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Model of charge-state distributions for electron cyclotron resonance ion source plasmas
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A computer model for the ion charge-state distribution (CSD) in an electron cyclotron resonance ion
source (ECRIS) plasma is presented that incorporates non-Maxwellian distribution functions, multiple
atomic species, and ion confinement due to the ambipolar potential well that arises from confinement
of the electron cyclotron resonance (ECR) heated electrons. Atomic processes incorporated into the
model include multiple ionization and multiple charge exchange with rate coefficients calculated for
non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-
Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user
input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS.
Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic
potential profiles, further eliminating arbitrary user input to the model.

PACS numbers: 29.25.Ni, 52.65.Kj, 52.65.Ff
I. INTRODUCTION

The complete understanding and optimization of an
electron cyclotron resonance ion source (ECRIS) is com-
plicated with many issues to consider, such as plasma
confinement, neutrals, multiple atomic species, and the
electron cyclotron resonance heating (ECRH). Optimiza-
tion for higher charge states and higher current with low
emittance is challenging. A typical optimization is by trial
and error because there are few suitable numerical tools
available, none with a comprehensive modeling capability
or that rely solely on experimental “knobs” as input.

Typical ECRIS charge-state distribution (CSD) mod-
eling has been a 0D fluid model [1–3], where plasma
parameters are assumed to be uniform over the plasma
volume and, thus, no spatial effects are considered. The
ion CSD is determined by solving a set of coupled fluid
equations. Confinement is determined from a simple po-
tential/magnetic well model. This 0D fluid modeling has
several drawbacks, in particular, the neglect of the non-
Maxwellian nature of the electron distribution function,
plus a reliance on arbitrary user inputs.

Because of ECRH and mirror confinement, the elec-
trons in an ECRIS are expected to be highly non-
Maxwellian and nonisotropic. The electrons in most
ECRIS models are typically treated as two separate
species, cold or warm Maxwellian electrons and hot well
electrons that can be modeled either as Maxwellian or as
collisionless and perfectly confined. The temperatures of
both electron species need to be input. The electron con-
finement usually ignores the potential between the plasma

*Email address: edgell@far-tech.com
1098-4402�99�2(12)�123502(6)$15.00
and the wall despite evidence that is comparable to the
cold electron energy [4].

The actual electron distribution function fe is better
modeled by a single continuous non-Maxwellian, non-
isotropic distribution function. A Fokker-Planck code,
such as that presented in this paper, determines fe tak-
ing into account rf heating, and confinement by both the
magnetic field and the electrostatic potential.

Typical ECRIS models are not strictly predictive in
nature. That is, they rely on inputs that are arbitrarily
adjusted by the user until a match is found for an
experimentally measured CSD. Adjustable inputs can
include the electron density, electron temperature, hot to
cold electron ratio, the depth of the electrostatic well, etc.

Ideally, an ECRIS model should require as input pa-
rameters only ion source design parameters and experi-
mental knobs such as the magnetic field, gas inlet flux, rf
power, etc. Such a code, relying on no arbitrary user in-
put, could be considered truly predictive in nature. The
Fokker-Planck electron modeling presented here elimi-
nates the electron temperature as an arbitrary input in fa-
vor of the electron cyclotron rf (ECRF) input power.

In this paper, we present initial results of our ECRIS
modeling code which attempts to improve ECRIS model-
ing by using an electron Fokker-Planck code.

II. ECRIS MODEL

First, we discuss the atomic collisions and cross sec-
tions incorporated into the model. Next, we describe the
conventional 0D fluid model that was used as a starting
point for our model. In the last sections, we introduce the
addition of a Fokker-Planck electron code to improve the
model.
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A. Collisional processes

Collisional processes incorporated into the model so
far include the single, double, and triple electron impact
ionization along with single, double, triple, and quadruple
charge exchange (CX).

For single ionization, the empirical cross sections of
either Lotz [5] or Müller et al. [6] can be used. Multiple-
ionization cross sections s

kI
j,q are taken to follow the

empirical formula of Müller et al. [6,7].
Single, double, triple, and quadruple charge exchange

use the empirical cross section scaling laws of Müller and
Salzborn [8].

For simplicity, we will include only single-step ioniza-
tion/charge-exchange collision terms in all of the equa-
tions to follow.

B. 0D fluid model

First, we describe a conventional 0D fluid model that
was used as a starting point for our ECRIS modeling.
Throughout this paper, the subscript j will refer to the
ion atomic species and the subscript q to the ion charge.

1. Neutral modeling

The multispecies 0D neutral density inside the plasma
nj,0 is determined from the neutral density outside the
plasma nj,g by balancing the net neutral flux across
the plasma surface and the rate at which neutrals are
converted into ions inside the plasma volume [1]:

0 � 0.5Apyj,0�nj,g 2 nj,0�

2 Vpnj,0

√
ne�sy�Ij,0 1

X
j2

Aj2X
q2�1

�nj2,q2 �sy�CX
j2,q2!j�

!

1 Vpnj,1
X
j2

nj2,0�sy�CX
j,1!j2 , (1)

where nj,q is the density of ions of atomic species j and
charge q, Ap is the plasma surface area, and Vp is the
plasma volume. This balance equation can be readily
solved for nj,0.

The neutral temperature Tj,0 is assumed to be a constant
determined by the neutral source. In actuality, there is a
population of neutrals at the ion temperature Ti due to
charge exchange that we ignore.

2. Electron modeling and quasineutrality

In the 0D fluid model, the electrons are treated as
two separate cold and hot electron populations. The cold
electron temperature Tec and hot electron temperature Teh
are considered constant input parameters.

The ratio of the two populations

Re �
neh
nec
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is also a constant input parameter. The electron densities
are determined by the quasineutrality condition

ne � nec�1 1 Re� �
X
j

AjX
q�1

qnj,q . (2)

The global electron particle confinement time tPe is
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√
nec
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1
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!21
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1
Re
t
P
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,

(3)

where [9]

tPec,h � 1.48
lnRm 1

p
lnRm

nec,h

is the particle confinement time of the cold or hot elec-
trons in a mirror field, ignoring any potential confinement,
nec,h is the total collision frequency of the cold or hot
electrons, and Rm is the mirror ratio. Collisions with elec-
trons, ions, and neutrals are included.

3. Ion confinement and ambipolarity

The particle confinement time t
P
j,q for an ion of atomic

species j and charge q, in a confining potential, is given
by [10]

tPj,q �

∑
RmLp

µ
pmj
2kBTi

∂1�2

1
Gx2

�x 1
1
2 � �noj,q 1 n

i
j,q�

∏
exp�x� , (4)

where no and ni denote the ion collision frequency with
neutrals and other ions, respectively, and

x �
qeww
Ti

and G �

p
p �Rm 1 1� ln�2Rm 1 2�

2Rm
,

where ww is the ion confining well potential and Lp is the
length of the core plasma. Radial transport is assumed to
be negligible compared to axial end loss.

In the steady state, the electron and ion end loss
currents must balance for ambipolarity.

ne
tPe

2 Sext
e �

X
j

AjX
q�1

qnj,q
t
P
j,q

, (5)

where Sext
e is the external electron source. An external ion

source, such as from the first stage of a two-stage ECRIS,
could easily be added to Eq. (5). This ambipolarity
condition along with Eq. (4) can be solved for the central
well potential ww .

4. Ion power balance

The ion temperature is determined by solving the ion
power balance

d
dt

√
3
2
Ti

X
j

ni

!
�

X
j

�poj 1 peij 1 pCX
j 1 ploss

j � ,

(6)
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where the terms on the right-hand side account for the ion
energy sources and sinks that are described below. All ion
species are assumed to have the same temperature. Model
test runs with separate ion temperatures, for plasmas
similar to those discussed in Sec. III B, have resulted in
temperatures that differ by less than 1%.

Initial ion energy. The ions start with the initial
temperature of the neutral atoms Tj,0,

poj �
3
2Tj,0nj,0

(
ne�sy�Ij,1 1

X
j2

Aj2X
q2�1

�nj2,q2 �sy�CX
j2 ,q2!j�

)
.

Electron collisional energy exchange. The ions are
heated by collisions with the electrons,

peij �
3
2ne�Te 2 Ti�

AjX
q�1

nEe
j,q ,

where n
Ee
j,q is the energy exchange frequency for collisions

between an ion and the electron background.
Charge-exchange energy loss. Ions that are neutralized

by charge exchange leave the plasma taking their energy
with them,

pCX
j � 2

3
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X
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Endloss energy. The ions that escape the potential well
carry an average energy Eloss

j,q away from the plasma,
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5. Ion CSD modeling

The ion CSD is arguably the most important result
desired from an ECRIS model. Traditionally, ECRIS
models have determined the CSD by solving a coupled
set of fluid equations for multiple atomic species,
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dt
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The above set of ion particle balance equations calcu-
lates the CSD in the plasma core. For comparison with
a CSD as measured experimentally by a Faraday cup, the
ion extraction current CSD must be calculated as [1]

jex
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eqnj,q
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j,q

Vp
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p
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IFC
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X
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where rp is the plasma radius, Aex is the area of the
extraction aperture, and hFC is the detection efficiency
of the Faraday cup.

C. Fokker-Planck electron model

The non-Maxwellian anisotropic electron distribution
function fe�y, u� can be determined by solving the
Fokker-Planck equation

≠fe
≠t

1 �y ?
≠fe
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1
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me
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µ
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where �≠fe�≠t�coll is the Fokker-Planck collisional opera-
tor, CSFP is the cold electron source term, and Crf

FP is the
quasilinear ECRF heating term

Crf
FP �

1
y�

≠

≠y�

µ
y�Drf

≠fe
≠y�

∂
. (11)

Drf
e � Drf

e0 exp�2y2�2c2� ,

Prf
e � 2nemeD

rf
e0Vp ,

where Drf
e0 is the rf diffusion coefficient, Drf

e is the rf
diffusion coefficient adjusted for the smaller effect rf has
on electrons with higher energies, and Prf

e is the total rf
power absorbed by the plasma electrons in the plasma
volume Vp .

The nonlinear multispecies Fokker-Planck code
FPPAC94 [11] has been incorporated into the model. The
Fokker-Planck code also determines the e-i collisional
energy exchange rate peij and the electron end loss/
confinement time.

In the Fokker-Planck modeling each ion atomic species
is treated as a Maxwellian background of density

nj �
AjX
q�1

nj,q ,
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and charge

z �
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This average ion charge for collisions is derived from the
general form for the collision frequency of species a with
a Maxwellian background species b,
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,

and ignores the difference in lnL, the Coulomb lambda,
for different charge states of the same atomic species.
Collisions with neutral particles are ignored in the Fokker-
Planck modeling.

The electron end loss is determined by cutting out a loss
cone from the electron distribution after each iteration of
the Fokker-Planck code. This method was chosen over us-
ing the loss cone as a boundary condition to enable calcula-
tion of asymmetric end loss flux due to asymmetry mirror
fields. Both magnetic mirror and potential confinement are
included when determining the loss cone.

As the electron distribution function is highly non-
Maxwellian and anisotropic, the electron impact ion-
ization reaction-rate coefficients should be calculated
explicitly from distribution functions of the two colliding
species,

�sy� �
1
nanb

Z
dy

Z
dy0 fa�y�fb�y0�

3 s�jy 2 y0j� jy 2 y0j .

The model incorporates a routine [12] to compute the re-
action rates for arbitrarily shaped distribution functions.
The routine was modified to employ a nonuniformly
spaced velocity distribution, suitable to an ECRIS, where
the electrons, ions, and neutrals can have average veloci-
ties orders of magnitude apart.

III. RESULTS

A. Lotz versus Müller cross sections

As mentioned briefly earlier, we have a choice of
empirical formulas to use for the ionization cross section.
Figure 1 shows a comparison between Ne plasma CSD
predictions when using the Lotz or Müller formulas. The
Müller formula produces a sharp peak in the CSD two
charge states below the fully stripped level, that is not
evident when using the Lotz formula. Presumably, this
peak is a result of Müller’s formula ignoring the effects
of electron subshells below the outermost subshell. This
peak is not evident in typical ANL-ECRII experimental
data such as shown in Fig. 2. Thus, the Lotz formula
appears to be more appropriate for ECRIS modeling and
will be used for the remainder of this paper.
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FIG. 1. (Color) Comparison of CSD predictions for a pure Ne
plasma when using the Lotz or Müller formulas for an electron
collisional ionization cross section.

B. CSD with electron Fokker-Planck modeling

To investigate the validity of the model, comparisons
have been made with Faraday cup measurements from
ECRII [13] at Argonne. The experimental data are shown
as distribution a in Fig. 2.

The need for Fokker-Planck electron modeling is
demonstrated by distributions b and c in Fig. 2. CSD
b was produced by a Maxwellian electron distribution
(with a loss cone) of Te � 1.5 keV while CSD c results
from combining 50% nearly collisionless hot electrons at
100 keV with 50% warm electrons at 1.5 keV. Clearly,
one can match the experimental data using very different
assumed electron distributions.

To eliminate this arbitrariness in favor of a unique
solution, the electron distribution should be determined
by solving the Fokker-Planck equation. The predictions
of the Fokker-Planck electron modeling are given as
CSD d in Fig. 2. The Fokker-Planck electron modeling
produces a good match to the experimental data with less
arbitrariness. The electron “temperature” predicted by the
Fokker-Planck modeling is Te �

2
3 �Ee� � 36 keV. The

actual electron distribution functions used in calculating
the CSDs shown in Fig. 2 are given in Fig. 3.

IV. DISCUSSION

To be considered completely predictive, the model
should rely on measured experimental knobs. Even with
Fokker-Planck modeling of the electrons, some quantities
such as the core plasma length and the electron confining
potential still need to be arbitrarily input to the model.
By extending the modeling spatially to 1D axially, one
should be able to determine some of these quantities from
the plasma confinement. Accounting for spatial variations
in plasma parameters, magnetic field and the electrostatic
potential should also improve the confinement and CSD
modeling of an ECRIS.
123502-4
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FIG. 2. (Color) Comparison of modeling results with ANL-ECRII Faraday cup measurements.
Because of the high electron mobility, the electron spa-
tial effects can be accounted for by a bounce-averaged
Fokker-Planck code. A bounce-averaged Fokker-Planck
treatment should also improve the ECRH modeling by
taking into account the location of the ECR resonance.
This location restricts the perpendicular heating of elec-
trons to only those whose pitch angle allows them to reach
the resonant surface.

In a typical ECRIS, however, the ion bounce frequency
is much smaller than the ion collision frequency and a
bounce-averaged treatment is inappropriate. Extending
a fluid model, axially from the plasma core, may also
be inappropriate as the plasma near the extraction point
will be less dense and the ions will be accelerating
down the plasma sheath. The edge ions will be much

FIG 3. (Color) Electron distribution functions corresponding to
the CSDs of Fig. 2. (a) is the distribution integrated over pitch
angle fe�y� and (b) is the distribution integrated over velocity
fe�u�.
less collisional than in the center of the plasma and the
fluid approximations may not apply. The Monte Carlo
method [14] is better suited for determining the ion spatial
effects. This method can handle both highly collisional
and collisionless regimes with smoothly varying and
nonsymmetric magnetic fields or potentials.

The simple step neutral modeling of the 0D model will
need to be replaced to extend the model to 1D. The
simple step model can easily be extended to 1D using
coupled balance equations similar to Eq. (1) for each axial
zone, but this method greatly oversimplifies the neutral
modeling. A 3D Monte Carlo neutral model would
be ideal as the neutrals are not constrained to follow
magnetic geometry. However, the improved accuracy of
such a model is doubtful given the uncertainties of the 3D
plasma parameter profiles in a multipole mirror geometry.
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