at
some moment of time (e.g., t � 0) the particle receives a
kick in the vertical direction, resulting in a small vertical
velocity n. The vertical current density in this case is j �
end�x�d�y�d�nst 2 s�Q�t�, where Q�t� is the Heaviside
step function, and the solutions for V , I are
014201-2
V �s, t� �

8>><
>>:

2
Z0

2�1 1 b�a
j0Q�ct 1 s�, s , nst ,

2
Z0

2�1 2 b�a
j0Q�ct 2 s�, s . nst ,

I�s, t� �

8>><
>>:

1
1

2�1 1 b�a
j0Q�ct 1 s�, s , nst ,

2
1

2�1 2 b�a
j0Q�ct 2 s�, s . nst ,

(5)

where b � ns�c, Z0 �
p

�m0�´0� �a�b�, and j0 � en.
This solution has several remarkable features.

First, it is proportional to the transverse velocity n.
Second, it consists of two waves: a forward moving wave
and a backward moving wave. In the ultrarelativistic limit
the forward wave is very short, but its amplitude is large
(proportional to g2). The backward moving wave is long
and weak in the same limit. Note that the solution does
not depend on the coordinates.

To find the solutions for the finite TEM line one
uses the electric field at the line termination ports. The
significant difference from the previous solution is that the
TEM fields have large longitudinal components at the line
ends, induced mostly by the longitudinal current. Besides,
resistances Z1 and Z2 terminate both ends of the stripline.
The equations (4) remain valid inside the stripline, but
it is necessary to add the boundary conditions at the
termination ports, namely,
V � 2IZ1js�0 or
2V
Z1

1 C0

Z s ≠V
≠t

ds � 2
Z sZ

s�

�j ? �́ ds�js�0 ,

V � IZ2js�l or
V
Z2

1 C0

Z s ≠V
≠t

ds � 2
Z 2Z

s�

�j ? �́ ds�js�l .
(6)

Assume for simplicity the matched line case, namely, Z1 � Z2 � Z0. Assuming that the longitudinal coordinate of
the particle is s � 0 at time t � 0, the solution for the fields inside the line �0 , s , 1�, proportional to the transverse
velocity of the leading particle, is similar to (5):

V �s, t� �

8>><
>>:

2
Z0

2�1 1 b�a
j0

∑
Q�ct 1 s� 2 Q

µ
ct 1 s 2 l

1 1 b

b

∂∏
, s , nst ,

2
Z0

2�1 2 b�a
j0Q�ct 2 s�, s . nst ,

(7)
where the solution again consists of two waves, absorbed
without reflections at the terminating ports. Here we have
omitted the solutions for the current I , which are easy to
obtain from the solution for the voltage V .

2We are mainly interested here in the angular transverse wake.
It is related only to the fields, which absorb energy of transverse
oscillations from the beam. For example, space charge fields
in superconducting vacuum chambers have only conventional
wake, even for an oscillating particle. That is why we consider
only TEM fields here. rf cavities, which have modes with
nonvanishing transverse electric field at the beam axis, have
angular wakes similar to those in striplines.
The solution for the fields proportional to the coordinate
displacement of the particle from the center of the line
can be obtained as follows: First, substitute the solution
for the voltage inside the TEM line V 00 � f�ct 2 s� 1

g�ct 1 s� into Eq. (6) to obtain

2f�ct�
Z0

Ç
s�0

� 2
Z sZ

s�

�j ? �́ ds�js�0 ,

2g�ct�
Z0

Ç
s�l

� 2
Z sZ

s�

�j ? �́ ds�js�l .
(8)

The vertical electrostatic electric field �E [see Eq. (3)]
for the finite length TEM line can be written as �E �
�́ ���Q�s� 2 Q�s 2 l���� with �́ again equal to the vertical
014201-2
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vector with the total length 1�a. For the longitudinal electric fields E1, E2 at both ends the Maxwell equations give

E1 � �́ 0 ? �rd�s�, E2 � 2 �́ 0 ? �rd�s 2 l� , (9)

with �r equal to the particle transverse coordinate at the stripline terminations. Taking into account that the particle
current density is �j � ed�nst 2 s�d�y 2 y0�d�x 2 x0� �n one can combine (8) and (9) to obtain the solution for the V 00

inside the stripline for 0 , s , 1:

V 00�s, t� � 2
eZ0c

2
�́0 ? �r

∑
d�ct 2 s� 2 d

µ
ct 1 s 2 l

1 1 b

b

∂∏
. (10)

The magnetic field can be obtained from the electric field. The function I in Eq. (3) can be expressed in terms of V
in the following way:

I�s, t� � 2
Z t 1

cZ0

≠V
≠s

dt . (11)

The total electric field is the sum of V 0 and V 00. To obtain the wake functions one can integrate the electromagnetic
force on the particle trajectory over the stripline length:

W �z� �

8>><
>>:

2bcZ0

2a2 �Q�2z� 2 Q���2 z 2 �1 1 b�l����, z , 0 ,

bcZ0

2a2
�Q�z� 2 Q���z 2 �1 2 b�l����, z . 0 ,

G�z� �

8>><
>>:

bcZ0

4a2
L����1 1 b�l 1 z���, z , 0 ,

2bcZ0

4a2
L����1 2 b�l 2 z���, z . 0 ,

(12)

where function

L�x� �

Ω
x, x . 0 ,
0, x , 0 .

The other wake functions, D�z� and A�z�, are equal to zero in this case.

III. THE INFLUENCE OF VARIOUS WAKES ON BEAM DYNAMICS

In this section we present a brief description of the main impact on relativistic beam dynamics of the angular and detun-
ing wakes. Assuming the bunch to consist of particles all having the same synchrotron amplitude, As, and a homogeneous
distribution over the synchrotron phase (the so-called air-bag model), the transverse equation of motion reads

d2x�f�
dt2 1 v2

bx�f� � Fx�f� ,

Fx�f� � 2
Nq2

2pgmL

Z jfj

2jfj
�W�z�x�f0� 1 D�z�x�f� 1 G�z�x0�f0� 1 A�z�x0�f�� df0, (13)

d
dt

�
≠

≠t
1 vs

≠

≠f
, z � As cosf 2 As cosf0.

Here f is the synchrotron phase, vb and vs are, respectively, the betatron and the synchrotron frequencies, and N is
the number of particles in the bunch. An expansion of the deviation x�f� over the synchrotron harmonics

x�f� � e2ivbt
1X̀

n�2`

xne
2iavst1inf (14)

reduces (13) to a set of algebraic equations for eigenvectors with components xn and eigenvalues a:

xn�a 2 n� � K
1X̀

m�2`

xmKnm, K �
Nq2

2p2gmvbvsL
,

Knm �
Z p

0
cos�nf�

Z f

0
W �z� cos�mf0� df0 1

Z p

0
cos��n 2 m�f�

Z f

0
D�z� df0 (15)

2
Z p

0
cos�nf�

Z f

0

ivb

bc
G�z� cos�mf0�df0 2

Z p

0
cos��n 2 m�f�

Z f

0

ivb

bc
A�z� df0,
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where the influence of the coherent interaction is taken
to be small in comparison with the transverse focusing,
avs ø vb . We now consider all four contributions to
the coefficient Knm from the TEM line fields.

A. Driving wake contribution

Because we analyze equations of motion with zero
chromaticity, the integral of the driving wake is real. For
small current it gives a coherent tune shift of all the modes.
For large currents, different modes are coupled and the
motion is unstable. For a short bunch in the relativistic
case, the TEM line conventional wake is constant and is
equal to W�z� � 2bcZ0�2a2. If one neglects the mode
coupling, the coherent tune shift for the vertical motion for
a mode with azimuthal number n � 0 is

a � 2K
p2bcZ0

4a2
. (16)

B. Detuning wake contribution

The flat TEM line detuning wake is equal to zero
because the horizontal wake is equal to zero. In general,
in flat geometry the detuning wake is opposite to the
driving wake [5] and the coherent tune shift of the zero
mode is equal to zero, a � 0. The effect of the detuning
wake is stabilizing because it gives the betatron tune shift
for the particles in the tail of the bunch. As a result, the
transverse instabilities can be significantly suppressed [5].

C. Driving angular wake contribution

The contribution from the angular wakes is completely
different from those of the driving and detuning wakes.
In Eq. (15) the matrix elements from angular wakes are
imaginary. Consider the driving angular wake, G�z� �
bcZ0l�2a2, for a relativistic short bunch in the stripline.
This action of this wake is in the backward direction.
The forward wake action is negligible in ultrarelativistic
case, 1 ø g2Lb (here and below Lb stands for the bunch
length). The tune shift for the zero mode is

a � 2iK
p2Z0lvb

4a2
. (17)

This result means that zero mode is damped in pro-
portion to the number of particles in the bunch (so-called
“fast damping”). This result, with the decrement propor-
tional to the stripline length, can be found in Dikansky and
Pestrikov [6] (see p. 251, Eq. 5.4.27). The small differ-
ence in formulas is related to the betatron phase advance
at the stripline, which is neglected in our estimation.

D. Trailing angular wake contribution

The stripline trailing angular wake is zero. If we
neglect the radiation force in the fields of the leading
particle, this wake is equal to zero in all cases. However,
the term proportional to the angle of trailing particle
014201-4
in Eq. (15) is related to the energy change due to the
longitudinal wake, because the angle x0 is equal to p��pk.
In our model one can assume that the energy change
associated with the collective fields is compensated by
the rf system. Under this assumption the action of the
last term in Eq. (15) averages into zero. In general,
the trailing angular force can produce synchrobetatron
resonances or damping similar to adiabatic damping.

IV. COLLECTIVE BEAM DYNAMICS IN THE
NONRELATIVISTIC CASE

Consider the nonrelativistic stripline driving wake W�z�
from Eq. (12) for small particle velocities, b ø 1. It
is exactly antisymmetric and the length of the wake in
both directions is equal to the stripline length l. We now
analyze three cases of beam dynamics using this wake.
First is a simple two-particle model that already behaves
quite differently from the relativistic case. Second, the
equations for a bunch in a linac are solved, and, finally,
the transverse mode coupling instability is analyzed for
the bunch in a storage ring with synchrotron motion.

A. Two-particle model

The equations of motion for two particles in a stripline
nonrelativistic wake, separated by less than the line
length, are

d2x1

dt2 1 v2
bx1 � F�x2� ,

d2x2

dt2 1 v2
bx2 � 2F�x1� , (18)

F�x� � 2
q2

2pmL
bcZ0

2a2
x � 2Cx .

The squares of the eigenfrequencies v are v2 �
v

2
b 6 iC. They are complex and the motion is unstable,

contrary to the relativistic case where the trailing particle
coordinate grows only linearly.

B. Distributed bunch density in linac

Now consider a bunch in a linac of length Lb , ne-
glecting longitudinal motion and assuming constant linear
density within the bunch. The stripline wake is antisym-
metric with a step function on both sides of zero. For
simplicity, we assume instead a sinusoidal antisymmet-
ric wake with the wavelength equal to the bunch length,
W �z� � C sin�2pz�Lb� with C � bcZ0�2a2. The equa-
tion of motion is

d2x�s�
dt2

1 v2
bx�s� � Fx�s� ,

Fx�s� �
Nq2C
2pmL

Z Lb

0
sin ���2p�s 2 s0��Lb���x�s0� ds0.

(19)
014201-4
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Here L is the total linac length structure, treated as one
stripline. The coordinate x�s� can be expanded over spatial
harmonics:

x�s� �
1X̀

n�2`

���xn�t� cos�2pns�Lb�

1 yn�t� sin�2pns�Lb���� . (20)

Substitution of this formula into Eq. (19) yields

d2x1

dt2 1 v2
bx1 � 2ky1 ,

d2y1

dt2
1 v2

by1 � kx1 , (21)

k �
Nq2C
4pmL

.

The other harmonics are uncoupled and oscillate at the
betatron frequency. The frequencies of the first two
harmonic oscillations are v

2
b 6 ik. Again, as in the case

of the two-particle model, we have exponential growth.
In the relativistic case a linear wake gives tail growth
proportional to �et1�3 � [1]. Asymptotically, this growth is
much slower than that of the nonrelativistic case. This
difference is related to the fact that tail particles interact
with the head of the bunch and this coupling produces an
exponential growth, which is related to the antisymmetric
property of the wake function. For the symmetric wake
functions the motion is stable— it provides only a coherent
tune shift due to collective interaction.

C. Mode coupling instability

To analyze the difference between the instabilities for
relativistic and nonrelativistic cases, we use Eq. (15),
where, to get matrix elements Kmn, we integrate over
forward and backward particles, since the wake is nonzero
for positive arguments:

Knm �
Z p

0
cos�nf�

Z p

0
W �z� cos�mf0� df0. (22)

Figure 1 shows two cases: a one-sided wake,

W �z� �

Ω
C sin�2pz�a�, z , 0 ,
0, z . 0 ,

upper plot, and an antisymmetric two-sided wake,

W �z� � C sin�2pz�a�, ; z ,

lower plot, with a equal to the amplitude of synchrotron
oscillations for the “hollow beam” model. The horizon-
tal scale is expressed in units of the parameter Q �
Nq2C�2gmvbvsL. Both cases have almost the same
threshold, but the imaginary parts of unstable modes grow
much faster with intensity for the antisymmetric wake.
Again, as for the linac instability, described by Eq. (21),
the two-sided wake provides stronger head-tail coupling
than the wake with backward action only; in the latter case
this coupling comes only from the synchrotron motion.
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FIG. 1. (Color) Real (dotted lines) and imaginary (red lines)
parts of the eigenfrequencies versus Q.

V. CONCLUSION

It can be concluded that, for some vacuum chamber ele-
ments, there exist beam-induced electromagnetic fields
with special dependencies on particle coordinates and ve-
locities. Those fields can significantly change the collec-
tive mode behavior. The collective phenomena can also
be significantly different from extreme relativistic ones.
These effects may be of importance for the new generation
of high intensity facilities, such as the Spallation Neutron
Source.
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