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Higher-order effects in polarized proton dynamics
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So far, polarized proton beams have never been accelerated to energies higher than 25 GeV. During
the acceleration process, the beam polarization is quite undisturbed, when the accelerator is well
adjusted, except at first-order depolarizing spin orbit resonances. At some accelerators other effects
have been observed but first-order resonances have always been dominant. At these resonances the spin
tune plus or minus one of the orbit tunes is an integer. These beams have usually been investigated
by theories which correspondingly lead to an undisturbed polarization during acceleration, except at
such resonances. Therefore we speak of “first-order theories.” The first frequently used first-order
theory is the single resonance model, which is usually used for simulating the acceleration process.
Here the equation of spin motion is simplified drastically by dropping all but the dominant Fourier
component of the driving term of that differential equation. The second frequently used first-order
theory, the linearized spin-orbit motion theory, is also quite crude. It is based on a linearization of the
spin and orbit equation of motion with respect to the phase space coordinates and two suitably chosen
spin coordinates. Because of linearization this method cannot be used close to resonances but at fixed
energies it is a useful tool. It will be shown that the validity of these first-order theories is restricted at
Hadron Electron Ring Accelerator (HERA) energies of up to 820 GeV. An overview of the available
theories which go beyond the first-order resonances is given and we explain which of these approaches
are applicable for the analysis of polarization in the HERA proton ring. Since these theories include
more than one Fourier harmonic in the driving term of the equation of motion, we refer to them as
“non-first-order” or “higher-order” theories. Finally, the higher-order effects observed while simulating
polarized beams in HERA with these advanced methods are illustrated.

PACS numbers: 29.27.Hj, 29.20.–c, 41.75.Lx, 02.60.Lj
I. INTRODUCTION

The Hadron Electron Accelerator Ring (HERA) is
the only circular accelerator which utilizes longitudi-
nally polarized high energy electrons. Currently the
electrons interact with the polarized gas target of the
HERMES experiment with a center of momentum energy
of Ec.m. � 7 GeV. In recent years an increasing number
of high energy physicists have become interested in using
this unique potential for collider experiments with high
energy polarized protons at Ec.m. � 300 GeV. Therefore,
a feasibility study has been launched together with several
collaborating international institutions to analyze HERA’s
potential for accelerating polarized proton beams (see list
in [1]).

When accelerating the electron beam in HERA, no spe-
cial precautions are necessary since the electron beam does
not have to be polarized during the acceleration process.
In contrast to proton beams, the electron beam polarizes
itself at high energy due to spin flip synchrotron radiation
[2]. Since protons do not emit an appreciable amount of
synchrotron radiation, polarized beams have to be created
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by a polarized source and then have to be accelerated up
to high energy with little loss of polarization. Accelerat-
ing protons up to 820 GeV in HERA would be achieved
by the following acceleration chain: a 19 keV H2 source,
a 750 keV radio frequency quadrupole, a 50 MeV proton
linear accelerator, the 8 GeV proton synchrotron DESY III,
the 39 GeV proton synchrotron PETRA, and the 820 GeV
storage ring HERA. In each of these accelerators depolar-
izing effects have to be avoided.

So far, polarized proton beams have been accelerated to
about 25 GeV [3]. During the acceleration of polarized
beams up to that energy, the polarization was quite
undisturbed except at two different classes of resonances,
which are traditionally called the imperfection resonances
and the intrinsic resonances. The imperfection resonances
occur when the spin of a proton performs an integer
number of complete rotations around some rotation axis
while the particle travels once around the closed orbit
of the accelerator. These resonances can be avoided by
using so-called partial snakes [4,5]. When the accelerator
was equipped with such an element and well adjusted,
the polarization was essentially disturbed only at the so-
called intrinsic resonances. At these resonances the spin
tune plus or minus one of the orbit tunes is an integer
and we therefore refer to them as first-order depolarizing
© 1999 The American Physical Society 114001-1
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spin-orbit resonances. Other destructive effects mostly
due to synchrotron motion were usually less dominant
than these intrinsic resonances.

Theories which correspondingly lead to an undisturbed
polarization during acceleration except at such resonances
have been instrumental in reaching the energies obtained
to date. Two theories have been frequently used for these
simulations, the single resonance model (SRM) and the
linearized spin-orbit motion (SLIM) theories. They will
be referred to as first-order theories, and they will be
described below. In this paper, we will show up to which
energy range in the HERA accelerator chain these first-
order theories can be applied. We refer to theories which
describe more effects than these two simple theories
as higher-order theories, and we give an overview of
the available theories which go beyond the first-order
resonances. Then we explain which of these approaches
are applicable for the analysis of polarization in the
HERA proton ring. Furthermore, we will show which
effects occur when this energy range is exceeded. In this
paper we will not investigate measures to avoid loss of
polarization due to these effects. We have described such
measures in other papers [1,6,7].

II. THE EQUILIBRIUM SPIN FIELD

A polarized particle moving along a phase space
trajectory �z�l� parametrized by the arc length l of the ring
travels through an arrangement of electromagnetic fields.
During this motion the classical spin vector �s changes its
direction according to the Thomas-BMT equation of spin
motion, which has the form

d �s
dt

� �V����z�t�, l�t���� 3 �s , (2.1)

where �V depends on the electric field �E, the magnetic
field �B, and the energy mc2g of the particle. In terms of
the magnetic field components parallel and perpendicular
to the particle velocity, the Thomas-BMT equation (with
charge e and magnetic anomaly G � 1.79 of the proton)
is

�V � 2
e

gm

"
�Gg 1 1� �B� 1 �1 1 G� �Bk

1

√
Gg 1

g

g 1 1

!
�E 3 �b

c

#
. (2.2)

Different particles in a beam travel through different
magnetic fields during their motion around the accelerator.
One particle might travel straight through the center of a
quadrupole, leaving its classical spin vector unchanged in
the process, but a different particle gets focused by the
quadrupole and experiences a spin rotation which is Gg 1

1 times as strong as the focusing kick to its orbit. Since
Gg 1 1 can be very big, at 820 GeV�c it is approximately
1568, the spin dynamics of two particles in the beam can
be very different as they both travel around the ring.
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It is therefore not surprising that a beam which is polar-
ized to 100% at a chosen azimuth of the ring will not be
completely polarized after one turn. The particles in the
center of the beam will still have their initial direction of
polarization. However, the particles at higher phase space
amplitudes will have traveled through different magnetic
fields and their classical spin vector will have changed sig-
nificantly. The average polarization would therefore be
strongly diminished after one turn. However, after the next
turn the spin vectors of different particles will again move
in different fashions, and some might rotate back in the
direction of the initial polarization. Thus, the average po-
larization might recover somewhat during the following
turns and an ongoing oscillation of the beam’s polariza-
tion will result. The diminished polarization after the first
turn therefore does not indicate a depolarization mecha-
nism. A depolarization mechanism cannot be observed
well with a beam in such a fluctuating polarization state.
Therefore it is often not appropriate to initiate polarized
beam simulations with 100% polarized beams, i.e., with
a spin field �f��z� which associates the same initial polar-
ization direction �f��z� � �f�0� with all particles no matter
at which phase space position �z they are. A spin field
has unit length j �f��z�j � 1 and determines the direction of
polarization at a phase space point at the chosen azimuth.
After one turn the spin field will be different since particles
at different phase space points will have traveled through
different fields. A spin field is at equilibrium if the beam
comes back with the same spin field after every turn. Such
a periodic spin field is usually denoted by �n��z� and called
an �n axis. It is advisable to simulate polarized beams in
a polarization state which is very close to equilibrium for
the following two reasons:

(i) The equilibrium spin field yields a polarization
averaged over the beam � �n��z�� which is constant from
turn to turn and therefore allows for studies of small
depolarizing effects due to time dependent perturbations
of spin-orbit dynamics.

(ii) The average � �n��z�� describes how big the equilib-
rium polarization in a beam can be. In a proton beam
which has been accelerated with little polarization loss to
high energy the polarization measured by the detector is
limited by a wide spread in the directions of �n��z�. This
limit is not due to a dynamic depolarization mechanism
which could be caused by stochastic effects but it is a
fixed limit which does not vary in time.

III. SPIN TUNE AND RESONANCES

Since the absolute value of the classical spin �s does
not change, it can be rotated only by some angle around
some rotation direction. For particles on the closed orbit,
the spin’s relative rotation angle (angle divided by 2p)
after one turn around the ring is called the spin tune n0.
The corresponding rotation direction is called the closed
orbit spin direction �n0. If a particle starts to travel along
114001-2
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the closed orbit with its spin parallel to �n0 then the spin
comes back to �n0 just as the closed orbit comes back to
its starting point after one turn. For this reason �n0 is
sometimes called the spin closed orbit. �n0 should never
be confused with the equilibrium spin field �n��z� which
is a function of phase space. On the closed orbit we
have �n0 � �n�0�. Particles on the closed orbit have to
be polarized in this direction in order to have the same
polarization direction after every turn. In a ring without
horizontal magnetic fields on the closed orbit, spins rotate
n0 � Gg times around a vertical direction �n0 while the
particle travels along the closed orbit. The magnetic
anomaly, G � 1.79 for protons, causes the spin to rotate
rapidly approximately 1567 times during one revolution
around HERA at 820 GeV.

A particle with phase space amplitudes and a particle
on the closed orbit travel through slightly different fields,
and the rotation vector differs by

�v��z, l� � �V��z, l� 2 �V�0, l� . (3.1)

This causes a coupling of the spin motion to the phase
space motion. If there were no such amplitude dependent
fields perturbing the spin motion, particles with nonzero
phase space amplitudes would also have their spins
rotated by n0 around �n0. However, in reality spins can
rotate around a vastly different phase space dependent
vector by a phase space dependent angle since the
small perturbations can have an accumulating effect over
many turns. The most perturbing are the components
of �v����z�l�, l��� which rotate spins away from their closed
orbit direction �n0. In a coordinate system in which the
3rd direction is parallel to �n0, these are the 1st and
2nd components of �v����z�l�, l���. Such disturbing rotations
often average out since spins rotate quickly around �n0.
However, when �v����z�l�, l��� itself rotates around �n0 with
the frequency n0, even small perturbations caused by �v
cannot average out. Then the small perturbation rotates
spins away from the closed orbit spin direction �n0 during
every turn, an effect which will accumulate to large
amounts even when the perturbation is very small. The
amplitude of the corresponding Fourier frequency

´ � lim
L!`

1
L

Z L

0
�v1����z�l�, l��� 1 iv2����z�l�, l����

3 e2i�2p�L0�n0l dl
L0

2p
(3.2)

is referred to as the resonance strength of spin motion. L0

is the circumference of the ring.
A warning is needed. The picture of perturbing ef-

fects which add up coherently suggests that the beam
is slowly depolarized after it has been injected with
100% polarization. In fact the spins get deflected from
their initial polarization direction �n0 during one turn
only because the equilibrium direction �n��z� is tilted far
away from the closed orbit spin direction �n0. If the
114001-3
spins had started parallel to the equilibrium direction,
no net deflection due to the perturbing fields and no
depolarization would have occurred. However, since �n��z�
is tilted far away from �n0, the average polarization j� �n��z��j
for such an initial distribution is very small to start with.

IV. THE SINGLE RESONANCE MODEL (SRM)
AND THE LINEARIZED SPIN-ORBIT MOTION

(SLIM)

One begins by linearizing the equation of motion
for a particle’s phase space coordinates �z. Then the
Fourier harmonics of the phase space trajectories are
2pP
L0

�m 6 q̌i�. Here P is the superperiod of the ring,
m is any integer, and q̌i is the fractional betatron phase
advance of one superperiod. The vector �v��z, l� causes the
perturbing spin rotations described above and is periodic
in l. In a first approximation it is a linear function
of the phase space coordinates. Therefore it also has
only Fourier harmonics 2pP

L0
�m 6 q̌i� and the perturbing

effects can in a first approximation accumulate coherently
at so-called first-order spin-orbit resonances, where the
fractional spin phase advance of one superperiod is ň0 �
m 6 q̌i . With the ring’s full (integer and rational part)
orbit tune Qi and the full spin tune n0, one can write this
resonance condition as n0 � Pm 6 Qi . Here it has to be
noted that the integer part of the spin tune in a nonflat ring
is often not known and therefore the resonance condition
for one superperiod containing ň0 and q̌i is in general
more useful. The resonance strength ´ is nonzero only
at these resonance conditions. In general, one speaks of
a spin-orbit resonance when n0 1 �k ? �Q is integer for
some vector of integers �k. When the sum of coefficientsP

j jkjj is larger than one, we speak of a higher-order
resonance. In this case, where �v��z, l� is approximated by
a linear phase space function, only first-order resonances
(n0 6 Qi is integer) occur in the integral (3.2).

The simplest model that can be used to describe the
spin motion was introduced in [8] and proved to be very
successful. In this model one approximates the linearized
phase space function �v by simply neglecting all but the
dominant Fourier amplitude of �v����z�l�, l���. This model is
called the single resonance model, since only a single
resonance strength given by the integral (3.2) is taken into
account. For all accelerators which accelerated polarized
proton beams so far, this method proved to be very helpful
for predicting polarization losses at resonances and to
find means to avoid these losses. The theory could be
applied so successfully for the following two reasons:
(i) the resonances were so weak that they were very well
separated, and (ii) when the accelerator was not close to a
first-order resonance, the spin perturbations were so weak
that they could be neglected.

In the next section we will analyze in which energy
regime of the proton acceleration chain at DESY the SRM
can be applied safely and in which region it cannot.
114001-3
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A similarly simple theory introduced in [9] represents
spins in terms of two small angles a and b describing
the spin’s tilt away from �n0. The final spin direction
after one turn is described by af and bf and is linearly
related to the initial phase space point �zi and the initial
spin direction ai , bi by√

af

bf

!
� G236 �zi 1

√
cos2pn0 sin2pn0

2 sin2pn0 cos2pn0

!√
ai

bi

!
.

(4.1)

The six-dimensional phase space position is transported
around the ring by �zf � M �zi . This formalism was first
implemented in the program SLIM [9] and is often called
SLIM theory.

In order to analyze the polarization in a beam, one
investigates the equilibrium spin field ���na��z�, nb��z����.
Such a distribution gets transported to itself after one turn,√

na��zf�
nb��zf �

!
� G236 �zi

1

√
cos2pn0 sin2pn0

2 sin2pn0 cos2pn0

!√
na��zi�
nb��zi�

!
.

(4.2)

From this periodicity condition the equilibrium spin
field ���na��z�, nb��z���� can be computed [10]. At the
phase space point �z, it yields the spin component

1�
q

1 1 na��z�2 1 nb��z�2 in the direction parallel to
�n0. Since this theory is based on a linearization with
respect to the angles a and b, this polarization has to be
close to one in order to justify the approximation. To
show that the phase space average of the equilibrium
polarization diminishes in the vicinity of resonances,
we use action-angle variables �J and �f of the linear
phase space motion. The initial phases �f are increased
by the tunes �Q times 2p during one turn around the
ring to �f 1 2p �Q. Introducing the complex notation
n̂� �J, �f� � na� �J, �f� 1 inb� �J, �f� and using the Fourier

expansion n̂� �J, �f� �
P

�k n̂�k� �J�ei �k? �f with respect to the
angle variables leads to the periodicity condition

n̂�kei2p �k? �Q � �G �zi�1 1 i�G �zi�2 1 n̂�ke2i2pn0 . (4.3)

Close to a spin-orbit resonance, where ei2p �k? �Q � e2i2pn0 ,
the Fourier coefficient n̂�k becomes very big and �n��z�
deviates strongly from �n0.

The resonance analysis has traditionally been used for
polarized proton accelerators whereas the equilibrium spin
field technique for the linearized spin-orbit equation of
motion has traditionally been used for polarized electron
storage.
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V. RELIABILITY OF THE FIRST-ORDER
THEORIES

The resonance strength describes how phase space de-
pendent fields cause spins to be deflected from the closed
orbit spin direction �n0 during one turn. As mentioned
above, this is only an indication for the fact that the
equilibrium spin field �n��z� can be tilted strongly away
from �n0. The SRM can therefore be used to compute
the average polarization of a polarized beam in equilib-
rium whenever the underlying approximations are valid.
This model leads to the average polarization j� �n��z��j �
jn0 2 Qij�

p
�n0 2 Qi�2 1 j´j2 [10]. This approxima-

tion requires the resonances to be well separated. When
a ring has no exact superperiod, as for HERA, the reso-
nances appear when n0 6 Qi is any integer. In a flat
ring particles with only vertical phase space amplitude
travel through horizontal magnetic fields and therefore
resonances appear only when n0 plus or minus the vertical
orbit tune Qy is integer. With a vertical orbit tune of ap-
proximately 1�3, the variation of n0 between resonances
is 1�3 or 2�3. To justify a single resonance approach, the
resonance strength should therefore be significantly less
than 1�3. HERA is not flat, but after installing so-called
flattening snakes, introduced in [1,11], the first-order spin
motion is very similar to that of a flat ring.

The SLIM theory can be applied even when the
resonances are not well separated. However, the SLIM
theory is based on a linearization in the opening angle.
Therefore, when computing the average polarization of a
polarized beam in equilibrium, the average opening angle
of the equilibrium spin field must be small enough to
justify the underlying approximation. If we accept an
opening angle up to ����� �n��z�, �n0���� � j

´

n02Qi
j # 0.5, the

average polarization computed with the SLIM approach is
trustworthy only as long as it is above about 87%.

The average polarization computed with either of these
two models is accurate only if there are no effects which
are not dominated by first-order resonances. Effects
which are not related to first-order resonances cannot
be simulated by either the SRM or the SLIM theory
and therefore the first-order theories cannot be used to
decide whether non-first-order effects are small or not.
In general, therefore, a higher-order extension is needed
to decide about the validity of the first-order theories.
Before introducing the techniques which include non-first-
order effects, we demonstrate that the SRM and SLIM
theories are not generally applicable in HERA. In order
to find out up to which energy the first-order formalisms
can be used to analyze polarization dynamics in the proton
accelerators at DESY, we will present these comparisons
for the three accelerators DESY III, PETRA, and HERA.

In SLIM theory the opening angle between �n��z� and
�n0 is given by

p
a2 1 b2 for small angles; for big

angles we use arctan�
p

a2 1 b2 � to avoid that the SLIM
theory leads to opening angles which are greater than
114001-4
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FIG. 1. SLIM opening angles of �n��z� (top) and resonance strength (bottom) for a beam with normalized vertical emittance of
4p mm mrad in DESY III.
p�2. In Fig. 1 the peaks in the resonance strength
(bottom) are located exactly at the peaks of the big open-
ing angles of �n��z� computed with the SLIM formalism
(top); furthermore, the widths of the peaks in the opening
angle are correlated with the resonance strengths. The
resonances are well separated, and in DESY III first-order
theories for analyzing polarization dynamics along with
classical means of controlling depolarizing effects [1] are
therefore applicable as long as perturbing effects are not
strong at higher-order resonances. This is the case for re-
alistic emittances as will be shown below.

Figure 2 is the corresponding picture for PETRA
and shows again that broad opening angle peaks of the
SLIM theory are correlated with large resonance strength.
However, the first-order resonances are getting so close
at the high energy end of 39 GeV that several pairs
of resonances are close to overlapping. The resonance
strengths are still far away from 1�3 and therefore also
in this energy regime classical means of controlling
depolarizing first-order resonances can be applied.

In HERA the situation changes. The first resonance
which is stronger than 1�3 for a normalized vertical emit-
tance of 4p mm mrad appears at about 150 GeV�c and
resonances start to overlap. Since there are over 3000
first-order resonances on the ramp of HERA from 39 to
820 GeV�c, this effect can be seen only when looking at
a smaller energy range as in Fig. 3. The resonances are
strongly overlapping and the average opening angles of
the equilibrium spin field are so big that the first-order
114001-5
methods are not trustworthy anymore. Therefore meth-
ods which include higher-order spin effects have to be
applied.

VI. METHODS TO SIMULATE HIGHER-ORDER
EFFECTS

Several methods have been suggested for the computa-
tion of the averaged polarization of the equilibrium spin
field. We now give an explanation of the various meth-
ods along with a short evaluation of their applicability to
polarization analysis in high energy storage rings.

A. Fourier expansion with SODOM

As mentioned above, the equilibrium spin field �n��z� is
a periodic vector field of the one turn spin-orbit motion.
An initial spin �si is transported to a final spin �sf � A��zi��si

during one turn around the storage ring. The matrix A��zi�
describes a rotation which depends on the initial phase
space position of the particle. The equilibrium spin field
which has to be calculated is defined by the periodicity
condition

�n��zf � � A��zi� �n��zi� , (6.1)

which has to be satisfied for all initial phase space
positions. It is sometimes useful to formulate the rotation
of spins in a spinor formalism using the Cayley-Klein
SU(2) formulation for rotations. Spins �s [ 43 with
114001-5
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FIG. 2. SLIM opening angles of �n��z� (top) and resonance strength (bottom) for a beam with normalized vertical emittance of
4p mm mrad in PETRA.

j�sj � 1 are then represented by spinors C [ �2 with
jC1j

2 1 jC2j
2 � 1. C1 and C2 have an arbitrary com-

mon phase. Here it is assumed that the orbit motion can

be represented by action angle coordinates �J , �f. Since
the actions are constant during the motion along a par-
ticle trajectory, we will not indicate �J any longer when
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FIG. 3. SLIM opening angles of �n��z� (top) and resonance strength (bottom) for a beam with normalized vector emittance of
4p mm mrad in HERA.
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specifying a phase space coordinate. During one turn
around the ring, the angle variables �f change by the orbit
tunes to �f 1 2p �Q. In this representation the periodicity
condition for the equilibrium spin field is expressed with
the SU(2) rotation matrix U� �f� which corresponds to the
SO(3) rotation matrix A��z�,

eiu� �f�C�n� �f 1 2p �Q� � U� �f�C�n� �f� , (6.2)

with a phase u which is arbitrary since C �n and eiu� �f�C�n

represent the same �n axis. For simplification one uses a
114001-7
coordinate system in which the rotation direction �n0 on
the closed orbit is expressed by the spinor C0 � �1, 0�.
For small phase space amplitudes one expects small
deviation from this vector and writes

C �n �

√
1
z

!
1p

1 1 jz j2
, U �

√
2ig 2if�

2if ig�

!
,

jfj2 1 jgj2 � 1 .
(6.3)

The periodicity condition is then written as
eiu� �f�

√
1

z � �f 1 2p �Q�

!
1q

1 1 jz � �f 1 2p �Q�j2
�

√
2ig 2 if�z � �f�
2if 1 ig�z � �f�

!
1q

1 1 jz � �f�j2
. (6.4)

One eliminates the phase u and the denominators by building the product of the top component on the left-hand side
with the bottom component of the right-hand side and equating it with the product of the other two components; the
result is the following difference equation for z :

z � �f�g�� �f� 1 z � �f 1 2p �Q�g� �f� � f� �f� 2 f�� �f�z � �f�z � �f 1 2p �Q� . (6.5)

When the Fourier expansions f� �f� �
P

�k f�kei �k? �f and g� �f� �
P

�k g�kei �k? �f are known, the periodicity condition entails a
condition for the Fourier coefficients of z ,X

�l

z�l�g
�
�l2�k

1 g�k2�le
i2p�l? �Q� � f�k 2

X
�l, �m

f�

�m1�l2�k
ei2p�l? �Qz�lz �m . (6.6)
This equation is solved by restriction to a finite number
M of Fourier coefficients and by a perturbation expansion
in z�k ø 1. In the first step one neglects parts nonlinear
in z and solves the linear equation for the coefficients z�k .
This can be done for example by inverting the M 3 M
dimensional matrix �g�

�l2�k
1 g�k2�l exp�i2p�l ? �Q��. In the

next step one uses the coefficients obtained in the first
step to compute the nonlinear parts and again solves the
resulting linear equation for a second iteration of the co-
efficients z�k . This perturbation procedure is repeated un-
til the Fourier coefficients have converged. For particles
on the closed orbit the one turn transformation U de-
scribes the rotation by the spin tune n0,

U �

√
e2ipn0 0

0 eipn0

!
. (6.7)

Therefore g0 � ie2ipn0 and, for small phase space am-
plitudes, the other Fourier components g�k are small.
The matrix to be inverted is dominated by the diago-
nal elements g�

0 1 g0ei2p�l? �Q since the elements g�
�l2�k

1

g�k2�le
i2p�l? �Q for �k fi �l are small at small phase space

amplitudes. Close to a spin-orbit resonance, one of the
diagonal elements also becomes small and therefore the
inverse matrix contains big elements. These lead to big
absolute values for z�k which describes big opening angles
of the equilibrium spin field. This shows that the SODOM

formalism leads to a drop of the equilibrium polariza-
tion at higher-order resonances. However, the computa-
tional procedure starts with small deviations of �n��z� from
�n0 and therefore might not converge when the equilib-
rium spin field has a large opening angle (see note added
in proof).

In the case of high energy polarized electrons (e.g., at
HERA or at the 27 km CERN e1e2 collider LEP), the
opening angle of �n��z� is rather small and the Fourier
expansion as implemented in the program SODOM [12]
converges. For polarized protons at HERA energies it is
not so promising.

B. The differential algebra (DA) normal form method

With programs using differential algebra (DA) for com-
puting polynomial expansions, one can compute a polyno-
mial expansion of C�n��z� from the periodicity condition.
This procedure is similar to computing normal form trans-
formations of phase space dynamics which is nonlinear
in the phase space coordinates �z. There one introduces
a change of the coordinate system which depends nonlin-
early on �z to obtain mth-order polynomial expansions of
action variables �J��z� and angle variables �f��z�. This the-
ory is well known [13,14] and well implemented [15], and
we do not want to dwell on it here. Therefore we use lin-
earized orbit motion for our short explanation of computing
the polynomial expansion of C �n��z�. The extension to non-
linear orbit motion is nearly obvious and is covered in [16].
We represent the orbit motion in the eigenvector basis of
the one turn transport matrix. Therefore an initial phase
space coordinate �zi is transported once around the ring by
114001-7
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�zf � �z1
i,1ei2pQ1 , z2

i,1e
2i2pQ1 , . . .�, which leads to the ac-

tions Ji � z1
i z2

i . With the vector �q � �Q1, 2Q1, . . .� the

monomial �z
�k
f �

Q
j�zf,j�kj is equal to �z

�k
i ei2p �k? �q. In the

DA approach of computing the polynomial expansion of
the equilibrium spin field �n��z� to some order m one starts
by computing the polynomial expansion U��z� of the spin
transport matrix introduced in Sec. VI A, which can be
done using DA integration of the equation of motion. Then
one computes a coordinate transformation C��z� which de-
pends nonlinearly on the phase space coordinates and sim-
plifies the spin motion in the new coordinate system

Cf � C��zf �U��zi�C21��zi�Ci ,

Ũ��zi� � C��zf �U��zi�C21��zi� .
(6.8)

The SU(2) transformation matrix C is computed in an order
by order procedure as C � exp�Cn� 3 · · · 3 exp�C1�,
where the anti-Hermitian matrix Cm��z� is a polynomial
in �z with contributions of order m only. The spin basis
has initially been chosen to let �n0 be parallel to the third
coordinate direction, which makes the spin transport matrix
on the closed orbit equivalent to

U0 �

√
e2ipn0 0

0 eipn0

!
. (6.9)

If U��z� has been transformed to the simplify-
ing coordinate system up to order m 2 1 by
Ũ � exp�Cm21� · · · U · · · exp�2Cm21�, then in the next
step one looks for a Cm��z� which further simplifies the spin
transport matrix. Up to order m the transformed SU(2)
matrix has the form Ũ��zi� 1 Cm��zf �U0 2 U0Cm��zi�.
To simplify Ũ, one tries to eliminate all mth-order poly-
nomial coefficients. To eliminate the coefficient matrix
Ũ �k of the expansion of Ũ �

P
�k Ũ �k �z

�k , one chooses

the coefficient matrices of Cm��zi� �
P

�k Cm,�k �z
�k
i and of

Cm��zf � �
P

�k Cm,�k �z
�k
i ei2p �k? �q to be

Cm,�k � U21
0

0BB@
Ũ �k1,1

12expi2p �k? �q

Ũ�k1,2

12expi2p��k? �q1n0�
Ũ�k2,1

12expi2p��k?�q2n0�
Ũ�k2,2

12expi2p �k? �q

1CCA
(6.10)

whenever the denominators do not vanish. When a
denominator vanishes, the coefficient is set to zero. This
eliminates all coefficients of Ũ�k except those where the
coefficient of Cm,�k was set to zero. Since the eigenvalues
of the symplectic orbit transport map always come in
pairs of ei2pQj and e2i2pQj , the factor �k ? �q �

P
i�k

1
i 2

k2
i �Qi is always zero when the corresponding k1

j and
k2

j are equal. The polynomial coefficients corresponding
to such a �k cannot be eliminated. Since z1

j z2
j is an

action variable of linear orbit motion, only those terms
of the polynomial expansion cannot be eliminated which
depend only on the action variables, and these terms occur
only on the diagonal of Ũ. We assume that all other
coefficients of Ũ�k can be eliminated. This is possible
114001-8
if there are no orbit resonances, i.e., no other vectors
�k which lead to integer values of �k ? �q and if there
are no spin-orbit resonances where n0 1 �k ? �q would
be integer. Therefore, close to spin-orbit resonances Cm
contains big polynomial coefficients. After the complete
transformation C has been applied up to order m, we are
left with a diagonal SU(2) matrix of order m,

Ũ� �J� �

√
e2ipn� �J� 0

0 eipn� �J�

!
. (6.11)

This matrix contains the amplitude dependent spin tune
n� �J� in a polynomial expansion up to order m, and one
obtains the equilibrium spin field C �n��z� � C��z� � 1

0 � since
this spinor satisfies the periodicity condition

U��zi�C �n��zi� � U��zi�C��zi�
µ

1
0

∂
� C��zf �Ũ� �J�

µ
1
0

∂
� e2ipn��J�C�n��zf � . (6.12)

Since spinors have a free phase, the right-hand side is
a spinor representation of �n��zf �. Since the polynomial
expansion of �n��z� contains big coefficients close to spin-
orbit resonances, the DA method leads to a drop of
j� �n��z��j at first-order and at higher-order resonances.
This approach is very elegant, but, unfortunately, it uses
polynomial expansions of the spin motion with respect to
the phase space coordinates. At high energies in HERA
the spin rotates Gg � 1567 times DQ when the orbit is
tilted by DQ in a transverse magnetic field and the spin
motion is therefore extremely strongly dependent on the
phase space variables. This strong dependence cannot be
approximated well at all by a polynomial expansion of
relatively low orders and the DA approach, so far, did
not turn out to be very useful for analyzing higher-order
effects in the HERA spin dynamics.

Two short comments are needed. Sometimes the phase
space dependent spin tune is computed as the angle of
the rotation generated by A��z� [17,18]. However, this
is not the spin tune n� �J� since spins are not rotated
around the rotation vector of the matrix A��z� but around
�n��z�. Furthermore [18], the polynomial expansion of
�n��z� cannot simply be computed from �n��zf � � A��zi� �n��zi�
by using the mth-order polynomial expansion Am��z�,
separating �n��z� into one part �nm of order m and another
part �n,m of order lower than m, and solving for the
polynomial coefficients of �nm in

�nm��zf� 2 A�0� �nm��zi� � m 2 �n,m��zf � 1 Am��zi� �n,m��zi� .

(6.13)

The index on the equivalence sign indicates that the
polynomials on the right-hand side and the left-hand side
should agree up to order m. The determination of all
the polynomial coefficients of �nm is not possible since
some of the coefficients with equivalent k1

j and k2
j cannot

be determined in this way. These coefficients can, in
principle, be determined by considering the polynomial
114001-8
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coefficients which appear on the right-hand side in higher
order than m, but this procedure becomes more intricate.

C. The SMILE formalism

The first fully fledged formalism to compute the non-
linear dependence of the �n axis on phase space coordi-
nates was the basis of the computer code SMILE [19]. It is
an analytical way of computing the polynomial expansion
�nm��z�, and therefore the limitations of the DA method,
which performs this expansion automatically, also apply
to the SMILE formalism; therefore, this formalism is not
appropriate for an analysis of polarized proton beams in
HERA. Nevertheless, for historical reasons and for com-
pleteness we describe this formalism. Since �n��z� is a spin
field, it is propagated by the Thomas-BMT equation (2.1),

d
dl

�n��z, l� � � �V�0, l� 1 �v��z, l�� 3 �n��z, l� . (6.14)

This equation can be simplified by choosing an orthonor-
mal coordinate system � �m0, �l0, �n0� which rotates around �n0
according to the Thomas-BMT equation on the closed or-
114001-9
bit, d
dl �m0 � �V�0, l� 3 �m0, d

dl
�l0 � �V�0, l� 3 �l0. In this

coordinate system a spin field satisfies

�n �

0B@ �n ? �m0

�n ? �l0
�n ? �n0

1CA,
d
dl

�n�z̃, l� � v��z, l� �n��z, l� ,

v �

0BB@ 0 2 �v ? �n0 �v ? �l0
�v ? �n0 0 2 �v ? �m0

2 �v ? �l0 �v ? �m0 0

1CCA ,

(6.15)

where the matrix v is chosen to let the matrix product v �n
describe the vector product �v 3 �n in the new coordinate
system. To compute the propagator of spin fields, we
first introduce the phase space trajectory �̂z which ends
at the final phase space point �zf when the particle has
reached the azimuth lf of the accelerator, �zf � �̂z�lf�.
The propagator from l0 to l of the ordinary differential
equation can now formally be written as the time ordered
product indicated by the time ordering operator T ,
�n��zf , lf� � T�e
Rlf

l0
v��� �̂z�l�,l��� dl

� �n��� �̂z�l0�, l0��� (6.16)

�

"
1 1

Z lf

l0

v��� �̂z�l�, l��� dl 1
Z lf

l0

v��� �̂z�l�, l���
Z l

l0

v��� �̂z�l0�, l0��� dl0 dl 1 . . .

#
�n��� �̂z�l0�, l0��� . (6.17)

The �n axis is a spin field which satisfies the periodicity property �n��z, l� � �n��z, l 1 L0�. It can formally be expressed
by

�̃n��zf , lf� � lim
e!10

T�e
Rlf

2`
eelv��� �̂z�l�,l��� dl��e3 (6.18)

� lim
e!10

"
1 1

Z lf

2`
eelv��� �̂z�l�, l��� dl 1

Z lf

2`
eelv��� �̂z�l�, l���

Z l

2`
eel0v��� �̂z�l0�, l0��� dl0 dl 1 · · ·

#
�e3 . (6.19)
On the closed orbit we have �v�0, l� � 0 and one obtains
�n�0, l� � �e3 since the periodic spin direction �n0 was
chosen to be the third coordinate direction �e3 in the new
coordinate system. The vector �̃n in Eq. (6.19) is a spin
field, due to the propagation by the time order product.
Furthermore, it is periodic since v��z, l� � v��z, l 1 L0�
and due to the l independent starting point of the
integration.

Now we assume that v��z, l� is a linear function of
the phase space coordinates; furthermore, only linear orbit
motion is considered. This is often a good approximation,
since v contains a big ag factor and therefore the higher
powers of v in Eq. (6.19) contribute more to one order in
�̃n than the nonlinear phase space dependence of v itself.
However, sextupole fields, for example, cannot be taken
into account in this approximation. In principle one could,
however, extend the SMILE formalism to nonlinear terms
in v but the procedure would become rather involved.

Equation (6.19) can now be rewritten in iterative form.
First, one writes the power expansion �nm of the �n axis as
a sum of terms �nj which are homogeneous of order j in
the phase space coordinates �z. These terms can then be
computed iteratively by
�n0 � �e3, �nj11��� �̂z�l�, l��� � lim
e!10

Z l

2`
eel0v��� �̂z�l0�, l0��� �nj��� �̂z�l0�, l0��� dl0, �nm �

mX
j�0

�nj . (6.20)

Using a complex notation, this can be rewritten with v̆ � �v ? � �m0 1 i�l0�, n̆ � �n ? � �m0 1 i�l0� as

n̆j11 � lim
e!10

i
Z l

2`
eel0�v3n̆j 2 n

j
3v̆� dl0, n

j11
3 � lim

e!10

Z l

2`
eel0��v̆�n̆j dl0. (6.21)
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The integral over the infinite range �2`, l� cannot be
evaluated numerically but it can be written as an infinite
sum of one turn integrals. To sum up these one turn
integrals analytically, one has to take advantage of the
symmetry properties of the integrands in Eq. (6.21).
Symmetry properties of the orbital motion are especially
114001-10
obvious when the eigenvector basis of the linear motion
is used. This basis was already introduced for the
DA method in Sec. VI B. To compute the polynomial
coefficients �n�k of �n��z, l� �

P
�k �n�k�l��z

�k , we introduce
the corresponding polynomial coefficients of �v and the
operator P�k which projects the coefficient with exponent
�k from a polynomial. The recursion formula then reads3
n̆�k �z
�k � lim

e!10

Z l

2`
eel 0 �z

�kP�k

2
64 X

j�jj�j�kj21

�v�k2�j,3 �n�j 2 n�j,3 �v�k2�j�75 ? � �m0 1 i�l0� dl0, (6.22)

n�k,3 �z
�k � lim

e!10

Z l

2`

eel0 �z
�kP�k

2
64�

8><
>:

X
jj̃j�j�kj21

� �v�j2�k ? � �m0 1 i�l0��� � �n�j ? � �m0 1 i�l0��

9†=
†;
3
75 dl0. (6.23)
In the second equation we used the property ��z
�k�� �

�z2�k of coordinates in the orbital eigenvector basis. The
factors of the integrands have the following periodicity
properties:

(i) In the basis of orbital eigenvectors, the
phase space position after one turn is �z�l 1 L0� �
��z1

1 �l�ei2pQ1 , �z2
1 �l�e2i2pQ1 , . . .� and a monomial

�z
�k has the property �z�l 1 L0��k � �z�l� �kei2p �k? �q with

�q � �Q1, 2Q1, . . .�.
(ii) Since the basis vectors �m0 and �l0 rotate around �n0 ac-

cording to the Thomas-BMT equation on the closed orbit,
the vectors rotate by the spin tune n0 during one turn giving

�m0�l 1 L0� 1 i�l0�l 1 L0� � e2i2pn0��� �m0�l� 1 i�l0�l���� .
(6.24)
(iii) The polynomial coefficients �v�k�l� and �n�k�l� are
periodic with period L0 since �v��z, l 1 L0� � �v��z, l� and
�n��z, l 1 L0� � �n��z, l�. Therefore, the complete factors
P�k�· · ·� are periodic with L0.

The complete integrands I1�l� � eel �z
�kP�k 3

�
P

j�jj�j�kj21�v�k2�j,3 �n�j 2 n�j,3 �v�k2�j�� ? � �m0 1 i�l0� and

I0�l� � �eelz
�kP�k���

P
j�jj�j�kj ���� �v�j2�k ? � �m0 1 i�l0��� � �n�j ?

� �m0 1 i�l0������ therefore have the symmetry property

I1�l 1 L0� � ei �q?�keeL0ein0I1�l� ,

I0�l 1 L0� � ei �q?�keeL0I0�l� .
(6.25)

Now we can compute the integral from 2` to l by
evaluating a one turn integral,
Z l

2`
I1�l0� dl0 �

Z l

l2L0

I1�l0� dl0 1
Z l2L0

l22L0

I1�l0� dl0 1
Z l22L0

l23L0

I1�l0� dl0 1 · · · (6.26)

�
Z l

l2L0

I1�l0� dl0�1 1 e2eL01i�n02 �q?�k� 1 e22eL01i2�n02�q?�k� 1 · · ·� (6.27)

�
Z l

l2L0

I1�l0� dl0
1

1 2 e2eL01i�n02 �q?�k�
, (6.28)

Z l

2`
I0�l0� dl0 �

Z l

l2L0

I0�l0� dl0 1
Z l2L0

l22L0

I0�l0� dl0 1
Z l22L0

l23L0

I0�l0� dl0 1 · · · (6.29)

�
Z l

l2L0

I0�l0� dl0�1 1 e2eL02i �q?�k 1 e22eL02i2�q?�k 1 · · ·� (6.30)

�
Z l

l2L0

I0�l0� dl0
1

1 2 e2eL02i �q?�k
. (6.31)
The remaining one turn integrals are computed nu-
merically. In the limit lime!10, spin-orbit and pure
orbit resonance denominators appear, and the av-
erage equilibrium polarization thus drops close to
first-order and higher-order resonances. However, if
�k � �k1, k1, k2, k2, k3, k3�, then a small divisor problem
occurs since �k ? �q vanishes. It can be shown that the nu-
merators are of order e for all such vectors �k. However,
special care has to be taken in the numerical calcula-
tion, as described in [19,20]. This formalism was also
adopted in the framework of canonical spin-orbit motion
in [21,22].
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D. Stroboscopic averaging with SPRINT

The methods described in the two previous sections
were the only procedures for including higher-order
effects into the computation of the equilibrium spin field
which were known up to two years ago. Both turned
out to be not applicable at HERA’s proton energies.
A new method has then been developed in [10] called
stroboscopic averaging.

Suppose that initially the phase space distribution of
particles in the beam is polarized in the direction �f��z�.
114001-11
The stroboscopic average of this initial spin field �f��z�
can then be viewed as the time average of a pointlike po-
larimeter measurement of the polarization at a phase space
point �z. Initially, the pointlike polarimeter measures
�f��z�. After one turn it measures A��z21� �f��z21�, where
�z2k is the phase space point which is transported to �z
after k turns around the ring. Similarly, after N turns the
pointlike polarimeter measures A��z21� · · · A��z2N � �f��z2N �.
The stroboscopic average �nN ��z� at �z is defined to
be the average polarization measured in the pointlike
polarimeter,
�nN ��z� �
1
N

NX
j�1

�A��z21� · · · A��z2j�� �f��z2j� �
1
N

NX
j�1

"
jY

k�1

A��z2k�

#
�f��z2j� . (6.32)
It is obvious that this quantity is very relevant for
the high energy experiments since this time average
of polarization has to be high to perform polarization
experiments effectively. It is less obvious that this
stroboscopic average converges to a vector parallel to �n��z�
if an equilibrium spin field exists and if �nN ��z� does not
converge to zero. Convergence properties, variations of
this method for increasing the convergence speed, and
properties of the field �n��z� are derived in [10] and we
do not want to mention these here. Here we want to
illustrate only that �nN ��z� satisfies the periodicity condition
for the equilibrium spin field �n��z� up to a small error
which decreases with N . The periodicity condition can
be written as �n��z� � A��z21� �n��z21�,
�nN ��z� 2 A��z21� �nN ��z21� �
1
N

(
NX

j�1

"
jY

k�1

A��z2k�

#
�f��z2j� 2 A��z21�

NX
j�1

"
jY

k�1

A��z2k21�

#
�f��z2j21�

)

�
1
N

(
NX

j�1

"
jY

k�1

A��z2k�

#
�f��z2j� 2

N11X
j�2

"
jY

k�1

A��z2k� �f��z2j�

#)
(6.33)

�
1
N

(
A��z21� �f��z21� 2

"
N11Y
k�1

A��z2k�

#
�f��z2N21�

)
. (6.34)
The right-hand side is a vector of length smaller than
2�N . This method of computing �n��z� contains all higher-
order effects since it uses only tracking data and does
not perform any expansion in small quantities. It works
well for large phase space amplitudes as well as for
large angles between the equilibrium spin direction �n��z�
and the closed orbit spin direction �n0. The method
of stroboscopic averaging was implemented in the spin
dynamics code SPRINT and it has been seen in several
examples that stroboscopic averaging can be used well in
the vicinity of resonances. Therefore, we have adopted
this method for analyzing higher-order spin dynamics
in HERA at high energies. And it was this method of
stroboscopic averaging which led to the establishment
of the following technique which is currently under
development and investigation.

E. Adiabatic antidamping or adiabatic spin-orbit
coupling

It has been observed in numerical simulations that a
spin field which is parallel to �n��z� stays parallel to this
equilibrium direction when parameters of the accelerator
are adiabatically changed. This suggests that the angle
between �n��z� and the spin �s carried by a particle at phase
space point �z is an adiabatic invariant. There has also
been theoretical work associating this angle with an action
variable of a Hamiltonian theory, which also indicates
that this angle can be an adiabatic invariant [23]. Further
theoretical work has been initiated and we believe that the
conditions for adiabaticity of the angle ���� �n��z�, �s��� will be
established soon in a separate paper.

Assuming for now that this angle is an adiabatic
invariant, one can envision three procedures of computing
the field �n��z�.

(a) One could start a tracking computation with a spin
aligned parallel to �n0 at a low energy far away from any
resonance where the equilibrium polarization is essentially
parallel to �n0 in all of the relevant phase space. Then
one would accelerate the particles adiabatically up to the
energy under investigation. The disadvantage of this ap-
proach is that at HERA one would essentially have to
ramp the particle all the way from 39 to 820 GeV�c in an
adiabatic manner, which would take a lot of computation
114001-11
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time. And in any case several 1000 resonances would
have to be crossed and this cannot always be done adi-
abatically. Therefore the adiabatic acceleration is not a
suitable method of computing the equilibrium spin field.
Nevertheless, this method shows well what actually hap-
pens to the polarized beam when it is slowly accelerated
in HERA.

(b) One could start a tracking computation with a par-
ticle on the closed orbit polarized parallel to �n0 � �n�0�.
When the phase space amplitude is increased adiabati-
cally the spin will stay parallel to �n��z� during the com-
plete tracking run until the phase space amplitude of
interest is reached. The energy is not changed dur-
ing this process. This method has been tested and can
be performed with practical speed. It has the advan-
tage over the other methods presented so far that one
obtains the field �n��z� at many phase space amplitudes.
One can therefore easily compute the dependence of
the averaged equilibrium polarization on phase space
amplitude.

(c) A third method which has been tested with success
starts a tracking run with a particle at the phase space
point �z2N and a spin parallel to �n0. In order to make
�n0 parallel to the equilibrium field �n��z�, the spin-orbit
coupling is switched off, i.e., particles all over phase
space have the same spin motion as a particle on the
closed orbit. Finally, the spin-orbit coupling is switched
on adiabatically while tracking the particle for N turns
until it arrives at the phase space point �z. This procedure
is especially helpful when analyzing the influence of
resonance strength on the average polarization since one
obtains this polarization for a variation of resonance
strength from zero to a final value, allowing one to
compute the maximally allowed resonance strength for a
required average polarization.

The mathematical concepts involved in the three adi-
abatic methods are very similar. These three methods
are implemented in the code SPRINT and we now show
examples of the higher-order effects which were ob-
served with these methods while studying polarized pro-
ton beams at high energy in HERA.
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VII. HIGHER-ORDER RESONANCES

As mentioned earlier, the SRM and SLIM theories can
only compute the effects of first-order resonances, i.e.,
where n0 6 Qj is integer. However, resonance effects
can appear whenever n0 1 �k ? �Q is integer for any vector
�k of integers. As mentioned above, when the sum of the
components

P
j jkj j is larger than 1, one then speaks of a

higher-order resonance. Even at low energy in DESY III,
higher-order resonances can be observed at phase space
amplitudes of 32p mm mrad. The first-order theories
presented in Fig. 1 do not show the small resonance peaks
of Fig. 4.

At high energy in HERA the first-order resonances
are spaced so densely that higher-order resonances are
not as clearly visible. So to examine higher order
resonances, we suppress the first-order resonances by
including Siberian snakes. These fix the spin tune to n0 �
1
2 . Therefore, no resonance peak can be seen in the lower
curve of Fig. 5 for a small emittance. However, with
increasing phase space amplitude higher-order resonances
appear in the upper curve.

VIII. AMPLITUDE DEPENDENT SPIN TUNE

In the first-order analysis the average opening angle of
�n��z� is approximated by j

´

n02Qi
j. The resonance strength

´ given in Eq. (3.2) is the Fourier coefficient of a lin-
ear function of phase space variables �v��z, l� and it there-
fore increases with the square root of the action variable,
����� �n��z�, �n0���� ~

p
Ji. When more than only the first-order

effects are taken into account, the polarization depends on
the orbital amplitudes in a more complex fashion. In some
cases (an example is shown in Fig. 6), the average open-
ing angle decreases with amplitude after it had previously
increased. This is an indication for an amplitude depen-
dent spin tune n� �J�. While the amplitude changes, a reso-
nance is crossed which causes the average equilibrium
polarization to drop at some intermediate phase space am-
plitude. In Fig. 6 it was not the orbit tune which crossed
the resonance since we simulated linear orbit motion,
where �Q does not depend on the phase space amplitude.
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FIG. 4. SPRINT opening angles for a beam with normalized vertical emittance of 32p mm mrad in DESY III.
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FIG. 5. SPRINT opening angles for a beam with normalized vertical emittance of 32p mm mrad in HERA (dashed line) and
4p mm mrad (solid line). Higher-order resonance peaks appear with increasing emittance. First-order resonance peaks were
avoided by fixing the spin tune to n0 � 1�2 with Siberian snakes.
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FIG. 6. (Color) SPRINT opening angles for a beam with normalized vertical emittance of up to 400p mm mrad in HERA at
803.9 GeV�c (purple dotted line) and at 819 GeV�c (blue dashed line). The green horizontal line indicates an average opening
angle of p�2 and therefore zero average polarization.
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To study such amplitude dependent depolarizing ef-
fects, it is advantageous to have a method which quickly
leads to �n��z� at various amplitudes. The antidamping
method described above has this feature and was im-
plemented into SPRINT for that purpose. In fact the
technique of antidamping the spin-orbit coupling is al-
ready contained in the SMILE formalism [19]. There
it was not exploited numerically but used for deriving
a formalism which leads to the required periodicity in
azimuth.

IX. IRREGULAR INVARIANTS OF SPIN-ORBIT
MOTION

If only one phase space amplitude is excited, a particle
moves on an invariant ellipse. Turn after turn the particle
has a different phase space coordinate �z but it is always
located on a one parametric closed curve in phase space
corresponding to the invariant ellipse. We parametrize
this curve as �z�w� with w [ �0, 2p�. When the particle
is initially polarized parallel to �n��zi�, the transported
spins change from turn to turn but they are always
located on the one parametric closed curve �n����z�w����. If
the initial spin was not parallel to the equilibrium spin
field, the transported spins would not all be located
on a one parametric closed curve but could point in
other directions. Such closed curves �n����z�w���� on the unit
sphere are invariant curves of spin-orbit motion. Figure 7
displays an example of such a curve which was computed
for HERA with a proton energy of 820 GeV and a vertical

-1

0

1 -1

0

1

-1

-0.5

0

0.5

1

FIG. 7. An invariant curve of spin-orbit motion in HERA
at 820 GeV�c for a normalized vertical emittance of
16p mm mrad.
114001-14
phase space amplitude of 16p mm mrad. The first-order
theories lead to invariant curves on the unit sphere which
are ellipses around the vertical direction. Obviously, the
irregularity of the invariant curves of spin-oribt motion at
high energy illustrates effects which go beyond first-order
resonances.

X. CROSSTALK BETWEEN DEGREES OF
FREEDOM

So far, only vertical motion has been considered since
in a flat ring only particles with vertical phase space ampli-
tude travel through horizontal magnetic fields. In the first-
order theories the horizontal and the longitudinal phase
space amplitudes therefore do not cause any depolariza-
tion. When higher-order effects are included, the spin mo-
tion does depend on the horizontal and longitudinal phase
space amplitude. When a particle has no vertical phase
space amplitude and observes only vertical fields, the equi-
librium spin field will still be vertical all over the horizontal
phase space. However, when a vertical amplitude is ex-
cited then the fields through which a particle is propagating
change depending on the horizontal and longitudinal am-
plitude, and therefore the average polarization of the equi-
librium spin field changes. In the spin motion one thus
observes crosstalk between the degrees of freedom, even
when the orbital motion is completely decoupled (linearly
as well as nonlinearly). Figure 8 shows an invariant spin
curve �n����z�w���� on the unit sphere for a relatively large ver-
tical emittance (left). The average polarization is already
strongly reduced. When the particle also has a horizon-
tal phase space amplitude, the phase space coordinates �z
are no longer on a closed curve, and therefore the invari-
ant curves on the unit sphere get washed out. The average
polarization is reduced to zero (right). Since the first-order
theories neglect any influence of the horizontal motion on
the invariant closed curves, Fig. 8 is far out of the range
of validity of these theories.

XI. CONCLUSION

Spin dynamics can be described rather well by first-
order theories when the energy is low. When studying
polarized proton beams in the DESY accelerators we
observed that this first-order regime extends up to about
150 GeV�c in HERA. At higher energies, non-first-order
effects become relevant. The effects which we observed
with customized tools are overlapping resonances, higher-
order resonances, amplitude dependent spin tune shifts,
very distorted invariant curves of spin-orbit motion, and
a coupling between the effects on the spin motion of the
orbital degrees of freedom.

While similar concepts are well known for nonlinear
orbit motion, they are not so well known for spin motion
since all polarized proton beams produced so far operated
in an energy regime which is dominated by first-order
effects.
114001-14
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FIG. 8. Invariant curves of spin-orbit motion on the unit sphere for a beam in HERA with normalized vertical emittance of
64p mm mrad and no horizontal emittance (left) and with an additional normalized horizontal emittance of 4p mm mrad (right).
Note added in proof.—A new version of the SODOM

algorithm has now been provided by Yokoya which also
works for large opening angles [24].
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