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Phase space tracking of coupled-bunch instabilities
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We describe an instability diagnostic that exploits the information contained in the angular evolution
of coupled-bunch oscillations in phase space. In addition to enabling measurement of coherent tunes
and bunch tunes with accuracy of a few hertz, phase space tracking allows new kinds of comparisons
between instability theory and experiment. Phase space evolution of bunches participating in a low-
threshold vertical instability in the high energy ring of the Stanford Linear Accelerator Center B factory
(PEP-II) is used to distinguish between the fast beam-ion instability and conventional instabilities.
Tracking of longitudinal instabilities at the LBNL Advanced Light Source and PEP-II is used to measure
coherent tunes and gain new insights into uneven-fill instabilities.

PACS numbers: 29.27.Bd, 29.20.Dh
I. INTRODUCTION

Accelerator performance is degraded at high currents
by coupled-bunch instabilities, which arise from self-
amplifying interactions between the charged particle beam
and its environment. Diagnosis of the nature and cause
of unstable bunch motion is the first step towards a
cure. Observation of beam position monitor (BPM)
power spectra under various beam conditions is the most
common diagnostic. Other recently developed techniques
include streak camera imaging of bunch motion and off-
line analysis of digitized bunch oscillation data.

Theoretical analyses of coupled-bunch instabilities
yield qualitative and quantitative predictions about bunch
trajectories in phase space. Ideally, an experimenter who
wants to diagnose dipole instabilities would like to be
able to track the phase space positions of all bunches
under various beam conditions. This would require a
measurement system of bandwidth 1�2Tb , where Tb is
the bunch spacing.

When viewed in the light of the bandwidth or infor-
mation rate requirement, streak camera measurements are
seen to be unsuitable for multibunch phase space tracking,
since they suffer from update rate limitations. However,
they provide excellent time resolution and are very useful
in studying the bunch size and shape. By the same cri-
terion, the traditional technique of observing BPM signals
on a heterodyned spectrum analyzer is limited by the reso-
lution bandwidth of the spectrum analyzer. To identify
the instability mode number, one needs resolution band-
widths comparable to the synchrotron or betatron tune.
All information outside the resolution bandwidth is lost,
as is information contained in the phase of the Fourier
transform of the BPM signal. For these reasons, hetero-
dyned spectrum analyzer measurements are used mainly
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for steady state measurements of instability frequency and
amplitude, or for narrow band detection of the phase space
magnitude transient of a single coupled-bunch mode.

Phase space tracking of multibunch motion is pos-
sible only with fast digitization and storage of the
oscillation coordinate of each bunch in the machine.
Diagnostic techniques that satisfy this criterion suffer
from loss of bunch centroid information only to the extent
that measurements are never noise free. Here we use
data from a programmable longitudinal feedback (LFB)
system, which can digitize and store the oscillation coor-
dinate of each bunch while simultaneously manipulating
feedback parameters [1,2]. As a result, growth of unstable
oscillations can be observed in the linear small-amplitude
region, for which theoretical predictions exist. Another
advantage of the LFB system is its ability to store down-
sampled data. Conventional digital oscilloscopes with
data storage capabilities cannot easily use downsampling
to take advantage of the fact that the beam signal contains
only information near synchrotron and betatron sidebands
of revolution harmonics.

This paper describes measurements of the angular
evolution in phase space of longitudinal and transverse
coupled-bunch instabilities at the LBNL Advanced Light
Source (ALS) and Stanford Linear Accelerator Center B
factory (PEP-II). Phase space tracking is used to identify
unique features of uneven-fill longitudinal instabilities at
the two machines. Tracking is also used to compare the
signature of a vertical instability [3] in the PEP-II high
energy ring (HER) to those of the fast beam-ion instability
(FBII) [4,5] and conventional instabilities. We show that
this method has the potential to distinguish between the
two instability mechanisms.

II. SIGNAL PROCESSING

Coupled-bunch instability data from a single BPM is
often used to measure average tunes, oscillation amplitude
envelopes, average phase shifts from bunch to bunch, etc.
However, it is not too difficult to estimate the approximate
© 1999 The American Physical Society 084401-1
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phase space angle corresponding to each sample of bunch
data, if the beam motion is approximately sinusoidal [6,7].

We assume that the sampled longitudinal or transverse
bunch oscillation coordinate sk

n of bunch k is given by

sk
n � ak

n cos�2pnDn 1 fk
n � � Re�uk

n� ; (1)

uk
n � ak

nej�2pnDn1fk
n�, (2)

where n is the sample number, D is the downsampling
factor, uk

n is the analytic signal corresponding to sk
n, and

ak
n and fk

n vary slowly compared to the nominal tune n.
Although there is no unique solution for the phase space
magnitude a and the normalized phase space angle f, we
can use the approximation

uk
n � sk

n 2 js̃k
n , (3)

where s̃k
n is the Hilbert transform of sk

n. The Hilbert trans-
form is calculated by taking the discrete Fourier transform
of sk

n, rotating all positive-frequency components by 190±

and all negative-frequency components by 290±, and then
taking the inverse Fourier transform. From Eqs. (2) and
(3), we get

ak
n � jsk

n 2 js̃k
nj , (4)

fk
n � ��sk

n 2 js̃k
n� 2 2pnDn . (5)

This approach is equivalent to that of calculating the
quadrature component of a narrow band signal from its
in-phase component. In the terminology of transverse
diagnostics, we are estimating the signal at a fictitious BPM
that is 90± ahead of the original BPM in betatron phase.

When used alone, the discrete Hilbert transform pro-
duces significant errors at the edges of discrete data sets,
since the corresponding filter has a long impulse response.
This effect is minimized in practice by simultaneously
subjecting the data to a smooth bandpass filter centered at
the synchrotron or betatron sideband. The bandpass filter
rejects noise outside the frequency band of interest. We
also introduce appropriate delays in the bunch signals by
means of a phase shift that is proportional to frequency.
This compensates for the fact that the bunches are
sampled at different instants and on different turns, due
to the requirements of downsampling.

With the processing techniques described above, we
have approximations to the action ak

n and normalized
angle fk

n of each bunch k at each sample instant n. If
the data are digitized soon after feedback is switched off,
we have enough information to test almost any theoretical
prediction about the coupled-bunch instability. The most
immediate application of this technique is in the diagnosis
of fast transverse instabilities in short bunch trains. For
example, one could distinguish between conventional
instabilities and the FBII by matching the angle variation
along a bunch train with the frequencies of various kinds
of ions in the vacuum chamber. Tune shifts along the
bunch train are also a strong indicator of the FBII. Bunch
tunes can be tracked continuously by taking the derivative
of smooth fits to the bunch angle.
084401-2
Instabilities in beams with most of the buckets filled
are well described by projections of the beam motion
onto even-fill eigenmodes (EFEMs). These projections
are calculated by taking the discrete Fourier transform of
the sequence of analytic signals at each turn. The modal
phase space coordinate Um

n of the mth EFEM at turn n is
thus given by

Um
n � Am

n ej�2pnDn1Fm
n � �

N21X

k�0

uk
ne2j2pmk�N , (6)

where N is the ratio of the harmonic number to the
bunch spacing, and Am

n and Fm
n are the magnitude and

normalized angle, respectively, in modal phase space.
There is a subtle but important difference between the

analytic signals uk
n used for studying bunch motion in the

time domain and those used for calculating modal pro-
jections using the equation shown above. In the former
case, data is processed to estimate the phase space co-
ordinate of each bunch as it crosses the BPM (coinci-
dence in space). This is how a localized impedance sees
bunch motion. In the latter case, signals are processed
to recreate instantaneous snapshots of the analytic signals
of all bunches each time the first bunch crosses the BPM
(coincidence in time). This is because bunch oscillations
must be projected into the Fourier domain simultaneously
for the discrete Fourier transform to correspond to a modal
decomposition.

In the past, measurements of modal magnitude tran-
sients Am

n have been used to determine growth rates of
coupled-bunch eigenmodes. Here we shall use normal-
ized modal angle transients Fm

n to precisely measure co-
herent tunes in the linear regime. In addition to affording
direct measurements of the imaginary part of the beam
impedance, this approach yields new insights into uneven-
fill instability dynamics.

III. PHASE SPACE TRACKING OF BUNCH
TRAINS

The PEP-II HER has exhibited vertical and horizontal
instabilities at surprisingly low beam currents. The verti-
cal instability was seen to grow and then saturate at ampli-
tudes of around 100 300 mm at currents as low as 5 mA
[3]. The low threshold and small saturation amplitudes
triggered a search for a possible FBII.

The FBII is usually distinguished from conventional in-
stabilities by studying the effect of variations in gas pres-
sure, bunch spacing, train length, and bunch currents on
the spectrum of betatron sidebands. Although such mea-
surements have been used at the Advanced Light Source
[8] and the Pohang Light Source [9], they are not al-
ways conclusive during commissioning, since conditions
such as beam orbit, vacuum pressure, coupling, beam size,
feedback, etc. are sometimes not well controlled.

To diagnose the HER vertical instability, we make
use of the prediction that FBII growth in bunch trains
084401-2
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is characterized by variation in the growth rate and
bunch tune along the train. Conventional coupled-bunch
instabilities caused by wake fields that persist over the
length of the gap are not expected to exhibit such
behavior. The approach of distinguishing between the
two kinds of instability on the basis of a single growing
transient has the advantage of being insensitive to artifacts
such as parameter drift.

The vertical instability was investigated using digitized
records of the oscillations of each bunch immediately after
switching off feedback. Figure 1 shows a typical growing
transient in a 150-bunch train with a 4.2 ns spacing and a
total beam current I0 of 52 mA1. Feedback is switched off
at approximately t � 0. The bunch oscillation amplitudes
increase exponentially with time, with bunches at the
tail of the train reaching higher amplitudes than those at
the head. Although growth along the train is sometimes
thought to be a symptom of the FBII, it is also a feature
of conventional instabilities driven by an impedance
resonance whose fill time is comparable to the length of
the bunch train.

Bunch tune variation can be examined most easily by
locating the peak in the Fourier spectrum of each bunch
signal. Figure 2 zooms in on the bunch spectra in the
region of the vertical tune peak. The trailing bunches
show a more pronounced spectral peak than the leading
bunches, since they oscillate at larger amplitudes. Since
the data record is 20 ms long, these spectra have a
frequency resolution of no more than 50 Hz, i.e., 0.0004 in
tune units. At this resolution, we see no tune shift along
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FIG. 1. (Color) Growing vertical instability transient in a 150-
bunch train in the PEP-II HER at I0 � 52 mA. Feedback
is switched off at t � 0. The oscillation amplitude ak of
each bunch k grows exponentially over the 20 ms interval,
with trailing bunches growing to larger amplitudes than leading
bunches.

1The PEP-II HER design goal is 1 A in 1658 buckets. At
a spacing of 4.2 ns, the entire ring can be filled with 1746
bunches.
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FIG. 2. (Color) Color-coded representation of magnitude spec-
tra of the 150 bunches in Fig. 1. Peaks of Fourier transform of
bunch transients lie at the same tune, indicating that tune spread
across the train is # the frequency resolution (50 Hz).

the bunch train. In addition to the limited resolution of the
discrete Fourier transform, such measurements are also
often complicated by power supply ripple, which imposes
a 60 Hz modulation on the betatron tune.

We can measure tune variations with greater sensitivity
by tracking the normalized bunch phase space angles
fk

n . For example, we could subtract f150
n from all the

other angles to get the phase space angle of each bunch
relative to that of the last bunch. This automatically
masks the tune variation due to power supply ripple. The
slope of this angle differential directly yields the tune of
the corresponding bunch relative to that of bunch 150.
Figure 3 shows the phase space angle differentials �fk

n 2

f150
n � for all bunches. Only the last 7 ms of data are

shown, since the signal-to-noise ratio is worse during the
initial section of the growing transient. We see that the
differential angles are almost constant over these 7 ms,
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FIG. 3. (Color) Phase space angle differentials �fk
n 2 f150

n � for
all 150 bunches. Differentials for the first few bunches are
noisy due to smaller oscillation amplitudes. Differential angles
are almost constant over 20 ms, indicating that the bunches
oscillate coherently.
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FIG. 4. (Color) (a) Relative tunes of bunches 46–150, calcu-
lated using linear fits to the phase space angle differentials in
Fig. 3. (b) Growth rates of the same bunches, calculated using
exponential fits to the magnitude transients ak .

with a small positive slope in the section from bunch 60
to bunch 140. This implies that the bunches oscillate
coherently, with very little tune variation along the train.
The exact tune variation can be extracted from linear fits
to the relative angles �fk

n 2 f150
n �. Instantaneous tunes

are not calculated, since the relative angles vary linearly
with time in this piece of data.

Figure 4(a) shows the fitted tunes of bunches 46 to
150, relative to the tune of bunch 150. The peak-to-peak
variation is less than 50 rad�s. The first 45 bunches are
excluded because they grow to smaller amplitudes and
have smaller signal-to-noise ratios. Exponential fits to the
magnitude transients ak yield the instability growth rates
shown in Fig. 4(b). As can be expected of conventional
instabilities, the growth rate variation across the train is
small enough to be accounted for by measurement error
and the presence of other eigenmodes at small amplitudes.
The original theoretical studies [4,5] of the FBII predicted
that oscillations should grow as exp�

p
t�t�, where t is

the growth time. However, the experimental data quite
clearly show exponential growth. A more detailed theo-
retical analysis, which incorporates b-function variation
around the ring, predicts exponential FBII growth and a
linear variation in tune shift and growth rate along the
train [10]. The linear variation of growth rates and tunes
is not borne out by the data, as can be seen from Fig. 4.
It is, of course, possible that some of the approximations
made in [10] do not apply to the relative time scales of
this experiment.

Animation

It is convenient to use animation to represent the evolu-
tion of the vertical instability transient shown in Figs. 1–4.
Figure 5 shows a single frame from Video 1. Each such
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FIG. 5. (Video) A single frame from Video 1 depicts a vertical
instability transient in a 150-bunch train in the PEP-II HER
(same data as Figs. 1–4). (a) Oscillation magnitudes of the
150 bunches on a single turn and (b) relative phase space
angles �fk 2 f150� of the bunches on the same turn.

frame shows the oscillation magnitudes ak and relative
phase space angles �fk 2 f150� of the 150 bunches on a
single turn. Successive frames are separated by 20 turns.
Only the last 7 ms of data are animated. The relative phase
pattern is largely fixed, with a small upward trend in the
section from bunch 60 to bunch 140.

IV. PHASE SPACE TRACKING OF
COUPLED-BUNCH MODES

The previous section focused on applications of time
domain phase space tracking, i.e., tracking of bunch
trajectories uk

n in phase space. Coherent instabilities in
rings with more filled buckets than empty buckets are
better described by the projection of these trajectories
onto the eigenmodes of an evenly filled ring [see Eq. (6)].
The magnitude Am of each projection Um corresponds
to the magnitude of the sideband of the mth revolution
harmonic in the bunch spectrum. If the coherent tune
is a constant, the angle of Um evolves linearly with a
constant slope n 1 dFm�dt � n 1 Dnm. The coherent
tune shift Dnm can thus be measured accurately by
measuring the slope of the modal phase space angle as
the instability grows linearly out of the noise floor. This
is a direct measurement of the imaginary part of the beam
impedance.

Of the 328 longitudinal coupled-bunch modes at the
ALS, only modes 204 and 233 are unstable in most cases
[11]. Figure 6 shows the measured linear evolution of
F204 (dash-dotted line) and F233 (dotted line) as the two
modes grow out of the noise floor. The ring is evenly
filled at I0 � 157 mA. The slopes give the coherent
084401-4
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FIG. 6. (Color) Linear evolution of modal phase space angles
F204 and F233 at the ALS (longitudinal instabilities, I0 �
157 mA). Dash-dotted line: F204, even fill; dotted line: F233,
even fill; solid line: F204, square-wave fill; dashed line: F233,
square-wave fill. Square-wave fill couples the two frequencies
and creates a mixed eigenmode, so that U204 and U233 are phase
locked.

frequency shifts, which are 2132 Hz and 2196 Hz,
respectively.

The effective longitudinal impedance Zeff for a beam
with N evenly spaced bunches is defined as

Zeff�v� �
1

vrf

X̀

p�2`

�pNv0 1 v�Z�pNv0 1 v� , (7)

where Z�v� is the total longitudinal beam impedance, vrf

is the frequency of the klystron drive, and v0 � 2pf0 is
the revolution frequency. Zeff is related to the even-fill
coherent tune shift by [12]

Im�Zeff�mv0 1 vs�� � 2
4pEns

aehI0
Dnm, (8)

where a is the momentum compaction factor, h is the
harmonic number, E�e is the nominal beam energy
in volts, and ns � vs�v0 is the nominal synchrotron
tune. By scaling the measured tune shifts according
to the above equation, we get Im�Zeff�204v0 1 vs�� �
2157 kV and Im�Zeff�233v0 1 vs�� � 2232 kV. To-
gether with the measured growth rates, these numbers
have been used to estimate the shunt impedance of the
cavity resonances that drive the instabilities [13].

In addition to aiding in impedance measurement, graphs
of modal phase space angles provide information about the
shape and nature of the eigenvectors of an unevenly filled
ring. Recent theoretical studies of uneven-fill dynamics
suggested that two even-fill eigenmodes could be coupled
to each other by means of uneven fills that contain Fourier
components at their spatial beat frequency [13]. For
example, the ALS even-fill modes at 204f0 and 233f0

can be coupled together using a square-wave fill with a
periodicity of roughly 1�29f0. The coupling creates a new
pair of eigenmodes which are linear combinations of the
two even-fill eigenmodes. If we measure the growth of
one of the “mixed” eigenmodes, we should naturally see
that projections of the motion onto even-fill modes 204 and
084401-5
233 show exactly the same growth rate and coherent tune
shift. Such a measurement was performed at the ALS on
the same day and at the same beam current (157 mA) as the
above-mentioned even-fill measurement. The normalized
phase space angles F204 (solid line) and F233 (dashed
line) of the projections U204 and U233 are shown in Fig. 6.
The existence of a mixed eigenmode is confirmed by the
fact that F204 and F233 have identical slopes (the slopes
were different by 64 Hz in the even-fill case). Mixtures of
unstable even-fill eigenmodes are generally to be avoided,
since the mixed mode is more unstable than either of the
even-fill modes [13].

Longitudinal coupled-bunch instabilities in PEP-II ex-
hibit more complicated behavior, since they are driven
by damped cavity resonances which span tens of revo-
lution harmonics [14]. Other complications include ir-
regular fill shapes during commissioning and gap-induced
interbunch tune spreads [2,15], which tend to couple
neighboring even-fill eigenmodes to each other. Conven-
tional measurements of instability growth rates are diffi-
cult to interpret under such circumstances.

The uneven-fill eigenmodes can be thought of as linear
combinations of even-fill eigenmodes. Thus an uneven-
fill eigenmode could show up at more than one sideband
in the beam spectrum, and a single sideband could be
a superposition of many eigenmodes. Since different
modes, in general, have different coherent frequencies, we
should see beating of sideband amplitudes on a spectrum
analyzer in zero span mode, and beating of the Am’s in the
reconstructed phase space trajectories.

Figure 7 shows the magnitude growth of two sets of
projections of a single longitudinal instability transient in
the PEP-II low energy ring (LER). The data were taken at

0

0.5

1

(a) A787 to A794

M
ag

n.
 (

de
g@

rf
)

0 5 10 15 20 25
0

0.2

0.4
(b) A807 to A815

Time (ms)

M
ag

n.
 (

de
g@

rf
)

FIG. 7. (Color) Growth in magnitude of two sets of projections
of a longitudinal instability transient in PEP-II LER. Uneven
fill, I0 � 703 mA. (a) A787 to A794, beating is evidence of
at least two uneven-fill eigenmodes in this frequency range.
(b) A807 to A815, quasiexponential growth indicates that this set
of sidebands oscillates coherently as a single eigenmode.
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an above-threshold beam current of 703 mA. There is
a clear qualitative difference between the upper traces,
which show beating at a frequency of 50–80 Hz, and the
lower traces, which show slow quasiexponential growth.
The obvious conclusion is that the “modes” in Fig. 7(a)
are actually superpositions of two or more uneven-fill
eigenmodes with slightly different coherent frequencies.
The modes in Fig. 7(b) look like projections of a single
uneven-fill eigenmode, since they all show about the same
growth rate.

The LER instability transient described above is local-
ized to the frequency range between 775f0 and 815f0,
which coincides with the aliased frequencies of the two
largest cavity resonances [14]. Figures 8(a) and 8(b)
show the average magnitudes and tunes of the modal
phase space trajectories �U775, U776, . . . , U815� in the same
piece of data. We see a clear transition at mode 798,
which is marked with a dotted line. The coherent tune
spectrum to the right of the dotted line shows no tune
variation, confirming our earlier conclusion that this
band of projections onto even-fill modes contains just a
single uneven-fill eigenmode. The other possibility,
which is much less likely, is that this band contains
multiple eigenmodes whose growth rates are very close
and whose coherent tunes are identical to within 4 Hz.
The modes to the left of the dotted line seem to have a
relatively large coherent tune variation. This frequency
band contains two or more eigenmodes that beat against
each other over time scales comparable to the length of
the data set. The modal phase space angles Fm do not
evolve linearly in this band, and therefore these calculated
tunes have errors of the order of the beat frequency.
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FIG. 8. (Color) (a) Average of modal phase space magnitudes
Am; m � 775, 776, . . . , 815 (same data as Fig. 7). (b) Average
coherent tunes, calculated using linear fits to Fm; m �
775, 776, . . . , 815. Fitted tunes show negligible variation above
m � 798, implying that the band of projections on the right-
hand side of the dotted line contains only one eigenmode.
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The phase space trajectories of some of the modes
which comprise the single uneven-fill eigenmode above
798f0 are shown in Fig. 9(a). Here we see the simple
exponentially growing single-frequency spirals that we
usually expect. Although the actual modal phase space
trajectories complete roughly 95 revolutions around the
origin in the duration of this piece of data, the figure
shows less than a single revolution for each mode. This
is because the phase space angle of a reference mode has
been subtracted from the angles of each of the displayed
trajectories, to reduce clutter in the graphical representa-
tion. In other words, we plot Um�t� exp�2jvreft� in the
complex plane rather than Um�t�.

The phase space trajectories of a few beating modes
Um are shown in Fig. 9(b). Most of these trajectories
look approximately like circles with a stationary or
slowly rotating center. This indicates that the complicated
beating in Fig. 7 is largely explained by the superposition
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FIG. 9. (Color) Modal phase space trajectories of growing
PEP-II LER longitudinal instability (same data as Fig. 8).
(a) Representative selection of modes above m � 798. Ex-
panding spirals about the origin indicate a single uneven-fill
eigenmode. (b) Trajectories of a few modes below m � 798,
whose magnitude transients show beating.
084401-6



PRST-AB 2 PHASE SPACE TRACKING OF COUPLED-BUNCH INSTABILITIES 084401 (1999)
0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4 (a)
Q

ua
dr

at
ur

e 
"m

od
e"

 a
m

pl
it.

 (
de

g@
rf

)

1 0 1
1

0.5

0

0.5

1
(b)

In phase "mode" amplitude (deg@rf)

FIG. 10. (Video) A single frame from Video 2 depicts the in-
stantaneous modal phase space coordinates of two sets of lon-
gitudinally unstable modes in the unevenly filled PEP-II LER
(same data as Fig. 9). (a) Phasors representing modes 805–
815: These modes are merely projections of a single eigen-
mode. (b) Modes 780–786: These are superpositions of two
or more eigenmodes.

of just two uneven-fill eigenmodes. The slowly rotating
(and diverging) centers of the circles are the tips of
phasors that represent an eigenmode whose coherent
frequency is very close to vref (2p 3 3416 rad�s, in
this case). The circular orbits are formed when another
eigenmode with a slightly larger coherent frequency is
superimposed on the original mode. We foresee the use
of such plots as visual aids in precisely measuring the
growth rates and coherent tunes of unstable uneven-fill
modes that beat against each other.

Animation

The distinction between projections of a single eigen-
mode and superpositions of two or more eigenmodes
is quite clear in Video 2, which animates the data of
Fig. 9. Figure 10 shows a single frame from the video.
As before, we plot Um�t� exp�2jvreft� in the complex
plane rather than Um�t�. Successive frames, separated
by 60 turns, show snapshots of the instantaneous modal
phase space coordinates of the two sets of modes. Sub-
frame (a) shows modes 805–815. These modes rotate at
identical speeds as they grow, since they are merely pro-
jections of a single uneven-fill eigenmode. Subframe (b)
shows the phasors corresponding to modes 780–786. The
large variation in relative amplitude and relative phase is
due to the fact that each of these phasors is a superposi-
tion of two or more uneven-fill eigenmodes, with two or
more coherent frequencies and growth rates. The paths
that the tips of these phasors trace are the trajectories
in Fig. 9.
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V. SUMMARY

We have demonstrated the use of phase space tracking
as a new diagnostic for coupled-bunch instabilities. Phase
space tracking in the frequency (modal) domain has been
shown to be useful in accurately measuring the imaginary
part of the effective beam impedance at the ALS. Measure-
ments of modal phase space trajectories at the ALS and
PEP-II confirm qualitative predictions about uneven-fill
coupled-bunch eigenmodes. These trajectories can con-
ceivably be used to measure coherent tunes and growth
rates in cases where conventional methods are frustrated
by beating between multiple uneven-fill eigenmodes.

Tracking in the time domain has been used to study a
low-threshold vertical instability in the PEP-II HER, and
to compare features of the bunch phase space trajectories
to characteristics of conventional instabilities and the FBII.
The trajectories fail to match qualitative features described
in the existing literature on FBII theory. The method
shows promise as a tool for analyzing data from future
FBII experiments, and for revealing aspects of instability
growth that have until now remained unexamined.
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