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Simulation of a dc electron beam strongly influenced by self-fields

G. H. Zapalac
Imatron Inc., 389 Oyster Point Boulevard, South San Francisco, California 94080

(Received 22 April 1999; published 15 November 1999)

A method is presented to simulate the transport of a dc charged particle beam strongly influenced
by its self-fields. If the initial phase space of the beam is chosen to be a Kapchinskij-Vladimirskij
distribution, the simulation is in agreement with the Kapchinskij-Vladimirskij envelope equations. The
simulation was initialized with a Gaussian transverse momentum distribution to investigate the origin of
current profiles measured in a 130 keV, 635 mA plasma-focused electron beam.

PACS numbers: 41.75.Fr, 07.05.Tp, 41.85.Ew, 41.85.Ja
I. INTRODUCTION

Beam self-forces influence the behavior of plasma-
focused electron beams, and also the behavior of any
charged particle beam that does not satisfy the condition
b � y�c � 1. These forces include both space charge
repulsion and focusing due to the self-magnetic field.
This report describes a method to simulate a dc beam with
a behavior that may be dominated by the beam self-fields.
The simulation randomly populates an initial phase space
distribution with particles. These particles are propagated
in small steps through the transport region using the
combined self- and external fields. At the beginning of
each step, the particles are binned on a rectangular grid to
determine the current density; the current density is then
used to compute the self-fields for that step.

The simulation was designed for distributed processing
using a single server with multiple clients. Each client
generates a fraction of the total number of particles.
These particles are binned on a grid to determine the
current profile, and the gridded profile is sent to the server.
The server accumulates the profiles from all of the clients
for the purpose of combining the statistics from all of the
particles. The accumulated profile is then sent back to
each of the clients. Each client computes the self-fields
using the accumulated profile, adds the external fields,
and propagates its particles through a small step using
the combined self- and external fields. The particles are
next rebinned to determine the new current profile, and
the sequence is repeated.

The simulation was used to model the transport of
a 130 keV (b � 0.604), 635 mA electron beam in the
presence of a rarefied background gas. This beam is used
to generate x rays in a computed tomography scanner
used for medical imaging. Ions created by the beam in
the background gas neutralize the beam if they are not
removed. The ratio of ion to electron charge densities
will be denoted as the beam neutralization fraction f. The
condition f � 1 over the entire beam profile represents
a completely neutralized beam influenced only by its
self-magnetic field. The condition f � 0 over the entire
profile represents an unneutralized beam influenced by
both its self-magnetic and self-electric fields. The f � 0
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condition may be created by applying a transverse electric
field to sweep ions out of the beam more rapidly than
they are generated [1]. The simulation was performed
assuming an abrupt transition between an initial f � 0
region and a final f � 1 region.

The initial transverse momenta px and py of the elec-
tron beam were assumed to have a Gaussian distribution
with a spread determined by the temperature of the cath-
ode in the electron gun; the term “Maxwellian” will be
used to refer to such a beam. The author is not aware
of an analytical approach to predict the detailed behavior
of a Maxwellian beam influenced by self-forces. How-
ever, if the initial phase space of the beam is contrived
to follow a Kapchinskij-Vladimirskij (KV) distribution,
the beam profile is always uniform and elliptical with
linear self-forces, and its evolution is given by the KV
envelope equations. Hence the KV beam provides a
theoretical check of the simulation. Results are there-
fore presented for both Maxwellian and KV simulations
of plasma-focused electron beams.

The KV distribution constrains all of the particles to an
ellipsoidal shell in phase space [2],
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where ex and ey denote the emittances in the x-px
and y-py planes, and X and Y are the semiaxes of
the beam profile. The approximations x0 � dx�ds �
p̂x and y0 � dy�ds � p̂y are used, where s denotes
the position along the reference trajectory. The KV
distribution yields uniform elliptical profiles in all two-
dimensional projections of phase space. The KV envelope
equations describe the evolution of the semiaxes of the
profile ellipse as functions of position s. In the absence
of external fields, these equations are [2]
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and the perveance K is given by

K �
2Nere
b2g

�1 2 f 2 b2� ,

where re is the classical electron radius and Ne is the
number of particles per unit length of the beam. These
equations may be integrated in the presence of transverse
fields.

The KV equations are not valid in the presence of
longitudinal fields [2]. Significant longitudinal magnetic
fields are present in the experimental transport line, so the
KV beam is simulated for a hypothetical transport line
where only transverse external fields are present.

II. EVOLUTION OF THE CURRENT DENSITY

A. Self-fields

The self-fields are determined by computing the elec-
trostatic potential f�x, y� from the current density J�x, y�.
The variation of J in the direction of the beam is assumed
gradual enough to be neglected, and the influence of con-
ducting surfaces such as the beam pipe and ion-clearing
electrodes is also neglected. The potential is differenti-
ated numerically to obtain the self-fields,

Es�x, y� � 2=f�x,y� , (2.1a)

Bs�x, y� �
�b
c

3 Es�x, y� . (2.1b)

The current density is determined by binning the elec-
trons on a rectangular grid with an equal number of ele-
ments along the x and y directions. The dimensions Lx

and Ly of the grid are adjusted to match the aspect ratio
of the beam profile. Two different fast Fourier transform
(FFT) based algorithms were used to compute the poten-
tial from the current density: Hockney’s algorithm [3] and
an independently developed algorithm denoted as the el-
liptical image algorithm. The remainder of the discussion
in this section describes Hockney’s algorithm, which is
faster and more easily implemented; the elliptical image
algorithm is detailed in Appendix A.

Hockney’s algorithm computes the potential using the
convolution of the current density

f�x,y� �
Z

J�x0, y0�G�x 2 x0, y 2 y0�dx0 dy0, (2.2)

where the convolution kernel due to a filament of current
at the origin is given by

G�x, y� � 2
m0c
2pb

log
q
x2 1 y2 . (2.3)

The value of the kernel at the origin is set to zero
(Appendix B).

The convolution is performed using a two-dimensional
FFT. The Fourier domain of the kernel covers the region
0 # x , 2Lx , 0 # y , 2Ly . The kernel is implemented
in wrap-around fashion, reflected across the horizontal and
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vertical lines that divide the Fourier domain into quad-
rants. Because the kernel extends beyond the lower left
quadrant of the Fourier domain, there are cusps along
the horizontal and vertical lines bisecting the Fourier do-
main. When the Fourier domain is periodically repeated,
the kernel depicts the physically correct potential from an
isolated current filament at the origin only within the re-
stricted region 2Lx , x , Lx , 2Ly , y , Ly .

Hockney’s algorithm restricts the beam profile to the
lower left quadrant of the Fourier domain containing the
origin; the remainder of the grid is padded with zeros.
The convolution procedure of Eq. (2.2) always uses the
physically correct region of the kernel within the quadrant
containing the beam profile.

B. External fields and particle propagation

The external fields were calculated in the laboratory
frame using boundary element models for the magnets in
the transport line1; the electric fields from the ion-clearing
electrodes were neglected. Unlike the self-fields, the
external fields vary slowly across the profile of the beam.
This allows a derivative expansion of the external fields
about the reference trajectory. If we refer to the point on
the reference trajectory as rR and use the subscript k to
refer to the kth component of the external field, we may
write to first order

Fk�rR 1 dr� � Fk�rR� 1 =Fk ? dr , (2.4)

where rR 1 dr is the electron position and F refers to
either the magnetic or (if present) the electric external
field. If sextupole components of the external fields are
important, Eq. (2.4) must be expanded to second order.
Sextupole fields are neglected in the remainder of this
discussion.

The nine magnetic field derivatives required in
Eq. (2.4) were determined by using the boundary element
model to calculate the fields at rR and six nearby posi-
tions: rR 6 x̂dx, rR 6 ŷdy, and rR 6 ẑdz. Derivatives
were constructed by taking differences between the fields.
After the derivatives were calculated, they were corrected
to force agreement with Maxwell’s equations. This
correction helps to reduce small errors introduced by
the calculation. The curl relations = 3 B � 0 require
≠Bk�≠rj � ≠Bj�≠rk . To ensure compliance with the
curl, the derivatives on each side of the equation were
averaged. Both derivatives were then replaced with
this average. Because of numerical error, the sum of
the derivatives ≠Bk�≠rk calculated for the divergence
= ? B is not identically zero, but equal to a small number
DB. These derivatives were corrected by the following

1Amperes 3D Magnetostatic Design Software Version 2.1 by
Integrated Engineering Software.
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prescription:

≠Bk
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!
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2
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. (2.5)

The electrons were propagated in small steps in the
laboratory frame under the combined influence of the
self- and external fields using the leapfrog algorithm [3].
The step length ds was chosen to be proportional to the
smallest rms width of the beam in either x or y. For the
simulations presented here, the proportionality constant
used was k �

1
2 . The variable step length scales with the

self-fields, which are proportional to the size of the beam.

C. Errors

Errors in the simulation include errors in calculating
the self-fields, errors in calculating the external fields, and
errors introduced from the finite step size. In the previous
section we have already discussed steps that were taken
to reduce errors from introducing the external fields. The
sensitivity of the simulation to the remaining errors was
investigated by choosing a finer grid for the beam profile,
decreasing the number of particles in the simulation, and
decreasing the step size.

Errors in calculating the self-fields include aliasing
during the FFT, the error introduced by the numerical
derivative to obtain the electric field from the electrostatic
potential, and statistical fluctuations when determining the
current profile from binning the particles.

The KV beam is potentially sensitive to all of the errors
listed above because the beam profile ends abruptly at
the profile boundary throughout the transport line. The
KV beam covered about 100 3 100 grid elements, and
the entire Fourier domain used 256 3 256 elements. At
this grid density statistical errors dominated the error
for runs with less than several million electrons. Errors
introduced by insufficient statistics degrade the uniformity
and elliptical symmetry in one or more of the phase space
projections.

The simulation of the Maxwellian beam used the same
number of grid elements as the KV beam; it was found to
be much more stable for reduced statistics.

III. KV AND MAXWELLIAN BEAM
SIMULATIONS

A. Generation of the initial phase space

The initial current density for examples presented in
this report was a round uniform or nearly uniform profile

J0�h � r�a� �
I0

N�a, L� �1 1 exp ���L2�h2 2 1�����
,

(3.1)

where I0 is the total current of the beam and N�a, L� is a
normalization constant
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N�a, L� �
pa2 log�1 1 exp�L2��

L2
.

The parameters a and L control the radial extent and rate
of cutoff of the profile. The normalization condition is
given by

2pa2
Z `

0
J0�h�h dh � I0 . (3.2)

As L increases, the edge of the beam becomes sharper;
the value L � 10 generates an essentially uniform profile
with radius a suitable for simulating a KV distribution.
The initial profile for the Maxwellian beam was generated
with smaller values of L so that the current density at the
edge of the profile decreased more gradually. Figure 1
shows a slice through the center of the profile used for the
simulation reported here with L � 2.

Three random numbers u1, u2, and u3 between 0 and 1
were used to generate the initial positions and transverse
momenta for the KV beam. Although there are four
variables x, y, px , and py , these are constrained by
the phase space ellipsoid of Eq. (1.1). Equation (3.2)
was used to map u1 into the unit area underneath the
normalized beam profile distribution in order to solve
numerically for the integration limit hu,

u1 �
2pa2

I0

Z hu

0
J�h�h dh .

The numbers u2 and u3 provide angles u � 2pu2 and
f � 2pu3 in the x-y and px-py planes. The phase space
variables are given by

x � ahu cosu , (3.3a)

y � ahu sinu , (3.3b)

x0 � e

q
1 2 h2

u cosf�a , (3.3c)

y0 � e

q
1 2 h2

u sinf�a . (3.3d)

FIG. 1. The beam profile distribution function [Eq. (3.1)]
plotted at y � 0 using L � 2.
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For the case of the round Maxwellian profile, the emit-
tance was also used to determine the transverse momentum
distribution, but four random numbers are required because
px and py are uncorrelated. The rms emittance ē in the
x-px plane is given by [2]

ē � 4
q

�x2� �x02� 2 �xx0�2 , (3.4)

with a similar expression for the y-py plane. The quantity
�xx0� is zero because the phase space variables are now
uncorrelated. The variables x0 and y0 were each chosen at
random from a Gaussian distribution with a standard devia-
tion determined by the temperature T of the cathode [2]

s2 � kT��meb
2c2� � �x02� � �y02� . (3.5)

For a round uniform beam of radius a, �x2� � a2�4 and
ē � 2as. In general, �x2� is determined by numerical
integration; ē � 2.19as for the distribution shown in
Fig. 1. The examples that follow were simulated with the
emittance calculated for the experimental transport line:
5.06 3 1023 mm rad.

B. Hypothetical transport line with a KV beam

A KV beam with an initially round current profile of
radius 3.2 mm was simulated in a 120 cm hypothetical
transport line. The first 10 cm of the transport line is
simulated with f � 0; the remainder of the transport line
is at f � 1. A quadrupole magnet provides a uniform
114201-4
gradient of 0.5 G�cm in the region 20 , s , 40 cm. The
focusing due to the quadrupole and self-magnetic field
causes the KV beam to pass sequentially through two
elliptical waists downstream of the quadrupole at 75 and
91 cm. The major axis of the beam profile is aligned with
the x axis at the first waist; at the second waist it is aligned
with the y axis.

Figure 2 shows the rms size of the beam in x and y for
both the simulation and the KV envelope equations. This
particular simulation used 4.5 3 106 electrons in order to
obtain uniform elliptical phase space plots at and beyond
the second waist, but equally good agreement with the
envelope equations is obtained with far fewer electrons
(under 50 000).

C. Experimental transport line with a Maxwellian
beam

The experimental transport line simulation also has an
initial section where f � 0 and a quadrupole to separate
the waists in the x-s and y-s planes; however, it is 260 cm
in length and contains a solenoid and dipole deflection
magnet. The dipole coils surround the quadrupole coils
and deflect the beam 30± in the y-z plane. The solenoid
magnet is positioned upstream of the quadrupole and
dipole within the f � 0 region. The f � 0 region
extends 49 cm beyond the initial waist of the beam where
the simulation is started.
FIG. 2. The rms half-width of the profile predicted by the simulation for a KV electron beam in a hypothetical transport line for
(a) the x-s plane and (b) the y-s plane. The KV equations are used to generate the solid line; open circles are from the simulation.
The box marks the relative s position of the quadrupole magnet. The transition from f � 0 to f � 1 is shown by the vertical
dashed line. All figures are from simulations using Hockney’s algorithm unless otherwise noted.
114201-4
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The partially neutralized transition region between f �
0 and f � 1 was controlled by applying voltage to an ion
trap. This transition region is about 4 cm in length and
has been simulated in a separate ion simulation, which
generates and propagates ions in small time steps until
equilibrium is reached under the combined influence of
the electric fields from the ions, electrodes, and electron
beam. Details of the ion simulation are beyond the scope
of this report, and the ion simulation was not used for the
results presented here, which were simulated assuming a
sudden transition between the f � 0 and f � 1 regions.
The simulation was repeated using the transverse electric
fields provided by the ion simulation; it was found that
the partially neutralized region enhanced the focusing in
both planes, with negligible changes to the beam spot
distributions near the final waist.

The beam profile near the final waist in the x-s plane
is measured experimentally by sweeping the beam spot
past a 0.75 mm diameter wire using the dipole magnet
and sampling the current from the wire as a function of
time [4]. The profile of the beam on either side of the
waist may be observed on the sampling wire by adjusting
the current of the solenoid magnet to move the position of
the waist.

Figure 3 shows the rms beam envelope from the simula-
tion of a 130 keV, 635 mA Maxwellian electron beam. The
beam was generated with 1.5 3 106 electrons using the
distribution from Eq. (3.1) with a � 1.7 mm and L � 2.
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Scatter plots of the beam profile near the final waist in
the x-s plane are shown in Fig. 4; these plots are at sw ,
s � sw 6 8.9 cm, and s � sw 6 25.7 cm, where sw is
the position of the rms waist. Figure 5 shows a simula-
tion of the sampling wire distributions for these five pro-
files, and Fig. 6 shows the experimental sampling wire
measurements.

The simulation demonstrates that the separation of the
Maxwellian beam into two peaks near the final waist is a
consequence of the gradual decrease of the current density
at the edge of the initial beam profile. The simulated
profile does not display two peaks upstream of the final
waist if the initial profile is uniform (L � 10). As L

is decreased, the two peaks become more prominent,
although the general pattern of behavior shown in Fig. 5
remains the same. The evolution of the current profile
into two peaks may be understood from the evolution of
the phase space projection px versus x. As the beam
expands due to space charge repulsion in the initial f �
0 region, the self-forces on the inner “core” electrons
increase linearly with radius because the beam is uniform
in this region. The self-forces on the outer electrons in
the nonuniform boundary region increase less rapidly with
radius, and the outer electrons develop a larger spread
in transverse momentum than the core electrons. This
increased momentum spread increases the slope jdpx�dxj
of the outer electrons after the beam enters the f � 1
region, where the transverse momentum reverses sign
FIG. 3. The rms half-width of the profile predicted by the simulation for a Maxwellian electron beam in the experimental transport
line for (a) the x-s plane and (b) the y-s plane. The transition from f � 0 to f � 1 is shown by the vertical dashed line. Boxes
mark the relative s positions of the solenoid and dipole/quadrupole magnets.
114201-5
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FIG. 4. Scatter plots of electron positions from the experimen-
tal transport line simulation near the final waist in the x-s plane
at the positions (a) 25.7 cm upstream of the waist, (b) 8.9 cm
upstream of the waist, (c) at the waist, (d) 8.9 cm downstream
of the waist, and (e) 25.7 cm downstream of the waist.

due to the attractive force from the self-magnetic field.
Figure 7 shows scatter plots of px versus x at four positions
earlier in the transport line, illustrating the evolution of
the beam into the distribution shown at 136 cm, where
the beam has begun to contract along x as it propagates
towards the waist in the x-s plane. At this position the

FIG. 5. Simulation of sampling wire distributions for the
beam profiles shown in Fig. 4. Relative wire signals are shown
on the vertical axes for this figure and for Figs. 6 and 9.
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FIG. 6. Experimental sampling wire measurements at five
values of the solenoid current, adjusted to sample the profile
at the s positions in Fig. 4.

outer electrons have higher transverse momenta and a
greater slope jdpx�dxj than the core electrons.

Figure 8 shows scatter plots of px versus x for the
five profile distributions in Fig. 4. The core and outer
electrons are plotted with different symbols so that their
progress may be traced. As the electrons approach the
waist in the x-s plane, the high-momentum outer electrons
move horizontally across the plot towards x � 0. These
electrons overtake the electrons in the core, creating an
accumulation of electrons at large jxj. At this point
the beam profile x distribution assumes a double horned
appearance, with peaks at the edges and a wide trough in
the middle. As the high-momentum electrons continue to
move horizontally across the phase space plot, the double
peaks get closer, and the distribution appears as a pair of
overlapping peaks. The high-momentum electrons finally
cross through a waist in the vicinity of the rms waist of the
beam. At the waist of the core electrons the distribution
appears as a single peak on top of a localized halo. The
core electrons comprise most of the peak, while the high-
momentum electrons comprise the halo. Finally, the core
electrons begin to expand outward from their waist and
the distribution assumes a more triangular shape.

IV. SUMMARY

This report has described a method to simulate a
nonlaminar dc beam which may be strongly influenced
by beam self-forces. The simulation propagates a large
number of particles under the combined influence of the
self- and external fields. The self-fields are calculated
by numerical differentiation of the electrostatic potential;
114201-6
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FIG. 7. Scatter plot of the phase space projection px versus x from the experimental transport line simulation at (a) s � 85,
(b) 116, (c) 124, and (d) 136 cm. At 136 cm, electrons at large jxj have higher transverse momenta and a greater slope jdpx�dxj
than the inner core electrons.
Hockney’s algorithm is used to determine the potential by
convolution of the current density with the potential from
a filament of current. The simulation is well suited for
distributed processing; it has been used on a small number

FIG. 8. Scatter plots of px versus x at the s positions shown
in Fig. 4. The high transverse momentum electrons (circles)
and core electrons (points) are plotted with different symbols
so that their progress may be traced near the waist.
114201-7
of workstations to investigate the nonlinear focusing of a
130 keV, 635 mA plasma-focused electron beam.
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APPENDIX A: ELLIPTICAL IMAGE
ALGORITHM

The elliptical image algorithm calculates the self-fields
from the two-dimensional Fourier transform of the current
density J�x, y�. Poisson’s equation in two dimensions
may be written as∑

≠2

≠x2
1

≠2

≠y2

∏
f�x,y� � 2

m0c
b

J�x, y� , (A1)

We take the Fourier transform of Eq. (A1) to solve for
the transform of f in terms of the transform of J,

f̂�kx , ky� �
m0cĴ�kx , ky�
b�k2

x 1 k2
y �

. (A2)

The inverse transform of Eq. (A2) yields the electrostatic
potential f�x, y�, which is differentiated to obtain the self-
fields as in Sec. II A.

A forward FFT and inverse FFT using Eq. (A2) are per-
formed on the grid to determine the potential f�x, y�, and
114201-7
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the gradient of f is computed numerically. Two issues
must be addressed when using the FFT: (i) Eq. (A2) di-
verges for kx � ky � 0 (the “dc” term), and (ii) the trans-
form is performed on a finite domain, so that the potential
obtained,

F�x, y� � f�x, y� 1 c�x, y� , (A3)

represents both the potential f from the original beam
profile and the potential c from an infinite lattice of
identical “image” profiles at positions mxLxx̂ 1 myLyŷ,
where mx and my are integers.

The first problem is solved by setting the dc term of the
transform to zero. This changes f by an additive constant,
which vanishes upon differentiation to obtain the fields.

The second problem concerning the finite domain will
require an approximation. We are interested only in
f�x, y� for positions within the beam profile. As the
padded boundary region of the grid surrounding the
beam profile is increased, the image contribution c�x, y�
becomes less sensitive to the detailed features of the beam
profile because the image profiles are farther away. We
will make the assumption that the padded boundary region
is chosen sufficiently wide to allow the image profiles to
be approximated as elliptically symmetric.

Nonlinear self-forces and external sextupole fields may
distort the elliptical symmetry of the beam, but in many
cases of practical interest the beam is approximately el-
liptical. The simulation of the Maxwellian beam uses
Lx � 5Wx and Ly � 5Wy , where Wx and Wy are the ap-
proximate dimensions of the profile along the x and y axes.
The beam particles were binned within a restricted region
at the center of the grid, so that the penalty for increasing
the padding occurred only in the time required to perform
the FFT on a larger grid. The validity of the assumption
of elliptical symmetry for the image profiles was checked
by repeating the simulation with twice the padding.

Once the assumption of elliptical symmetry is made for
the image profiles, their contribution c to the potential F

may be subtracted using the following prescription. An
elliptically symmetric model profile is created by rebin-
ning the particle positions into elliptical rings. To deter-
mine the aspect ratio for the elliptical rings, the n particles
are sorted into lists of increasing x position and increas-
ing y position. A particle from the x list is chosen such
that its x position x0 is greater than the x positions for
nq of the remaining particles, where q is a fraction cho-
sen to be slightly less than one to reduce sensitivity to
outliers. The quantity y0 is obtained similarly from the
y list, and the aspect ratio is taken to be y0�x0. The
model profile is next mapped onto the same FFT grid.
The same FFT procedure for the model profile yields the
potential F�m��x, y� which may similarly be decomposed
into a contribution f�m��x,y� from the original model pro-
file and c �m��x, y� from the image profiles. By assump-
tion, c�x, y� � c �m��x, y�. The self-electric field is then
given by
114201-8
Es�x, y� � =F�m��x, y� 2 =F�x, y� 2 =f�m��x,y� .

(A4)

The first two gradients are computed numerically using
the FFT results from the original and model profiles.
The final term on the right-hand side is the electric
field from the model profile; this is computed using the
model profile’s elliptical symmetry. Only the current
enclosed by the elliptical contour through the position
�x, y� contributes to the field from the model profile. This
region is divided into elliptical rings, and the contribution
dE�m�

x and dE�m�
y from each elliptical ring is calculated

analytically using the current density from the model
profile. The rings are then integrated to compute the total
electric field from the model profile.

The elliptical ring calculation requires the following
expression for the electric field of a thin elliptical annulus
with total uniform current I and semiaxes a (along x) and
b [5]:

dE�m�
x �x, y� �

xm0cI�1 1 �x2 1 y2 1 b2 2 a2��
p

G �
4pb

p
�a2 1 l� �b2 1 l�

,

(A5)

where we have used the definitions

l � �x2 1 y2 2 a2 2 b2 1
p

G ��2 ,

G � �x2 1 y2�2 1 �b2 2 a2�2 1 2�x2 2 y2� �b2 2 a2� .

The component dE�m�
y �x, y� may be obtained from the

expression for dE�m�
x �x, y� by interchanging x with y and

a with b.
The wire signals from the elliptical image simulation

with 1.5 3 106 electrons are shown in Fig. 9 at the same

FIG. 9. Simulation of sampling wire distributions using the
elliptical image algorithm to compute the self-fields.
114201-8
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positions in the transport line as Fig. 5; the beam profile
covered a region of roughly 50 3 50 elements within a
grid with 256 3 256 elements. The simulation was also
performed for the KV transport line with 4.5 3 106 elec-
trons and reduced padding since the KV beam is elliptical;
the profile covered roughly 50 3 50 elements and the grid
contained 128 3 128 elements. The agreement between
the simulated and theoretical beam envelopes appears iden-
tical to Fig. 2.

APPENDIX B: SETTING THE KERNEL TO ZERO
AT THE ORIGIN IN HOCKNEY’S ALGORITHM

The current distribution J�x, y� is approximated as
an ensemble of current filaments located at the centers
�xk , yk� of each bin in the grid, and the kernel at the
origin represents the response from a single filament at
the position of the filament. Denote the total current for
the filament in bin k as Ik . This current is taken to be
nonzero (although arbitrarily small outside the beam) and
uniformly distributed over an infinitesimal disk of radius
ek . The potential at a distance r , ek from the center of
the disk is given by

f�r , ek� � 2
m0c
4pb

∑
Ikr2

e
2
k

1 Ik�2 logek 2 1�
∏

,

(B1)

where f�0� is determined by requiring consistency with
Eq. (2.3) at r � ek . At r � 0 the integral in Eq. (2.2)
114201-9
contributes f�0�, which depends upon ek . We require
the electric field to be independent of our choice for ek .
Since ek is infinitesimal, we are free to adjust it for each
bin so that quantity Ik�2 logek 2 1� is constant. Then the
constant f�0� vanishes upon differentiation to obtain the
electric field; hence, the same result is obtained by taking
this constant to be zero in our definition of the kernel.

Setting the kernel to zero at the origin is a slight mod-
ification of the algorithm in Ref. [3], which assigns the
value one to the kernel at the origin, thereby adding the
small term Ik to the potential f�xk, yk�. The simulations
in this report were repeated using one for the kernel at the
origin with negligible changes in the results.
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