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Self-consistent b functions and emittances of round colliding beams
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The flip-flop effect with the linearized beam-beam force is formulated through self-consistent b

functions and equilibrium emittances which are both affected by collision. We give the results of two
models of emittance dependence. The effect of finite bunch length is also discussed.

PACS numbers: 29.27.Bd, 29.27.Fh
I. INTRODUCTION

From many observations of the beam-beam effects on
existing e1e2 colliders, it is known that under some
conditions the sizes of opposing bunches become very
different. This phenomenon is called the flip-flop effect.
Such a state is not stable and the bunches may exchange
their sizes. The flip-flop effect leads to reduction of
the luminosity because of the difference in bunch sizes
resulting in reduction of the effective interaction area.

The problem is greatly simplified by linearization of the
beam-beam force; it has been studied in terms of evolution
of the second moments of the beam distribution, involving
the radiation effects: damping and quantum excitation
[1–3].

Another way to understand this problem is formulation
in terms of self-consistent dynamic b functions of collid-
ing beams at the interaction point (IP) [4]. The equilib-
rium emittances of the bunches are affected by the linear
part of the beam-beam force: action of the opposing bunch
is roughly equivalent to insertion of a (thin) lens modify-
ing the arc lattice [5]. So, a correct account for these
dynamic emittance variations should be done in a self-
consistent way.

This paper gives results of the self-consistent model for
round colliding beams, and calculation of the equilibrium
radiation emittance with the thin lens insertion. We also
discuss a simple model representing the bunch length
effect.

II. SELF-CONSISTENT b FUNCTIONS

We adopt here the conditions of round colliding beams
[6]: equal b functions b�

x � b�
y , equal tunes nx � ny ,

and equal emittances ex � ey in the nominal optics of the
collider.

Consider a collider lattice with one IP and the betatron
phase advance on the arc m0 � 2pn. The betatron
oscillations in the arc are described by their matrix M0,

M0 �

√
cosm0 b� sinm0

2
sinm0

b� cosm0

!
. (1)

We take, for simplicity, the Twiss parameter a0 � 0 at
the IP. The opposite bunch is represented in the linear
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approximation by the thin lens matrix

F �

√
1 0

2
4pj

b� 1

!
. (2)

The beam-beam parameter j involves the sizes of this
bunch and reads as

jx,y �
Nr0b�

2pgsx,y�sx 1 sy�

�
2j0

ex,y

q
bx,y�b� �

p
bx�b� 1

q
by�b� �

. (3)

In the last equality, j0 � Nr0��4pge0� is the nomi-
nal beam-beam parameter for round beams, and ex,z �
ex,y�e0 are normalized emittances of the bunch. Then we
can get the resulting matrix of one revolution M � FM0.
From M we obtain new values of m and the b function,
modified by collision. For both horizontal and vertical
planes, the appropriate equations are

cosm1,2 � cosm0 2 2pj2,1 sinm0 , (4)

b1,2 � b� sinm0

sinm1,2
, (5)

where subscripts 1, 2 indicate colliding bunches. Let us
consider equal intensities of the colliding bunches (equal
j0). At first it is convenient to transform Eq. (5) into the
form µ

b�

b1,2

∂2

�
1 2 cos2m1,2

sin2m0
. (6)

Substituting Eq. (4) into the last equation, using Eq. (3),
after some calculations [4] we obtain a set of equations
on self-consistent b functions in the special case of round
beams,

b2
1 � 1 1 2xc

b2

e2
2 x2 b2

2

e2
2

,

b2
2 � 1 1 2xc

b1

e1
2 x2 b2

1

e2
1

.
(7)

Here we used a convenient notation: x � 2pj0, c �
cot2pn, bi � b��bi . The problem is periodic in n with
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the period 1�2; therefore, we consider only 0 , n , 1�2
in the following.

III. CONSTANT EMITTANCES

We start with the case of constant emittances e1 �
e2 � 1. The system (7) has equal,

b1 � b2 �
xc 1

p
1 1 x2�1 1 c2�
1 1 x2 , (8)

and unequal solutions,

b1,2

�
xc

p
1 1 x2 6

p
1 2 �2 1 3c2�x2 1 �1 1 c2�x4

�x2 2 1�
p

1 1 x2
.

(9)

Unequal solutions of Eqs. (7) bi correspond to the flip-
flop situation. They are real and positive when n [
�0, 1�4� and x belongs to the intervals

2 1 3c2 1 c
p

8 1 9c2

2�1 1 c2�
, x , c 1

p
1 1 c2 . (10)

For n [ �1�4, 1�2�, the inequalities should be reversed.
Small n are of predominant interest for a high beam-beam
performance. One can obtain the threshold value of x for
small n by taking the limit c ! ` in the left-hand side
of Eq. (10): xth �

p
3. This is a very large and unrealistic

value of x, which corresponds to j0 � 0.26.
Another way to get xth is the graphical method [7],

applied to Eqs. (7): we consider b1 as a function of b2,
and evaluate the derivative ≠b1�≠b2 at the point of equal
bi , thus testing the possibility for unequal solutions to
appear. Then the flip-flop threshold x � xth satisfies the
equation

≠b1

≠b2

Ç
b1�b2

� 21 , (11)

yielding the same xth as in the left-hand side of Eq. (10).
In contrast to the above solution, one may expect a

nonround final flip-flop state, e.g., a cross-shaped one,

b1x � b2y � bx � w2
x , b1y � b2x � by � w2

y .

The system (7) now takes the form

w4
x � 1 1

4xcw2
ywx

wx 1 wy
2

4x2w4
yw2

x

�wx 1 wy�2 ,

w4
y � 1 1

4xcw2
xwy

wx 1 wy
2

4x2w4
xw2

y

�wx 1 wy�2
.

(12)

Applying the graphical method to the system (12) (see
Fig. 1) and using Eq. (11) we obtain this threshold:

x $ xth �

s
4 1 5c2 1 c

p
24 1 25c2

2�1 1 c2�
.
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FIG. 1. Graphical method for solving Eqs. (12) on self-
consistent b functions. Intersection on the primary diagonal
corresponds to the equal solutions, additional intersections
describe the flip-flop solutions.

It appears to be even higher than that for the round
flip-flop state: the round beam shape seems to be “flip-
proof”; cf. Ref. [8]. Figure 2 shows all threshold curves
of the flip-flop state appearance in the case of constant
emittances of colliding bunches.
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FIG. 2. The flip-flop border curves. The thick solid curve
corresponds to the case of “crosswise flip,” when the vertical
size of one bunch in the final state is equal to the horizontal
size of its partner and vice versa. The dashed line presents the
right-hand side of Eq. (10).
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IV. RADIATION EMITTANCE

Assuming the emittances unchanged by collision in the
above section, we see that the flip-flop thresholds are
rather high in terms of j0. However, in e1e2 collid-
ers we need to consider radiation emittances as affected
by the linearized beam-beam force1. An approach that
takes radiation into account is given in Refs. [1,2], where
the authors work in terms of second moments of the
bunch distribution. The radiation damping effect is in-
cluded in the damping matrix diag�1, l, l2� in [1] and
diag�l, l, l� in [2], l is the damping coefficient. The
quantum excitation is represented by the diffusion vec-
tor, which is proportional to �0, 0, 1 2 l2� in [1], and
�1 2 l, 0, 1 2 l� in [2], and inserted at the IP. Then
the authors construct the one-turn map for the second mo-
ments, find its fixed points, and calculate the equilibrium
emittances.

However, equations on the bunch sizes and the values
of modified emittances are dependent on the treatment
of radiation. For example, starting from the quantum
excitation vector in the form �0, 0, 1 2 l2� as in [1]
with the appropriate damping matrix, the authors have
the equilibrium dynamic emittance proportional to the
dynamic b function of the bunch (i.e., ei � 1�bi in
normalized variables). Because of this, the flat beam case
in [1] corresponds to our round beam case with constant
emittance, Eq. (7), while the round beam case in [1] leads
to equations

b2
1 � 1 1 2xcb2

2 2 x2b4
2 ,

b2
2 � 1 1 2xcb2

1 2 x2b4
1 .

(13)

In [2] the radiation effect is taken from the diffusion
equation (the Fokker-Planck equation for the phase-
space particle distribution), where only momentum is
considered as fluctuating. With this assumption for the
radiation model, the authors of Ref. [2] require that the
radiation damping matrix and excitation vector should
have the symmetric form diag�l, l, l� and �1 2 l, 0, 1 2

l�. With such a treatment of radiation, it is obtained
in [2] that the equilibrium radiation emittance with one
additional lens at the IP always exceeds the nominal one.
104401-3
In our opinion, the diffusion vector in the form of
Refs. [1,2] cannot take into account the radiation action
distributed around all the bends of the machine arcs;
the value of the modified radiation emittance may either
decrease or increase with the strength of the inserted lens,
depending on the arc lattice.

Let us prove the above statement by exact evaluation
of the equilibrium radiation emittance in the lattice with a
thin lens inserted at the IP, to represent the linear beam-
beam effect. Aiming at the first order in radiation effects,
it is more efficient to proceed in terms of the radiation
integrals, rather than to use the method of Refs. [1,2] with
appropriate corrections in the diffusion vector.

In what follows, zero dispersion at the IP is assumed
for simplicity, and so the dispersion in the arc h�s� is left
unchanged by the insertion lens; therefore, among all the
radiation integrals [9] only I5 is modified due to dynamic
b beat.

The equilibrium emittance is determined by the one-
turn average of the Courant-Snyder quadratic form with
the dispersion function (cf. [10])

H�s� � g�s�h�s�2 1 2a�s�h�s�h0�s� 1 b�s�h0�s�2.

The lens insertion modifies the Twiss parameters involved
in H�s�, thus changing the radiation emittance. In the
Floquet parametrization H�s� � jW �s�j2, the appropriate
Wronskian reads

W �s� �

Ç
h�s� w�s�
h0�s� w0�s� 1 i�w�s�

Ç
eif�s�,

where w � b1�2 is the absolute value of the complex
Floquet function [11], and f is its phase. The modified
Floquet function w�s� eif�s� should be decomposed via
the basis of two unperturbed Floquet vectors at the IP,
then propagated through the unperturbed arc to get the
modified vector on the current azimuth of integration s.

The transport matrix T �f j i� through the arc can be
expressed in terms of initial and final Twiss parameters of
unperturbed optics wi and wf , respectively,
T�f j i� �

0
@ wf

wi
�cosf 2 wiw

0
i sinf� wfwi sinf

� w0
f

wi
2

w0
i

wf
� cosf 2 �w0

fw0
i 1

1
wf wi

� sinf
wi

wf
�cosf 1 wfw0

f sinf�

1
A ,
where i, f denote the initial and final azimuths. Then
mapping of the Floquet vectors from the IP to the azimuth
s with the phase advance of f has the form

T �f j i�

√
wi

w0
i 1

i
wi

!
�

√
wf

w0
f 1

i
wf

!
eif. (14)

1The presented model leaves out nonlinear beam-beam effects.
From the matrix of one revolution with the lens at the
IP, we obtain the new value of the initial Floquet vector
modified by the insertion, expressed via the unperturbed
one,

w � wi

q
sinm� sinm0 ,

w0 � �w0
i 2 kwi�

q
sinm� sinm0 , (15)

cosm � cosm0 2 kw2
i sinm0.
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Here m0 � 2pn is the betatron phase advance of the un-
perturbed lattice, m is its value modified by the insertion
lens, and 2k is the strength of the lens, no assumptions are
needed on its smallness. For further calculations we use
104401-4
the notation
p

sinm� sinm0 � r , while p � kw2
i stands

for the normalized strength of the lens.
The modified Floquet vector at the initial point (past

the insertion) given by Eq. (15) is then decomposed via
the unperturbed basis at the IP,
µ

w
w0 1

i
w

∂
�

r2 1 1 1 ipr2

2r

√
wi

w0
i 1

i
wi

!
1

r2 2 1 2 ipr2

2r

√
wi

w0
i 2

i
wi

!
.

Now we propagate the new Floquet vector through the arc, using Eqs. (14) to express the modified final vector via
the basis of unperturbed ones on the current azimuth s. Thus, the modified value of the Wronskian on the azimuth of
integration is

W �
1
2 �r 1 1�r 1 ipr�W0�s� 1

1
2 �r 2 1�r 2 ipr�W�

0 �s� . (16)

Finally, finding from the above equation the new value of the dispersion invariant H � jW j2, we obtain for the linear
beam-beam effect on the integrand of the radiation integral I5

H�s�
H0�s�

�
1 1 p cot2pnp

1 1 2p cot2pn 2 p2
1

p csc2pn cos2��� argW0�s� 2 pn���p
1 1 2p cot2pn 2 p2

, (17)
where the 0 subscript marks the quantities relevant to the
unperturbed lattice.

The relation (17) is an exact result of the linear lattice
theory, conventionally taking radiation effects into account
to first order. The 1 1 p cot2pn term in (17) gives posi-
tive definite contribution ~1 1 p2 to the radiation emit-
tance, and compares to the result of [5]. But the second
term, proportional to cos2��� argW0�s� 2 pn���, depends on
the arc lattice, and generally its contribution ~p to the ra-
diation integral I5 does not vanish. It may well override the
effect of the first term in some particular lattices, resulting
in a linear slope of either sign in the emittance dependence
on j0 (see Fig. 3), contradicting [2,5].

V. MODELS OF EMITTANCE VARIATION

We can implement the above conclusion in simple
models of variable emittance, to be used jointly with
Eqs. (7) for the self-consistent analysis.

The first model assumes the linear variation of emit-
tance with the strength of the lens of the opposite bunch:
we have then for the normalized emittances

e1 � 1 1 kx
b2

e2
, e2 � 1 1 kx

b1

e1
, (18)

where k is the linear slope coefficient and should be
kept not too large for our model to be valid. We solve
Eqs. (18) for e1 and e2 first, then substitute these solutions
into Eqs. (7) to obtain two equations on the two variables
(b1, b2),

b2
1 � 1 1

4b2x�c���1 1 �b1 2 kx� 1
p

D ��� 2 b2x�
���1 1 �b1 2 b2�kx 1

p
D ���2

,

b2
2 � 1 1

4b1x�c���1 1 �b2 2 b1�kx 1
p

D ��� 2 b1x�
���1 1 �b2 2 b1�kx 1

p
D ���2

,
(19)

where D � 4b2kx 1 ���1 1 �b1 2 b2�kx���2.
Now because of the very complicated form of the last
system, we may solve the problem using method [7]. With
k . 0, the flip-flop situation appears only at high values
of x � 2pj0; Fig. 4 shows such a dependence. In this
case the values of the self-consistent b functions are small
enough and the emittances exceed their nominal values.

The case k , 0 is more interesting. Equal solutions of
Eqs. (19) may be expressed in the form

b �
a2 2 1

4kx
,

where a is a positive real root of the equation

a4 1 2�2x2 2 1�a2 2 8x2�1 1 2ck�a 1

1 1 4x2�1 1 4ck 2 4k2� � 0 .

−0.2 0 0.2 0.4 0.6 0.8
p

0

0.5

1

1.5

2

2.5

3

e (p)

FIG. 3. Equilibrium radiation emittance as a function of the
insertion lens. Either sign of the slope may appear depending
on the arc lattice. The dashed line corresponds to the result
obtained in [2,5].
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FIG. 4. The flip-flop threshold xth vs the positive slope k in
(19), n � 0.01 (top), n � 0.1 (bottom).

The requirement for b to be real and positive leads to
conditions on a of

0 , a , 1 .

In terms of beam intensity it means there is some limiting
value of x, which depends on the values of k and n,

x ,
1

2
p

4k2 2 4ck 2 1
.

If x is above this limit, the system (19) has no equal solu-
tions. Before x approaches its maximal value, Eqs. (19)
have one solution with equal bi . Unequal (i.e., flip-flop)
solutions may be represented as two roots of a quadratic
equation

y2 1 py 1 q � 0 ,

with b1 1 b2 � 2p, b1b2 � q, and p, q expressed in
terms of Eqs. (19). Then after finding p, q, we require
their reality [x0�k� shown with a thin solid curve in Fig. 5]
and p2 2 4q (the appropriate discriminant) to be positive
[x1�k� is the thick curve in Fig. 5]; the threshold value
for the flip-flop state appearance is determined as xth �
max�x1, x0�. Unequal (flip-flop) solutions appear at high
values of the beam-beam parameter, and xth increases
with the shift of k in the negative direction. We also
observed that both the limiting value for equal solutions
and xth for the flip-flop state appearance (see Fig. 5) grow
with the increase of the tune n.

In the second model we assume linear variation of the
beam sizes with the strength of the lens of the opposite
bunch. After some calculations, this model is expressed
104401-5
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FIG. 5. Limiting curves of solutions in the model of linear
variation of beam emittances with the lens of the opposite
bunch. Normal solutions exist under the dashed line. Unequal
b1, b2 appear for all values of k above the upper of the two
solid curves.

by the equations

e1 � b1

µ
1 1 kx

b2

e2

∂2

, e2 � b2

µ
1 1 kx

b1

e1

∂2

,

(20)

and it is reducible to two variables e1�b1 and e2�b2 only.
Hence, we solve Eqs. (20) for these and substitute into
Eqs. (7) to obtain solutions for bi .

The resultant of two equations in Eqs. (20) has simple
factorization

R � �e2
2 1 2b2e2kx 1 b2

2k2x2 2 b2e2k2x2�

3 �e3
2 2 b2e2

2 2 2b2
2e2kx 2 b3

2k2x2� .

The first factor gives two solutions:

e2 �
1
2

b2kx���kx 2 2 6
p

kx�kx 2 4���� . (21)

So, for k . 0 the flip-flop threshold is high: we need
kx . 4 for e1,2 to be real. The second factor in R has one
real root, if k . 0. It corresponds to the normal solution
b1 � b2.

Another situation is the case of k , 0. Now the roots
of Eq. (21) are always real and positive and correspond to
the flip-flop solutions. After substituting the solution of
Eq. (21) into Eqs. (7) we get b2

1,2 and require that they be
positive; this yields the condition on the existence of the
flip-flop solutions

x , x�k� � tanpn�cotpn 1 1�k�2,

tan pn , 2k . (22)
104401-5
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FIG. 6. The flip-flop threshold xth vs the tune n in the case
of k , 0 in (20), k � 20.8. The flip-flop area lies under the
curve.

These expressions indicate how to avoid the unwanted
flip-flop situation: at some x and a given value of k in the
linear dependence of emittances, we may raise the tune
to shift it in the area of only equal solutions, crossing the
flip-flop border shown in Fig. 6.

VI. EFFECT OF THE BUNCH LENGTH

In this section we present the constant emittance model,
accounting for the effect of bunch length in collision by
splitting either of the colliding bunches into two equal
infinitely short bunches spaced by l (in units of b0)
(Fig. 7).

The interaction process then has three phases:
(i) collision of particles 2 and 3 at the IP; (ii) collision of
2 and 1, and collision of 3 and 4, at the points positioned
at the distance of 7l�2 from the IP; (iii) collision of
particles 1 and 4 at the IP.

Figure 8 shows the behavior of the b function of one
particle, when it collides with its counter partners, and
their “lenses” at points 0 and l�2 change this b function.

All values of the Twiss parameters a and b for each
particle are taken at the IP. Therefore we need to
recalculate them to the side points. It is convenient to
make this with the appropriate Steffen matrix of the drift
space and one additional lens

T3 �

0
B@ �lp 2 1�2 2l�lp 2 1� l2

p�1 2 lp� �1 2 2lp� 2l
p2 2p 1

1
CA . (23)

Here p is the normalized strength of the lens. With this
matrix, T3, we get the strength of lens 3 in the point of
104401-6
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23

1

I P

FIG. 7. The model of the bunch length effect. Each bunch
consists of two particles with constant distance l between them.

interaction with 4,

p34 �
x

�11a
2
3 �l2

4b3
1 b3�1 2

lx
2b2

�2 1 a3l�21 1
lx

2b2
�

.

(24)

In the last formula, b3 and a3 are the Twiss parameters of
the third particle at the IP and so on. The same technique
gives

p21 �
x

�11a
2
2 �l2

4b2
1 b2�1 2

lx
2b3

�2 1 a2l�21 1
lx

2b3
�

.

(25)

sl/2-l/2 0

FIG. 8. Dependence of the b function of one particle on the
azimuth along the arc. The counter particles act as lenses at
points 0 and l�2.
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FIG. 9. The flip-flop threshold xth vs l in the model of the
bunch length.

For particles 1 and 4 we have the conditions

T3�l�2, p34� �b43, a43, g43� � �b4, a4, g4� .

The last equation yields

p43 �
4b4x

4b
2
4 1 4a4b4l 1 �1 1 a

2
4 �l2

, (26)

and by analogy

p12 �
4b1x

4b
2
1 1 4a1b1l 1 �1 1 a

2
1 �l2

. (27)

Now we can write the resulting matrix of one revolution
for the particle, say 1,

M1 � M0Ml�l�2�Mp�p21�Ml�2l�2�Mp�x�b4� , (28)

and for the other particles their matrices can be written
similarly. From the matrix of one revolution for each
particle Mi (i � 1, . . . , 4) we get the new values of the
phase advance m, b, and a functions, and then obtain the
equations on the self-consistent b functions. This system
is very complicated and can be studied only numerically.
The first conclusion is that if l fi 0 there is no situation,
when all b functions are equal. We have the state in our
system, when parameters of the front and back particles
are equal. We define the flip-flop situation when all four
parameters are different; the threshold for these solutions
to appear is high (see Fig. 9). Therefore we conclude
that the finite bunch length effect is not detrimental in
the round beam case.
104401-7
VII. CONCLUSION

The flip-flop effect is studied in terms of the self-
consistent b function in the case when the emittances of
colliding bunches are influenced by the linear part of the
beam-beam force. Evaluation of the radiation emittance
of the bunch from the radiation integral is presented in the
case of a thin lens inserted at the IP, with the emphasis on
the term omitted in [5].

We have presented two models of variable emittances.
One of them, when the emittance has a linear dependence
on the strength of the lens of the opposite bunch, gives
high flip-flop thresholds in the area of positive slope k in
Eqs. (18) and gives no threshold but the colliding bunches
are of equal size if k , 0 and the beam intensity is below
a certain limit. Unequal solutions (i.e., the flip-flop state)
in this case appear at high values of the beam-beam
parameter and the value of xth is even higher than the
limit of normal solution existence.

The second model (20) predicts low flip-flop thresholds
only when we assume k , 0, i.e., the size of the bunch
is decreased by the force of the opposite lens. We can
avoid the flip-flop situation here by the working point
maneuver. However, lattices with k . 0 seem to be
generally preferable against the flip-flop effect.

The influence of the bunch length on the flip-flop effect
thresholds in our simple model is weak.
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