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Impedance and loss factor of a coaxial liner with many holes: Effect of the attenuation
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In the framework of the modified Bethe’s diffraction theory, we study the energy lost by a relativistic
particle beam traveling in a coaxial liner with many holes, including the effect of attenuation in the
coaxial region. The interference among the holes is the main source of losses and is affected by the
attenuation in the coaxial only over sufficiently long distances. We derive analytical formulas for all the
interesting quantities and particular attention is given to clarifying the physical meaning of the results;
numerical examples are considered using LHC-like parameters.

PACS numbers: 41.75.–i, 41.20.–q
I. INTRODUCTION

Several papers have been devoted to the study of the
interaction between a particle beam and the pumping holes,
in order to get the coupling impedance (for a review see
Refs. [1,2]). Of particular interest is the structure sketched
in Fig. 1, where the holes couple the vacuum chamber (a
circular waveguide) to the external antechamber (a coaxial
waveguide), as in the LHC liner.

The problem has been solved by means of the modified
Bethe’s diffraction theory [3] for a single hole in [4] and
for N holes in [5], at low frequency. Recently, this theory
has been further modified to estimate analytically the ef-
fects of a long narrow slot [6]. Some measurements were
also performed on a LHC vacuum chamber prototype [7]
(i.e., a coaxial chamber with many holes) to estimate the
power lost by the beam, the results being explained by
a simplified model. Other techniques often used are the
field matching method [8] and a variational approach [9].

In this paper, we extend previous results of [5],
including the effect of field attenuation in the coaxial
region. A possible source of attenuation is the Ohmic loss

FIG. 1. Relevant geometries.
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in the walls of the coaxial, but some other source could be
foreseen as well (as for instance, proper attenuators). We
will focus mainly on the first case, but our theory can be
easily extended to other cases. The energy dissipation
is dominated by interference effects among the holes.
The latter takes place only over lengths shorter than the
“attenuation length” defined in Sec. V; accounting merely
for interference effects would lead to the unphysical result
of a diverging power loss per unit length. We show that
for longer lengths of the perforated screen the attenuation
plays a fundamental role, leading to a finite asymptotic
value of the specific power loss.

For simplicity, we study the ideal structure of a pipe
with thin walls (b1 � b2 � b). After an outline of the
general theory (Sec. II), in Sec. III we present the results
for the coupling impedance in the case of attenuation
in the coaxial. Since it has been demonstrated [5] that
the loss factor is not significantly influenced by the
randomization of the position of the holes, we focus on
equally spaced holes (with one hole per cross section).
Then we consider the attenuation due to Ohmic losses,
discussing the loss factor in Sec. IV and the power lost per
unit length in Sec. V. In Sec. VI we compare our results
to those of Ref. [7], showing that they are in substantial
agreement, and in Sec. VII we present our conclusions.

II. OUTLINE OF THE GENERAL THEORY

The general theory adopted in these calculations is
described in [4,5]; for convenience, we summarize its
main features at frequencies below the beam pipe cutoff
considering only scattered TEM-type fields in the coaxial
region.
© 1999 The American Physical Society 124401-1
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We will adopt the cylindrical coordinates, with z being
the longitudinal coordinate, r and w the radial and the
azimuthal coordinates, respectively. The subscript “0”
on a field means that it is a source field (charge field),
while the fields with subscript “s” are the scattered fields
propagating in the coaxial region. N is the number of the
holes in the structure.

The modified Bethe’s diffraction theory [3] states that
each hole is equivalent to an electric and a magnetic
dipole whose moments are given by

Mw�zi� � am�H0w�zi� 2 Hsw�zi�� , (1)
Pr �zi� � ´ae�E0r�zi� 2 Esr �zi�� , i � 1, . . . ,N ,

where am and ae are the polarizabilities of the hole
and Hsw and Esr are the scattered fields calculated
at the center of the hole with longitudinal coordinate
zi . The primary field on the aperture, generated by an
ultrarelativistic point charge q, traveling along the axis of
a perfectly conducting circular beam pipe of radius b, is
�k0 � v�c�

H0w�zi� �
q

2pb
e2jk0zi , E0r�zi� � Z0

q
2pb

e2jk0zi ,

(2)

where Z0 is the characteristic impedance of vacuum.
In [5], the TEM-type scattered fields are assumed to

have the same phase velocity of the charge. We consider
here a complex propagation constant of the form

kc � k0 2 ja , (3)

where a is the attenuation constant. Both k0 and a are
given functions of the frequency v with dimensions of
�m21�. If the attenuation constant is a real quantity, the
field will be exponentially damped along the propagation
direction (z axis); the source of this attenuation fixes
the v dependence of a. On the other hand, a purely
imaginary a takes into account a slowing down of
the TEM fields in the external coaxial region; that
could be, for example, the effect of a long series of
uniformly spaced holes acting as the periodic perturbation
of boundary conditions in any slow-wave device.

In general, the scattered fields can be expressed as a
superposition of modes. The coefficients of the modal
expansion are determined through the Lorentz reciprocity
124401-2
principle [3]; they are linear functions of the equivalent
dipole moments of the apertures which can be obtained
solving a 2N 3 2N linear inhomogeneous system.

Once the equivalent dipole moments have been de-
termined, we can calculate the longitudinal coupling
impedance, using the result [5]

Z�v� � j
vZ0

2pqb

NX
i�1

∑
Mw�zi�
c

1 Pr �zi�
∏
ejk0zi . (4)

The longitudinal coupling impedance represents the
Green function of the problem; the loss factor depends
on its real part, since [10,11]

k�s� �
1
p

Z `

0
ZRe�v�e2�vs�c�2

dv , (5)

for a Gaussian bunch of rms length s.
The TEM mode in the coaxial region will dissipate

some power on the walls, possibly causing undesired
effects; we introduce the dissipated power per unit length
P, expressed in terms of the loss factor as

P �
c Q2 k�s�
SbLd

, (6)

where Q is the bunch charge, Sb is the bunch separation,
Ld is the device length, and k�s� is the loss factor due to
the N holes in the device.

III. LONGITUDINAL COUPLING IMPEDANCE
OF N HOLES

The 2N 3 2N linear system for dipole moments could
be dealt with by means of the standard analytical and
numerical techniques. However, as long as the energy
radiated trough the holes is a minor fraction of the to-
tal incident energy, the scattered field can be considered
as a small perturbation with respect to the primary field,
and the system for Mw ,Pr can be treated with pertur-
bative procedures. The simplest approach is the itera-
tive solution stopped at first order [5]. Thus, using the
approximate dipole moments in Eq. (4) and considering
uniformly spaced holes with distance D, one gets for the
imaginary and the real part of the coupling impedance the
following relations [12]:
ZIm�v� � Z0
v

4p2b2c

∑
N�am 1 ae� 2

v

4pb2 ln�d�b�c
�am 2 ae�2

N21X
h�1

�N 2 h�e2ahD sin

µ
2h

v

c
D

∂∏
, (7)

and

ZRe�v� � Z0
v2

16p3b4 ln�d�b�c2
�N

°
a2
m 1 a2

e

¢
1 �am 1 ae�2F�D,N , a� 1 �am 2 ae�2B�D,N, a, v�� , (8)

where

F�D,N, a� �
NX
h�1

h21X
k�1

ea�zk2zh� �
NX
h�1

h21X
k�1

ea�k2h�D , (9)
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and

B�D,N, a, v� �
N21X
h�1

�N 2 h�e2ahD cos

µ
2h

v

c
D

∂
.

(10)
It is worth noting that ZIm has a dominant term

independent of the position of the holes and equal to N
times the impedance of a single hole. The attenuation
does not play an important role in this case. Its effect is
more remarkable on the real part, ZRe, since the latter
strongly depends on the spacing among the holes, as
already shown in [5].

In Eq. (8), the first term �~ N�a2
m 1 a2

e�� is the contri-
bution of noninteracting holes, while the terms weighted
by F�D,N , a� and B�D,N, a, v� are due to the forward
and backward propagating TEM waves.

The weights of F and B depend on the polarizabilities;
the magnetic and the electric polarizabilities have opposite
signs and for circular holes jamj and jaej differ by
a factor of 2 (am � 4�3R3 and ae � 22�3R3, where
R is the hole radius), while for long slots they can
be very similar (slot much longer than its width) [12].
Thus we expect that for rectangular or rounded-end slots
the contribution of backward propagating waves is more
relevant than for circular holes.

The forward TEM wave, traveling in phase with the
beam, causes most of the energy losses; for this reason,
the term ~F is often the only one considered (see, for
example, [7]).

Performing the sums that define F�D,N, a�, we get

F�D,N , a� �
N�eaD 2 1� 1 �e2aDN 2 1�eaD

�eaD 2 1�2 . (11)

If the spacing of the pumping holes is small compared to
the attenuation length of the field (namely, aD ø 1) and
for N ¿ 1, Eq. (11) becomes

F�D,N , a� �
N

aD
1

e2aDN 2 1
�aD�2 ; (12)

this is the case, for instance, of the LHC [13] in which
that relation holds for all the frequencies in the bunch
spectrum.
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On the other hand, B has resonance peaks at frequen-
cies fn � nc��2D� whose width depends on the attenu-
ation constant and the height is proportional to N2 [12].
If D is small with respect to s, the frequencies of the
peaks are beyond the relevant part of the bunch spectrum.
Far from the peaks and for large N , B can be approxi-
mated by a constant [12],

B�D,N, a, v� � 2
N
2

, (13)

showing that the backward propagating TEM wave has an
effect at all frequencies.

Using Eqs. (12) and (13) in Eq. (8) yields

ZRe�v� � Z0
v2�am 1 ae�2

16p3b4 ln�d�b�c2

3

∑
N
2

1
N

aD
1

e2aDN 2 1
�aD�2

∏
. (14)

IV. LOSS FACTOR

With no dissipation in the coaxial, when D�s , 1 and
N ¿ 1 one gets for the loss factor [12]

k�s� �
Z0

p
p c

128p4b4 ln�d�b�s3
N2�am 1 ae�2, (15)

showing the importance of the interference effects be-
tween the holes due to the presence of the TEM field
in the coaxial region. These are not always considered
in the literature and cause the total loss factor to depend
on N2.

The previous Eq. (14) for the impedance holds for an
attenuation source in the coaxial region such that the field
propagating there remains essentially TEM shaped; this
is, for instance, the case of distributed dielectric losses.
In first approximation, the effect of lossy walls can also
be treated in this way by using the following attenuation
constant [7]:
a�v� � a
p

v with a �
1

2Z0 ln�d�b�

µp
rb

b
1

p
rd

d

∂r
m

2
, (16)

where rb (rd) is the resistivity of the cylindrical surface of radius b (d). Although it is only an approximation, this
approach is widely used in the estimation of losses in high power rf transmission lines [14].

Using Eq. (16) in Eq. (18) yields the real part of the coupling impedance for this particular source of attenuation,
and then performing the integral of Eq. (5) we get the loss factor. This can be done analytically only under the
approximations discussed earlier, namely, Eq. (14), yielding

k�s� �
Z0�am 1 ae�2

16p4b4 ln�d�b�c2

∑p
p

8

µ
c
s

∂
3N 1

1
2

G

µ
5
4

∂
c5�2

aDs5�2
N 1

I
a2D2

∏
, (17)

where I is defined in Appendix A. In the limit of large N (aND
p
c�s ¿ 1), the third term in the square brackets

becomes negligible with respect to the other two.
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FIG. 2. Loss factor k as a function of the length of the
perforated beam screen Ld (for a device length Ld much
shorter than the attenuation length La � 80 m). The solid line
refers to Eq. (17) and the dots give the exact numerical values
from Eq. (8). The dashed line is obtained neglecting backward
wave. We use the following parameters: b � 19 mm, d �
24.5 mm, rb � rd � 7.1 3 1027 V�m, D � 16 mm, s �
75 mm, rounded end slots 8 mm 3 1.5 mm.

The behavior of the loss factor as a function of the length
of perforated screen Ld � ND is shown in Figs. 2 and 3.
When Ld (or N) is small, the holes interfere and the loss
factor grows quadratically as in the case of no attenuation
(Fig. 2). However, as the length increases, not all the holes
interact with each other because of the attenuation of the
field. Thus, for large lengths the loss factor grows only
linearly, as shown in Fig. 3. In both figures the dashed
line is the loss factor obtained neglecting the backward
124401-4
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FIG. 3. Loss factor k as a function of the length of the
perforated beam screen Ld (for a device length Ld much
longer than the attenuation length La � 80 m). The solid line
refers to Eq. (17) and the dots give the exact numerical values
from Eq. (8). The dashed line is obtained neglecting backward
wave. We use the following parameters: b � 19 mm, d �
24.5 mm, rb � rd � 7.1 3 1027 V�m, D � 16 mm, s �
75 mm, rounded end slots 8 mm 3 1.5 mm.

propagating waves in the coaxial, while the solid line also
includes the backscattered waves using the approximate
formula Eq. (17); the dots give exact numerical values of
the loss factor obtained with Eq. (8).

V. POWER LOST PER UNIT LENGTH

The excited TEM field dissipates power on the walls of
the coaxial region. Inserting Eq. (17) in Eq. (6) yields the
specific power loss
P �
�am 1 ae�2

16 p4 b4 ln�d�b� Sb D

∑p
p

8
Z0 Q2 c2

s3
1

1
2

G

µ
5
4

∂
Z0 Q2 c3�2

aD s5�2
1

1
N
Z0 Q2 I
a2 D2 c

∏
. (18)

A typical behavior of P with the device length Ld is drawn in Fig. 4; the dashed curve is the exact value, while
the solid lines account for the case without losses and for the limit value reached at long device lengths. The distance
between the holes D and their number N is such that the surface covered by the holes is 4.4% of the total surface of the
pipe, as for the LHC liner.

As shown in Fig. 4, there are two simple limiting behaviors of P: it saturates for very long devices, while it grows
linearly when the length Ld is small.

In the limit of large Ld , Eq. (18) becomes constant,

P` � limN!` P �
�am 1 ae�2

16 p4 b4 ln�d�b�Sb D

∑p
p

8
Z0 Q2 c2

s3 1
1
2

G

µ
5
4

∂
Z0 Q2 c3�2

aD s5�2

∏
, (19)
since the number of holes interacting with each other is
fixed by the attenuation of the field.

On the contrary, since the field is not dumped effi-
ciently in short lengths, we can use Eq. (15); we get

Plin �

p
p

128 p4

Z0 Q2 c2

s3

�am 1 ae�2

b4 D Sb ln�d�b�
N , (20)

which grows linearly with N (or Ld) because of the
interference effect among all the holes.

We define La as the length where the linear approxi-
mation Plin crosses the limit value P`; that is,
La � D 1
4

p
p

G

µ
5
4

∂ p
s

a
p
c

� D 1
4

p
p

G

µ
5
4

∂
1

a�vc�
, (21)

with vc � 2pfc, fc is the cutoff frequency of the
Gaussian spectrum of the bunch �vc � c�s�. We can
say approximately that the power per unit length reaches
its saturation value for L . La .
La depends on the attenuation a, on the bunch length

and on the spacing among the holes. The dependence on
124401-4
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FIG. 4. Power per unit length as a function of the length of
the beam screen Ld . We use the following parameters: b �
19 mm, d � 24.5 mm, rb � rd � 7.1 3 1027 V�m, Q �
16 nC, s � 75 mm, rounded end slots 8 mm 3 1.5 mm. The
holes cover a surface of 4.4% of the total surface of the pipe.

D is not relevant for practical cases (for instance, in the
liner of the LHC) because the second term is orders of
magnitude bigger. For very strong attenuation (i.e., a !
`), however, the saturation value is reached at lengths
equal to the spacing among the holes, as expected. The
other term is proportional to the inverse of the attenuation
constant computed at the bunch cutoff frequency fc; it
is not exactly 1�a�vc� (as we could expect) since the
loss factor (and P) is a weighted average on all the
frequencies.

If there is more than one hole for a given longitudinal
position, we have to multiply our formulas by the number
of holes per cross section Nb squared. In fact, holes in the
same section always interfere constructively, since both
the beam field and the TEM field are constant in the
azimuthal coordinate and thus they are excited with the
same phase.

VI. COMPARISON WITH PREVIOUS RESULTS

It is interesting to compare our results to those of
Ref. [7], where measurements done on a 2 m long model
of the LHC vacuum chamber are reported and interpreted
with the help of a simplified model. That paper considers
only the forward waves and focuses the attention on
the transmission coefficient (i.e., the ratio between the
maximum absolute value of the field in the coaxial and
the field in the beam pipe) in the two limiting cases of no
attenuation (suitable for lengths much smaller than La)
and of infinite length. The first case is also compared to
measurements, showing that the theoretical values of the
transmission coefficient are about a factor of 2 below the
measured values.

The forward transmission coefficient is given by

G�v� �

Ç
Esr
E0

Ç
, (22)

where Esr�z� is the electric field radiated by all the holes
in the coaxial region and the source field E0 is that of a
124401-5
relativistic charge given in Eq. (2). It can be shown [12]
that

G�v� �
p

ln�d�b�
jZ�v�j
Z0

. (23)

Since the absolute value of the coupling impedance is
dominated by its imaginary part [given by Eq. (7)], the
coefficient G�v� becomes

G�v� � N
v

4 p b2 ln�d�b� c
jam 1 aej . (24)

This result is identical to the analytical expression derived
in [7] written for a thin wall; in fact, when there is no
attenuation, the effect of the forward propagating wave
(the only wave considered in [7]) dominates.

The saturation value of the power lost per unit length
derived in [7] and expressed in our notation (and for a
thin wall) is

bP` �
1
2

G

µ
5
4

∂
N2
b

Z0 Q2 c3�2 �am 1 ae�2

16 p4 b4 ln�d�b� Sb aD2 s5�2
.

(25)

It is actually the second term of Eq. (19) that is the one
accounting for the effect of the forward propagating TEM
field, considering Nb holes per cross section. In our
numerical example, it is the dominating term, since the
term accounting for the effect of noninteracting holes and
the one due to the backward wave have different signs
and almost cancel each other, giving the first term in the
square brackets of Eq. (19).

VII. CONCLUSIONS

We have studied the ideal case of thin wall. Analytical
formulas are given for coupling impedance, loss factor,
and power lost per unit length for many holes in a coaxial
liner and in the presence of attenuation in the coaxial
region. To account for finite wall thickness, relevant for
practical applications, slight modifications of the present
results are needed (see Refs. [5] and [6]) as reported in
Appendix B for the reader’s convenience.

Interference effects between the holes (not always
considered in the literature) are mainly responsible for the
beam energy loss. The attenuation in the coaxial region
reduces them, but only over a distance comparable to La .
These results confirm and generalize previous results; they
are also helpful to understand the most relevant physical
parameters in the design of the beam screen for real
machines.
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APPENDIX A

To get Eq. (17) inserting Eq. (14) in Eq. (5), we use the following:Z `

0
v2e2�vs�c�2

dv �

p
p

4

µ
c
s

∂3

,

Z `

0
v3�2e2�vs�c�2

dv �
1
2

G

µ
5
4

∂ µ
c
s

∂5�2

,

I �
Z `

0
v�e2aDN

p
v 2 1�e2�vs�c�2

dv

� 2
c2

2s2 1
c2

2s2 1F3

µ
1;

1
4

,
1
2

,
3
4

;
a4c2

256s2 N
4D4

∂
2 G

µ
5
4

∂
a
2

µ
c
s

∂5�2

0F2

µ
;

1
2

,
3
4

;
a4c2

256s2 N
4D4

∂
ND

1

p
p a2c3

8s3 0F2

µ
;

3
4

,
5
4

;
a4c2

256s2 N
4D4

∂
N2D2 2 G

µ
3
4

∂
a3

16

µ
c
s

∂7�2

0F2

µ
;

5
4

,
3
2

;
a4c2

256s2N
4D4

∂
N3D3,

where pFq is the generalized hypergeometric series [15].

APPENDIX B

To account for the finite wall thickness, it is necessary to slightly modify all the equations, in particular, Eqs. (18) and
(19). The finite thickness changes the problem geometry and, more importantly, introduces an attenuation of the fields in
the holes: (i) Denoting by b1 and b2 the inner and the outer radii of the beam pipe, respectively, one can see that the factor
b2 in the denominator of all the relations for coupling impedance, loss factor, and forward transmission coefficient has
to be replaced by the product b1b2; analogously, ln�d�b� becomes ln�d�b2�. (ii) The polarizabilities must be corrected;
recalling that ae and am are the thin wall polarizabilities, we can introduce the thick wall polarizabilities ãe and ãm,

ãe � aef�T , hole dimensions� and ãe � amg�T , hole dimensions� .
The functions f and g depend on the hole’s shape, but
they are always decreasing exponentially with the wall
thickness T . A first expression for them was given in
1972 by McDonald [16] for circular and rectangular holes.
Later, using a variational approach, Gluckstern and Dia-
mond reached an analogous result for circular holes [17].
A first review of McDonald’s results and their application
to the problem of pumping slots in particle accelerators
was presented by Kurennoy [1]; McDonald’s results, with
minor improvements, have been used in [5] and [6], where
they are compared with numerical simulations (MAFIA).

[1] S. Kurennoy, Part. Accel. 39, 1 (1992); Superconducting
Super Collider Laboratory Technical Report No. SSCL-
636 (unpublished).

[2] G. Stupakov, Phys. Rev. E 51, 3515 (1995).
[3] R. Collin, Field Theory of Guided Waves (Oxford Univer-

sity Press, Oxford, 1995), 2nd ed.
[4] S. De Santis, M. Migliorati, L. Palumbo, and M. Zobov,

Phys. Rev. E 54, 800 (1996).
[5] S. De Santis, A. Mostacci, and L. Palumbo, Phys. Rev. E

56, 5990 (1997).
[6] S. De Santis, A. Mostacci, L. Palumbo, and B. Spataro,

Phys. Rev. E 58, 6565 (1998).
[7] F. Caspers, E. Jensen, and F. Ruggiero, in Proceedings

of the European Particle Accelerator Conference, Berlin,
124401-6
1992, edited by H. Henke, H. Homeyer, and C. Petit-Jean-
Genaz (Editions Frontières, Gif-sur-Yvette, France, 1992),
pp. 889–891.

[8] A. Fedotov and R. Gluckstern, Phys. Rev. E 56, 3583
(1997).

[9] A. Fedotov and R. Gluckstern, Phys. Rev. E 56, 7217
(1997).

[10] L. Palumbo, V. G. Vaccaro, and M. Zobov, in Proceedings
of the CERN Accelerator School: Advanced Accelerator
Physics Course, Rhodes, 1993, edited by S. Turner (Eu-
ropean Laboratory for Particle Physics, Geneva, Switzer-
land, 1995), pp. 331–390.

[11] A. Chao, Physics of Collective Beam Instabilities in High
Energy Accelerators, Wiley Series in Beam Physics and
Accelerator Technology (Wiley-Interscience, New York,
1993).

[12] A. Mostacci, CERN LHC Project Report No. 199 (unpub-
lished).

[13] LHC Study Group, CERN Report No. CERN/AC/95-
05(LHC), 1995.

[14] R. Cooper, in Proceedings of the Cern Accelerator
School: RF Engineering for Particle Accelerators, Oxford,
UK, 1991 (European Laboratory for Particle Physics,
Geneva, Switzerland, 1992), pp. 264–265.

[15] I. Gradshtein and I. Ryzhic, Table of Integrals, Series and
Products (Academic Press, New York, 1980), p. 1045.

[16] N. A. McDonald, IEEE Trans. Microwave Theory Tech.
20, 689 (1972).

[17] R. L. Gluckstern and J. A. Diamond, IEEE Trans. Mi-
crowave Theory Tech. 39, 274 (1991).
124401-6


