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Particle-core analysis of dispersion effects on beam halo formation
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A simple particle-core model for circular accelerators has been constructed assuming that dispersion
effects are relatively weak. This model is applicable to a large class of high-intensity rings designed for
modest density applications such as spallation neutron sources. Applying this model to isotropic beams
in a smooth ring, halo formation processes in the presence of dispersion are investigated. In the analysis,
it is found that dispersion matching is essential to suppress horizontal beam widening in injection if
momentum spread is larger than a certain threshold. Even if the beam widening due to dispersion
mismatch is suppressed, a halo can be formed in the same mechanism as in a linac, namely, parametric
resonance between oscillating core and single particles. The width of halos formed by the particle-
core resonance in modest-density rings is found to be a little narrower than that in a straight channel,
and typically 1.6 to 1.8 times the maximum core width.

PACS numbers: 41.75.–i, 29.27.Bd, 52.25.Wz
se
ap
u
ng
ea
ra

w
in
e

in
lo
re
a
s

uc
on
c
d

na

in
i

ng

o
le
ne
to

o,

ical
In
he
ey
ng
py.

on
ot

g,
ace
re

the
of

een
has
g of
ght
ct
ors
of
on
e
er

est
ns,
at

n
gs
er

ng
ron
e to
ntly
I. INTRODUCTION

Recently, high intensity ion beams have been propo
to be used for a wide variety of accelerator-related
plications such as spallation neutron sources, transm
tion of nuclear waste, heavy ion fusion, etc. In realizi
these next generation high-intensity accelerators, b
loss minimization is essential to prevent excessive
dioactivation of the accelerator. From this point of vie
beam halo formation mechanism in a linac has been
vestigated extensively for the past several years. In th
studies, parametric resonance between core and s
particle oscillation is found to be a main cause of ha
generation [1,2]. Furthermore, it has been gradually
alized that halo formation with the same mechanism m
happen and cause serious problems even in high-inten
circular accelerators where beam density is usually m
lower than in linacs. In this context, increasing attenti
has recently been given to the beam halo problem in cir
lar accelerators [3–5]. Extending the range of halo stu
into circular accelerators, we should take two additio
effects into consideration. One is anisotropy of beam
or the difference of the emittance and external focus
field strength in two transverse directions. The other
the effect of longitudinal momentum spread in bendi
magnets.

In recent papers [6], Ikegami examined the effects
anisotropy on beam halo formation applying the partic
core model to anisotropic beams in a straight chan
The particle-core analysis [1] which is developed
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examine beam halo dynamics provides us a good phys
insight into halo dynamics because of its simplicity.
that analysis, it was found that coupling between t
horizontal and vertical coherent oscillations plays a k
role in enhancing halo intensity, and that the coupli
strength is strongly dependent on the degree of anisotro
While these findings seem to provide valuable informati
for high-intensity ring design, effects of dispersion are n
included in that study.

In some of the studies on beam halos in a rin
the emphasis is put upon the combined effect of sp
charge and dispersion [4,5]. Although the particle-co
model was adopted in one of these studies [4],
multiparticle tracking approach was adopted instead
the Poincaré surface of section technique. As has b
widely accepted, Poincaré surface of section technique
remarkably succeeded in deepening our understandin
underlying physics of halo formation processes in strai
channels. Therefore, it is worth trying to constru
an alternate particle-core model for circular accelerat
which provides us a Poincaré surface of section plot
test particles, and to bring out the dispersion effects
halo formation processes. From that point of view, w
concentrate in this paper on simplified situations rath
than considering realistic lattice structures.

Another characteristic of beams in a ring is their mod
beam density. Although there exists some exceptio
such as laser-cooler rings and the small electron ring
the University of Maryland [7] where beam density ca
be extremely high, beam density in high-intensity rin
now operating or under proposal is usually much low
than in high-intensity linacs. For example, in designi
proton synchrotrons or storage rings for spallation neut
sources, tune depression, or ratio of depressed tun
undepressed one, is usually chosen to be sufficie
© 1999 The American Physical Society 124201-1
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larger than 0.9 to reduce space charge effects [8,9]. This
beam density is much lower than that in their injector
linacs where tune depression is typically around 0.6. Even
with such modest beam density, uncontrollable beam
losses due to halo formation is often considered as a main
concern in designing high-intensity rings. Therefore, it
is practically important to investigate halo dynamics in a
ring especially with modest beam density and to estimate
the halo width to determine the physical aperture of high-
intensity circular accelerators.

The purpose of this paper is to seek a possibility
of constructing a simple particle-core model for beams
in modest-density circular accelerators and to clearly
understand the effects of dispersion on halo formation in
these machines. In this paper, we consider the simplest
situation to bring out the dispersion effect on halo
dynamics, namely, a coasting beam circulating in a
smooth ring where both the bending and focusing fields
are constant (smooth approximation). The emphasis is
put upon situations with modest beam density where
tune depression is around or larger than 0.9, while halo
formation in higher density cases is also discussed. To
be noted here is that it is a reasonable approximation
to consider a coasting beam because synchrotron tune is
generally much smaller than betatron tune in a ring, and,
hence, coherent behavior of a beam is well described by
the two dimensional envelope equations [10].

This paper is organized as follows: Dispersion effects
on both core and test particle evolution are examined
in Sec. II. Based on the findings in this section, we
develop a simple particle-core model for beams in circular
accelerators in Sec. III, and apply it to isotropic beams in
a smooth ring in Sec. IV. Then, a summary is given in the
last section.

II. EFFECT OF DISPERSION

A. Envelope equation with dispersion

The first basis of the particle-core analysis is envelope
equations which describe the time evolution of the core
envelope. Recently, envelope equations which include
effects of dispersion and space charge were derived by
Venturini and Reiser [11]. They found that the usual
horizontal rms emittance e2

x � �x2� �p2
x � 2 �xpx�2 is not

an invariant of motion in the presence of dispersion.
Here, �X� denotes the ensemble average of X over the
phase space distribution. Instead, there exists a new
invariant edx which can be written as

e2
dx � ��x2� 2 D2D2� ��p2

x� 2 D02D2�

2 ��xpx� 2 DD0D2�2, (1)

where D �
p

��dp�p�2� is rms momentum spread. The
prime notation refers to differentiation with respect to the
longitudinal distance s. The dispersion function D obeys
the equation
124201-2
D00 1

"
kx 2

K
2a�a 1 b�

#
D �

1
r

, (2)

where a �
p

�x2� and b �
p

�y2� are rms beam widths,
and r is the average radius of curvature. The generalized
perveance K is a measure of beam density and kx is a
constant which represents external focusing field strength
in the horizontal direction. Note here that kx includes
the horizontal focusing effect of bending magnets. In the
following, we will refer to edx as generalized emittance.

The envelope equations with dispersion can be written
as

a00 1 kxa 2
K

2�a 1 b�
2

D2

a

√
D
r

1 D02

!
2

e
2
dx 2 a02�a2 2 D2D2� 1 �aa0 2 DD0D2�2

a�a2 2 D2D2�
� 0 ,

(3)

and

b00 1 kyb 2
K

2�a 1 b�
2

e2
y

b3 � 0 , (4)

where ey and ky are, respectively, rms emittance and
external focusing field strength in the vertical direction.
As easily seen in Eq. (3), the emittance term is modified
by adopting the generalized emittance, and the dispersion
term is added compared to envelope equations for a
straight channel. Simultaneously solving Eqs. (2)–(4),
we can obtain the time evolution of the core envelope.

To construct a particle-core model for beams with
finite momentum spread, we need to know the matched
beam width and coherent tune of these beams. As easily
seen in Eqs. (2)–(4), the presence of dispersion causes
changes of matched beam size and coherent tune. In the
following subsections, we estimate these changes due to
dispersion considering isotropic situations where kx � ky

and ex � ey .

B. Matched beam width

Here we consider the matched situation where a0 �
b0 � D0 � 0. First, let us start with a trivial case where
there exists bending field but beams have no momentum
spread, D � 0. In this case, the envelope equations
reduce to a usual set of equations for straight channels,
and its matched beam width â0 is easily obtained by
solving

kxâ0 2
K

4â0
2

e2
x

â3
0

� 0 , (5)

where ex is constant.
Proceeding to cases with finite momentum spread, we

consider two beams which have the same emittance, gen-
eralized perveance and bare tune, but different momentum
spread; namely, one has finite momentum spread but the
124201-2
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other has no momentum spread. Because of dispersion ef-
fects, the matched beam width and coherent tune of these
two beams are generally different. In this subsection, we
try to obtain the difference between matched beam width
of a beam with finite momentum spread and that of its
corresponding zero-momentum-spread beam.

The matched solutions a0, b0, and D0 for beams with
finite momentum spread can be obtained by solving"

kx 2
K

2a0�a0 1 b0�

#
D0 �

1
r

, (6)

kxa0 2
K

2�a0 1 b0�
2

D2

a0

D0

r
2

e2
x

a3
0

� 0 , (7)

and

kxb0 2
K

2�a0 1 b0�
2

e2
x

b3
0

� 0 . (8)

To be noted here is that the horizontal emittance ex is
conserved in matched situations even in the presence of
dispersion.

Considering situations where dispersion effect is mod-
est, we here denote the matched solutions as

a0 � â0�1 1 da0� , (9)

and

b0 � â0�1 1 db0� , (10)

where â0 is the matched beam width of the corresponding
zero-momentum-spread beam. Substituting them into
Eqs. (7) and (8) and dropping second or higher order
terms of da0 and db0, we obtain

da0 �
ĥ2

x �3 1 5ĥ2
x�

4�1 1 ĥ2
x� �1 1 3ĥ2

x�
ĵ2, (11)

and

db0 � 2
ĥ2

x �1 2 ĥ2
x�

4�1 1 ĥ2
x � �1 1 3ĥ2

x�
ĵ2, (12)

where ĥx is the tune depression for the corresponding
zero-momentum-spread beam. The parameter ĵ is a
measure of the strength of dispersion effect defined by

ĵ �
D

â0rĥ2
xkx

. (13)

As ĵ2 is typically several percent in modest-density
circular accelerators, as discussed later, fourth or higher
order terms of ĵ are neglected in the derivation of
Eqs. (11) and (12).

It is worth noting here that the presence of dispersion
gives slight anisotropy to beams as

b0

a0
� 1 2

ĥ2
x

1 1 3ĥ2
x

ĵ2. (14)
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The change of matched beam width also causes a differ-
ence of tune depression. The horizontal tune depression
hx in the presence of dispersion can be written as

h2
x �

"
1 1

�1 2 ĥ2
x � �1 1 2ĥ2

x �
�1 1 ĥ2

x � �1 1 3ĥ2
x �

ĵ2

#
ĥ2

x . (15)

C. Coherent tune

In mismatched situations, core envelope and dispersion
function oscillate around the matched solution. Consid-
ering weakly mismatched cases, we here approximate the
oscillation as

a � a0�1 1 da�s�� , (16)

b � b0�1 1 db�s�� , (17)

and

D � D0�1 1 dD�s�� , (18)

where da�s�, db�s�, and dD�s� are periodic functions of
s with small amplitude. In contrast to matched cases, the
horizontal emittance ex also oscillates around the matched
horizontal emittance e0, which can be written as

e2
0 � e2

dx 1 a4
0h2

xkxj2, (19)

where j is another measure of the strength of dispersion
effect defined in an analogous way with ĵ as

j �
D

a0rh2
xkx

. (20)

With the use of Eqs. (11) and (15), the relation between ĵ

and j can be written as

j �

"
1 2

4 1 7ĥ2
x 2 3ĥ4

x

4�1 1 ĥ2
x � �1 1 3ĥ2

x�
ĵ2

#
ĵ . (21)

Neglecting second or higher order terms of da�s�,
db�s�, and dD�s�, the time evolution of the emittance is
obtained as

e2
x � e2

0 1
1
2

a4
0�3 1 h2

x�kxj2da�s�

1
1
2

a4
0�1 2 h2

x�kxj2db�s� 1 2a4
0h2

xkxj2dD�s� .

(22)

In the derivation of Eq. (22), we neglect fourth or higher
order terms of j also.

Substituting these equations into Eq. (2)–(4), we obtain
a set of equations which describe the time evolution of
da�s�, db�s�, and dD�s�. Neglecting higher order terms,
124201-3
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the set of equations reduces to

d00
a �s� 1

"
3 1 5h2

x

2
2

6 1 27h2
x 1 31h4

x

4�1 1 3h2
x �

j2

#
kxda�s� 1

"
1 2 h2

x

2
2

�1 2 h2
x � �2 1 7h2

x �
4�1 1 3h2

x �
j2

#
kxdb�s� 2 3h2

xj2kxdD�s� � 0 , (23)

d00
b �s� 1

"
1 2 h2

x

2
1

h2
x �1 2 h2

x �
4�1 1 3h2

x �
j2

#
kxda�s� 1

"
3 1 5h2

x

2
2

h2
x �17 2 h2

x�
4�1 1 3h2

x�
j2

#
kxdb�s� � 0 , (24)

and

d00
D�s� 1

"
3�1 2 h2

x�
2

1
h2

x�1 2 h2
x �

4�1 1 3h2
x �

j2

#
kxda�s� 1

"
1 2 h2

x

2
2

h2
x �1 2 h2

x�
4�1 1 3h2

x�
j2

#
kxdb�s� 1 h2

xkxdD�s� � 0 .

(25)
The general solution of Eqs. (23)–(25) is a superpo-
sition of three normal modes which we will refer to as
breathing, quadrupole, and dispersion modes. In the zero-
current limit, coupling between transverse beam widths
and dispersion function obviously vanishes and the os-
cillation of dispersion function is dominated by a single
mode which we refer to as the dispersion mode. On the
other hand, the oscillation of transverse beam widths be-
comes a superposition of two normal modes. One is the
breathing mode in which a and b oscillate in phase, and
the other is the quadrupole mode in which a and b oscil-
late 180± out of phase. In the presence of space charge,
oscillations of beam widths and dispersion function are
coupled and the general solution can be written as

da�s� � C11Cb�s� 1 C21Cq�s� 1 C31Cd�s� , (26)

db�s� � C12Cb�s� 1 C22Cq�s� 1 C32Cd�s� , (27)

and

dD�s� � C13Cb�s� 1 C23Cq�s� 1 C33Cd�s� , (28)

where Cb�s�, Cq�s�, and Cd�s� are eigenfunctions which,
respectively, correspond to breathing, quadrupole, and
dispersion modes. The eigenfunctions can be written as

Cb�s� � exp

"
i�nb 2 w1�s

r

#
, (29)

Cq�s� � exp

"
i�nq 2 w2�s

r

#
, (30)

and

Cd�s� � exp

"
i�nd 2 w3�s

r

#
, (31)

where w1 to w3 are constants which depend on the initial
condition, and nb , nq, and nd are, respectively, tunes
of breathing, quadrupole, and dispersion modes of core
oscillation. From Eqs. (23)–(25), these coherent tunes
can be obtained as

n2
b �

"
2�1 1 h2

x � 2
2 1 14h2

x 1 15h4
x 2 7h6

x

�2 1 h2
x� �1 1 3h2

x �
j2

#
n2

x ,

(32)
124201-4
n2
q �

"
1 1 3h2

x 2
1 1 14h2

x 1 30h4
x 1 3h6

x

2�1 1 2h2
x� �1 1 3h2

x�
j2

#
n2

x ,

(33)

and

n2
d �

"
h2

x 1
3h2

x �1 2 h2
x � �4 1 5h2

x�
2�2 1 h2

x � �1 1 2h2
x �

j2

#
n2

x , (34)

where nx �
p

kx r is the horizontal bare tune.
Relative oscillation amplitude in pure breathing,

quadrupole, and dispersion oscillation cases are, respec-
tively, shown in Figs. 1–3. As seen in these figures, in
modest density cases, the oscillations of beam envelope
a and b are nearly dominated by the breathing and
quadrupole modes, while that of dispersion function D is
dominated by the dispersion mode as expected. In the
breathing and quadrupole oscillation cases, the asymmetry
in the two transverse directions is increased as j is
increased, while the symmetry is restored as beam density
is increased.

D. Test-particle equation of motion with dispersion

The second basis of the particle-core analysis is the
equation of motion of test particles. Assuming that cores
have the KV distribution [12] in the transverse phase
space and that test particles have zero angular momentum,
the equation of motion for test particles initially located on
the horizontal plane (y � y0 � 0) can be written as [13]

x00 1 kxx 2
K

2a�a 1 b�
x 2

1
r

dp
p

� 0 , (35)

inside the core (jxj # 2a) and

x00 1 kxx 2
K

x2 1 jxj
p

x2 1 4�b2 2 a2�
x 2

1
r

dp
p

� 0 ,

(36)

outside the core (jxj . 2a). Assuming the absence
of acceleration or deceleration forces, the momentum
deviation dp�p is a particle-dependent constant.
124201-4
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FIG. 1. The relative oscillation amplitude in breathing oscillation cases. Three different j have been considered, i.e., j � 0.075
(dotted line), j � 0.15 (solid line); and j � 0.225 (broken line).
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(dotted line), j � 0.15 (solid line), and j � 0.225 (broken line).
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FIG. 3. The relative oscillation amplitude in dispersion oscillation cases. Three different j have been considered, i.e., j � 0.075
(dotted line), j � 0.15 (solid line), and j � 0.225 (broken line).
As easily seen in Eqs. (35) and (36), the effect of dis-
persion on test-particle motion is in the order of j. For
example, the dispersion term in Eq. (35) provides a shift
of minimal point of total potential field felt by the test
particle. The amount of the shift scaled by the matched
rms beam width a0 is Lj, where relative momentum de-
viation L � �dp�p��D is a particle-dependent constant.
The maximum value of L, which we denote Lmax here-
after, typically ranges from two to three, while it is distri-
bution dependent.

E. Dispersion effect in typical rings

In this subsection, we examine typical values of j in
circular accelerators designed for modest-density applica-
124201-5
tions. To obtain j of an actual accelerator, we rewrite
Eq. (20) into a more convenient form as

j2 �
rD2

e0�hxnx�3
. (37)

As an example, we take parameters of proton storage
rings for the Neutron Science Project (NSP), which
has been proposed by Japan Atomic Energy Research
Institute [14]. In NSP, a proton storage ring with
20 FODO cells is proposed as an option to realize
bunch compression for spallation neutron sources. The
main parameters of this ring are jdp�pj , 4 3 1023,
r � 29.5 m, e100% � 2 3 1024 mrad, nx � 4.84, and
hx � 0.98, where e100% is full emittance in the horizontal
124201-5
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direction. In obtaining j, we need to know Lmax and
e100%�e0 which are distribution-dependent constants.
Assuming 2 , Lmax , 3 and 4 , e100%�e0 , 9, we
find 4.4 3 1023 , j2 , 2.2 3 1022, which is small
enough to justify the negligence of fourth or higher order
terms of j. However, we should keep in mind that j is
strongly dependent on the choice of design parameters
even if beam density is modest. In fact, in the triple
bend achromat (TBA) option for NSP, j is much larger
than in the FODO option and 2.5 3 1022 , j2 , 0.13
because of its relatively weak focusing nature. Although
it is dependent on the lattice structure and momentum
acceptance, j2 in circular accelerators for spallation
neutron sources is generally around or smaller than 0.1.
Therefore, the negligence of fourth or higher order terms
of j is sufficient, at least, as the first stage for estimation
of dispersion effects on halo formation in modest-density
circular accelerators.

III. PARTICLE-CORE MODEL

The above analysis justifies the negligence of fourth
or higher order terms of j in halo studies for modest-
density circular accelerators, which enables us to construct
a simple particle-core model for beams in these machines.
Hereafter, we concentrate on pure breathing oscillation
cases, as extending to quadrupole oscillation cases is
straightforward. Assuming breathing oscillation cases
(C21 � C31 � 0), envelope oscillation can be written as

ã � ã0

∑
1 1 mx cos

µ
nb

nx
t

∂∏
, (38)

and

b̃ � b̃0

∑
1 1 my cos

µ
nb

nx
t

∂∏
, (39)

where we introduce scaled variables ã �
p

nx�re0 a,
b̃ �

p
nx�re0 b, ã0 �

p
nx�re0 a0, and b̃0 �p

nx�re0 b0. The independent variable is taken as
t � nxs�r. Mismatch factors mx and my are defined by
mx � �a�0� 2 a0��a0 and my � �C12�C11�mx , respec-
tively. For later reference, we here introduce another
measure of the degree of initial beam size mismatch M,
which is defined by

M �

s
m2

x 1 m2
y

2
. (40)

Introducing similar scaled variables, the equation of
motion for test particles initially located on the horizontal
plane can be rewritten as

d2x̃
dt2 1 x̃ 2

K̃
2ã�ã 1 b̃�

x̃ 2 h3�2
x Lj � 0 , (41)
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inside the core (jx̃j # 2ã) and

d2x̃
dt2

1 x̃ 2
K̃

x̃2 1 jx̃j
p

x̃2 1 4�b̃2 2 ã2�
x̃ 2

h3�2
x Lj � 0 ,

(42)

outside the core (jx̃j . 2ã), where x̃ �
p

nx�re0 x and
K̃ � rK��e0nx�.

Test particle evolution is obtained by simultaneously
solving Eqs. (41) and (42) with Eqs. (38) and (39). In
the integration, we employ the fourth-order symplectic
integration algorithm [15]. In the rest of this paper, we
omit tilde for brevity.

IV. NUMERICAL RESULTS

A. Modest density cases

Applying the particle-core model introduced in the
preceding section, we examine halo dynamics in the
presence of dispersion. To start with, we consider a
modest density beam with hx � 0.9 and j � 0.15. The
Poincaré surface of section plots for test particles is
shown in Fig. 4. In this figure, test particles with three
different L have been considered, while the mismatch
factor M is fixed to 0.13. As seen in Fig. 4(a), the
width of a 2:1 resonance island is a little narrower than
that of the corresponding zero-momentum spread beam
because of a decrease of coherent tune. For particles with
momentum deviation, dispersion effect gives a shift of
fixed point locations, and the width of a 2:1 resonance
island decreases as L is increased. As readily seen in
Fig. 4, dispersion matching is essential if the maximum
value of L is larger than a certain threshold; namely,
particles with large momentum must be injected into the
outer side of the core and those with small momentum
into the inner side. Without dispersion matching, the shift
of fixed point locations provides a transport mechanism
by which some of the particles initially located inside
the core can escape from the core and become halos.
To make clear the diffusion effect due to dispersion
mismatch, the maximum horizontal extent reached by the
particles initially located at x � 22amax and dx�dt � 0
is shown in Fig. 5. The initial position corresponds to
the inner edge of a mismatched core. Without dispersion
matching, particles with positive momentum deviation can
be injected into the inner side of the core. If L is small
enough, the test particles are kept orbiting in the vicinity
of the core boundary, and, hence, dispersion mismatch
only gives slight widening of the horizontal beam width.
However, as L is increased, these particles are trapped by
the 2:1 resonance at a certain threshold L � L0, and it
enlarges oscillation amplitude significantly. In the case
with hx � 0.9 and j � 0.15, L0 is around 2.1, as clearly
seen in Fig. 3, and it varies roughly inversely as j while
its dependence on M is weak. If L is significantly larger
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FIG. 4. The Poincaré surface of section plots for test particles in modest density cases. The test particle position scaled by
the maximum beam boundary width 2amax � 2a�0� is taken as the abscissa. Three different L, i.e., (a) L � 0, (b) L � 2, and
(c) L � 4, are considered. Other parameters are fixed to hx � 0.9, M � 0.13, and j � 0.15.
than the threshold L0, these particles become off the res-
onance, but it does not result in a decrease of oscillation
amplitude. The particles with too large L start to orbit
outside the separatrix of the 2:1 particle-core resonance.
In short, diffusion due to dispersion mismatch makes it
possible for some of the particles initially located inside
the core to become halos if Lmax is larger than L0, and the
width of the halos formed by this mechanism is not lim-
ited by the separatrix of the 2:1 particle-core resonance.

Even if the diffusion due to dispersion mismatch is
avoided, halos can be formed by the same mechanism
as in a straight channel, namely, resonant interaction
between core and single particles. In this case, the
trajectory of particles initially located in the vicinity of the
core is bounded by the separatrix of the 2:1 particle-core
resonance. Therefore, halo width can be estimated by
the same way as for a straight channel, namely, plotting
Poincaré plots with adequate strobe time and examining
separatrix locations. The horizontal separatrix width is
plotted in Fig. 6 as a function of L. It is readily seen
in Fig. 6 that the separatrix width is generally a little
narrower than that in a straight channel, while it depends
on L. In the case with hx � 0.9 and j2 � 0.1, the
maximum value of the separatrix width is found to be
about 1.8 times the maximum core width, which is weakly
dependent on M and j.

The corresponding figures for lower density cases are
shown in Figs. 7 and 8, where three different beam
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densities have been considered to examine the density
dependence of the halo extent in the lower density region.
In Fig. 7, it is clearly seen that L0 becomes smaller
with lower beam density, which imposes more strict
requirements for dispersion matching for lower density
cases. If the diffusion due to dispersion mismatch is
avoided, halos are expected to be formed by the 2:1
particle-core resonance. We can see in Fig. 8 that the
width of halos formed by the particle-core resonance
has weak dependence on beam density, and it is smaller
with lower beam density. In fact, the maximum value
of separatrix width is found to be about 1.6 times the
maximum core width in the case with hx � 0.98, M �
0.13, and j � 0.15. These results lead us to conclude
that the dispersion matching is essential to avoid the
diffusion in the NSP storage ring in both the FODO and
TBA options. The halo width with sufficient dispersion
matching is expected to be about 20% smaller than that
estimated in a straight channel. While the current design
of the NSP storage ring meets the requirement for the
physical aperture, more optimization of lattice design may
be preferable to achieve larger aperture and reduce the
possibility of uncontrollable beam loss.

Summarizing the results shown in Figs. 5–8, halo
width in a typical modest-density ring is about 1.6 to 1.8
times the maximum core width if Lmax�L0 , 1, while it
can be larger if Lmax�L0 . 1. In the case of Lmax�L0 .
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FIG. 5. The horizontal extent of the particle initially located at the inner edge of the core in the cases with hx � 0.9.
Three different combinations of M and j are considered, i.e., (a) M � 0.13 and j � 0.15, (b) M � 0.066 and j � 0.15, and
(c) M � 0.13 and j � 0.075.
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FIG. 6. The horizontal separatrix width of the 2:1 particle-core resonance in the cases with hx � 0.9. Three different
combinations of M and j are considered, i.e., (a) M � 0.13 and j � 0.15, (b) M � 0.066 and j � 0.15, and (c) M � 0.13
and j � 0.075.
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FIG. 7. The horizontal extent of the particle initially located at the inner edge of the core in lower density cases. Three different
beam densities are considered, i.e., (a) hx � 0.98, (b) hx � 0.95, and (c) hx � 0.92. Other parameters are fixed to M � 0.13
and j � 0.15.
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FIG. 8. The horizontal separatrix width of the 2:1 particle-core resonance in lower density cases. Three different beam densities
are considered, i.e., (a) hx � 0.98, (b) hx � 0.95, and (c) hx � 0.92. Other parameters are fixed to M � 0.13 and j � 0.15.
width and halo intensity, and more precise dispersion
matching is needed in cases with large Lmax�L0. The
halo width can be reduced by dispersion matching to
roughly the same level as in the case of Lmax�L0 , 1.
In conclusion, it is advantageous to make Lmax�L0 small
to reduce both the width and the intensity of halos.
Small Lmax is achieved if the longitudinal beam profile
is sharp edged. It is efficient to reduce j to make L0

large, which can be achieved by, for example, adopting
a lattice structure with large bare tune. These results
provide a practical criterion in designing high-intensity
124201-8
circular accelerators from the viewpoint of beam loss
minimization.

B. High density cases

Although this particle-core model is constructed assum-
ing modest density beams, it is applicable to high density
cases provided that j is small. As increasing beam den-
sity is required in future applications, it seems worthwhile
to pursue halo dynamics in high density rings based on
this particle-core model, while we should keep in mind
124201-8
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FIG. 9. The Poincaré surface of section plots for test particles in high density cases. The test particle position scaled by the
maximum beam boundary width 2amax � 2a�0� is taken as the abscissa. Beams with three different densities, i.e., (a) hx � 0.5,
(b) hx � 0.4, and (c) hx � 0.3, are considered. Other parameters are fixed to M � 0.10, L � 4, and j � 0.15.
that high density rings often have large j. Poincaré plots
for high density beams are shown in Fig. 9, where three
different beam densities have been assumed. In increasing
beam density keeping j to 0.15, the island surrounding
the central stable point is distorted and some additional
islands of higher order resonances appear around that.
Because of the overlap of these higher order resonances,
weak chaosity is observed in all three cases in Fig. 9,
which may increase halo intensity.

V. SUMMARY

We have constructed a simple particle-core model
for beams in circular accelerators, neglecting fourth or
higher order contribution of j, which is a parameter we
introduce as a measure of the strength of dispersion effect.
Although this model is efficient only in cases where
j is small, it is applicable to a large class of circular
accelerators designed for modest-density applications and
it provides us with useful information on halo dynamics
in these machines. This model is especially sufficient for
halo studies in most rings designed as a bunch compressor
for spallation neutron sources where j2 is typically around
or smaller than 0.1.

This model is applied to isotropic beams in a smooth
ring in order to investigate dispersion effect on halo
generation considering the cases where breathing mode
of core oscillation is selectively excited. In systematic
numerical analyses, it is found that the presence of
dispersion simply gives a shift of fixed point locations in
modest density cases with hx $ 0.9, causing no chaotic
motion of test particles. The shift enables some of the test
particles to orbit outside the separatrix of a 2:1 resonance,
which is in striking contrast to cases without dispersion
where particles are bounded by the separatrix. Dispersion
matching is essential to suppress this diffusion if Lmax is
larger than a certain threshold L0. As L0 varies roughly
inversely as j, rings with small j have an advantage in
preventing the diffusion due to dispersion mismatch.

In cases where the diffusion is suppressed, halos are
formed by the same mechanism as in a straight channel,
namely, the 2:1 particle-core resonance. The width of
124201-9
halos formed by the particle-core resonance is found to
be about 1.6 to 1.8 times the maximum core width in
typical rings for modest density applications, which is
a little narrower than that in a straight channel where
the ratio of the halo width to maximum core width is
typically two. These results give us a practical criterion
in determining physical aperture and choosing the lattice
structure of high-intensity circular accelerators.

As seen in this paper, the particle-core analysis provides
us with a clear physical insight into halo dynamics and
gives us some practical information on halos in circular
accelerators. However, it is important to bear in mind
that the particle-core analysis is unable to predict the rate
of halo formation. Obviously, it is an important issue
in ring design whether a halo is developed in its cycle
from injection to extraction. Although the rate of halo
formation is known to be slower with lower beam density,
there seems to be a good possibility of developing halos
in the typical cycle from injection to extraction of modest-
density circular accelerators taking into account that path
length in a ring is much longer than in a linac. To confirm
this expectation, self-consistent simulations employing
macroparticles are necessary. For circular accelerators,
only a few attempts have been made to examine halo
properties using self-consistent macroparticle simulations
[3,5], which is in a striking contrast to straight channels
where extensive particle-in-cell (PIC) simulations have
been performed [2]. More extensive PIC simulations are
necessary to confirm findings obtained by the particle-core
analysis and deepen our understanding of halo dynamics
in circular accelerators.
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