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Longitudinal space charge debunching and compensation in high-frequency accelerators
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Space charge debunching is a major issue for future high-gradient, high-frequency accelerator
techniques. Space charge will set limits on the maximum six-dimensional phase space density
obtainable in optical or plasma based accelerators. These accelerators will have short microbunches a
fraction of an optical wavelength, in which space charge debunching is unmitigated by two-dimensional
effects. The element of an accelerator system most vulnerable to space charge is the drift space between
the prebuncher and the acceleration sections. A self-consistent model coupling the energy and phase
modulation in the drift space is developed. It is shown that both space charge effects and coherent
energy spread can be offset by adjusting the prebuncher and beam optics parameters. In the accelerator
sections, the large relativistically corrected inertia together with two-dimensional effects combine to
make space charge debunching unimportant. The analytical results compare well with PARMELA code
simulations.

PACS numbers: 41.75.Jv, 29.27.Bd, 29.17.+w
I. INTRODUCTION

Space charge spreading of high energy electron beams is
well known. The spreading is both transverse (defocusing)
and longitudinal (debunching). The defocusing tendency
can be offset by increasing the magnetic focusing field.
Space charge debunching [1–3] is a more pernicious
tendency since the offsetting force components of the
acceleration fields tend to be weak. Fortunately, in radio
frequency (rf) linear accelerators (linac) the debunching
force is greatly weakened by two-dimensional (2D) effects,
namely, that the longitudinal dimension of the bunch (mm
to cm) is much longer than the beam width (100 mm to
1 mm). The critical parameter is the elongation ratio
(length-to-diameter ratio) in the beam rest frame. In
typical rf linacs the elongation is much greater than unity
so that the longitudinal space charge field, which drives
debunching, is greatly muted by 2D effects. A much
different situation arises in future high-gradient, high-
frequency accelerators based on optical or plasma based
accelerators. There the beam is composed of a series of
very short microbunches with longitudinal dimension a
fraction of an optical wavelength. The elongation can be
comparable to unity or less in the early, low beam energy
elements of an accelerator system. For low elongation
the microbunches begin to resemble pancakes. Space
charge debunching forces are maximized in this quasi-
one-dimensional (1D) geometry. Indeed, the space charge
debunching field acting on the electrons at the edge of
a microbunch can approach 106 V�m (e.g., for 0.2 nC
and 3 mm macrobunch charge and length, 100 mm beam
radius, and 10 mm wavelength). This major difficulty
must be reckoned with in the design of high-frequency
linacs.

Space charge in a beam drives cold plasma oscillations
at the plasma frequency, which is determined by the beam
density, the relativistic electron inertia, and, of course,
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the elongation. If offsetting forces are negligible, inertia
is the only factor resisting the space charge force. In
drift spaces between the injector and the accelerator,
and between accelerator sections, there is no offsetting
force. In the accelerator sections a component of the
accelerating fields can oppose longitudinal space charge
spreading, but is ineffective at high energy in high-
frequency accelerators. Since inertia is the only factor
resisting space charge debunching, the system must be
designed to operate in the inertial regime where the
elapsed time is a fraction of a plasma oscillation period.

This paper examines the effects of longitudinal space
charge spreading in the quasi-1D (low elongation) and the
inertial limits. The basic configuration of a high-frequency
accelerator, illustrated in Fig. 1, includes a prebuncher for
modulating the e-beam energy, a drift section to allow lon-
gitudinal compression into microbunches, and a series of
acceleration sections. Such a configuration is being tested
in the Staged Electron Laser Acceleration (STELLA) ex-
periment at the Brookhaven National Laboratory Accel-
erator Test Facility [4]. Parameters for this experiment
will be used in the analysis; however, the results found
here are generally applicable.

The outline of the paper is as follows. Section II
presents a simple estimate of space charge effects by
setting the inertia of the electrons against space charge
forces. The buncher is found to be the element of a high-
frequency accelerator that is most vulnerable to space
charge debunching because the electron inertia is the
smallest there. Section III follows with an analysis of
space charge debunching in the buncher. This immedi-
ately suggests a relatively easy method to counteract the
space charge force by overmodulating the e-beam in the
prebuncher. A fortuitous by-product of this process is that
the energy spread introduced by the prebuncher can be
reduced, as suggested by previous authors. In Sec. IV,
the basic analytical approach is validated using a more
© 1999 The American Physical Society 081301-1
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FIG. 1. Idealized microbuncher arrangement.
realistic microbunch distribution and the PARMELA code,
which includes space charge effects. Section V concludes
with a summary.

II. ESTIMATE OF SPACE CHARGE EFFECTS

The simplest estimate of space charge debunching fo-
cuses on space charge oscillations. The frequencies of
these oscillations in the longitudinal and transverse direc-
tions depend on the elongation in the rest frame of the beam

� � glm�w , (1)
where g is the relativistic parameter, lm is the microbunch
length, and w is the beam diameter. (Note that the
aspect ratio, as defined elsewhere [5,6], is related to the
elongation ratio as 1�2�.) The STELLA experiment
offers a practical example from which to extract typical
values of the elongation. In the drift space (see Fig. 1)
the elongation begins at a relatively large value �� . 3�,
but falls rapidly, dropping below unity well before passing
the midpoint of the drift distance, and it remains in the
range 0.4–0.5 after the focusing lens. In the acceleration
sections that follow, � increases as the beam energy
increases and exceeds 2 by the end of the acceleration
region �g � 300�. Thus the debunching is roughly 1D
over much of the drift space, but 2D effect begins to play
a role in the accelerator region.

In the 1D (low elongation) limit, longitudinal space
charge forces drive oscillations at the plasma frequency
vp � �e2n�me´0g3�1�2, where me, 2e, and n are the
electron rest mass, charge, and density, respectively, and
´0 is the free-space permittivity. Note that the relativistic
correction to the mass for relative longitudinal motion is
g3. This arises as follows: the rate of change of momen-
tum is d�bgmec��dt (b is the relativistic variable, c is
the speed of light), since b � �1 2 1�g2�1�2 then Dg �
bg3Db; thus the momentum change is mecg3db�dt
so that the corrected inertia is meg

3. Space charge de-
bunching becomes significant if the transit time �L�bc
(L � travel distance) is comparable to or exceeds the
plasma oscillation time 1�vp , i.e., if vpL�c $ O�1� for
b � 1. Accordingly, we define a space charge parameter

ssc � v2
pL

2�c2; (2)

if ssc $ O�1�, space charge effects will be significant.
An expression for ssc is readily found in terms of

practical units. The beam properties are the macrobunch
length lM , charge QM , and the normalized emittance ´N .
If A is the cross-sectional area of the beam, then the
density is n � QM�eAlM . As a representative area we
choose the emittance area

A´ � p´NLd�g , (3)

i.e., the geometric mean of the waist area Aw and the area
at a distance �L from the waist (far-field limit Aw ø A´).
Combining these with Eq. (2) gives
ssc �
4reL

g2lM´N

QM

e
� 7.04 3 1025 L �m�QM �nC�

g2lM �m�´N �m rad�
, (4)

where re � e2�4p´0mec2 is the classical electron radius. This expression can be applied in the buncher, in which case
L � Ld , the drift space length. It can also be applied in the acceleration region. Then the appropriate length is the
081301-2
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mean energy (average of initial and final), divided by the acceleration gradient L � W�W 0. Thus, using Eq. (4) and
g � 1.957W �MeV�, the space charge parameter in the acceleration region is

ssc � 1.84 3 1025 QM �nC�
W 0 �MeV�m�W �MeV�lM �m�´N �m rad�

. (5)
The space parameter is examined for conditions
relevant to the STELLA experiments [4] and to a future
high-gradient, high-frequency accelerator. These are sum-
marized in Table I. In the STELLA buncher, ssc � 1.2,
indicating that space charge effects are significant and
clearly warrant further investigation. In the STELLA ac-
celerator region ssc � 0.13, indicating that space charge
effects are much less important. This is the result of
higher energy and enhanced inertia. In the high-gradient,
high-frequency accelerator region ssc � 0.0015, inertia
is so great that space charge effects are insignificant. Evi-
dently, the most vulnerable element of a high-frequency
accelerator is the buncher. This is therefore the object of
an analytical model in Sec. III.

III. ANALYTICAL MODEL OF SPACE CHARGE
EFFECTS

A. Buncher arrangement

A simple method of compressing into microbunches,
shown in Fig. 1, employs a prebuncher [e.g., an inverse
free-electron laser (IFEL)] followed by a drift space. The
beam enters the prebuncher as a macrobunch with a length
many times the laser wavelength l. It has very little
energy spread initially. The prebuncher gives it an energy
modulation with longitudinal periodicity �l. Within
each “segment” of width l, electrons behind the centroid
of the segment have slightly higher energy and speed,
and those ahead have slightly lower. In traversing the
drift space (length Ld) the electrons behind the centroid
catch up, while those ahead of it fall back. This bunch
compression occurs in each segment, producing a series
of microbunches, having the appearance of a stack of
thin pancakes spaced apart by l. While this arrangement
produces microbunching, it also introduces a coherent
energy spread.
081301-3
B. One-dimensional microbunching model

A self-consistent model of the electron energy and
phase in a microbunch is developed based on three
approximations. (i) Since the elongation of the mi-
crobunches in the drift space is comparable to or less
than unity in the drift space the geometry is quasi-1D. A
simple 2D correction factor, which is presented in Ap-
pendix A, can be applied to this. (ii) Additionally, since
debunching is the issue being addressed, we need consider
only a single microbunch (as in Fig. 1). Space charge
fields from other microbunches push the electrons in a
given microbunch forward or backward as a unit, but
do not cause debunching. Justification for this approxi-
mation based on a comparison of analyses for a single
microbunch and multiple microbunches is presented in
Appendix A. (iii) Finally, a sawtooth modulation of the
energy modulation is also assumed, as will be discussed
shortly.

Define a phase variable in the moving frame of the mi-
crobunch, w � �2p�l� �z 2 z0�t��, where z is the longi-
tudinal coordinate, z0 is the position of the microbunch
centroid, and t is the time. Adopt the alternative “time”
variable z � bct where bc is the mean speed of the elec-
trons. Then the evolution of the beam is governed by the
equations of continuity, Gauss, and motion,

bc
≠

≠z
�nA� 1

2p

l

≠

≠w
�nuzA� � 0 , (6)

2p

l

≠Ez
≠w

� 2
e
´0
n , (7)

bg3mec

√
≠uz
≠z

1
2puz

lc
≠uz
≠w

!
� 2eEz , (8)
TABLE I. Accelerator parameters.

High-gradient,
STELLA STELLA high-frequency

Parameter buncher accelerator accelerator

Initial energy Wi 45 MeV 45 MeV 50 MeV
Final energy Wf 45 MeV 145 MeV 10 GeV
Acceleration gradient W 0 · · · 100 MeV�m 500 MeV�m
Drift space length Ld 2 m · · · · · ·
Accelerator length Lacc · · · 1 m 20 m
Normalized emittance ´N 1 mm mrad 1 mm mrad 1 mm mrad
Macrobunch charge QM 0.2 nC 0.2 nC 0.2 nC
Macrobunch length lM 3 mm 3 mm 1 mm
Space charge parameter ssc 1.2 0.13 0.0015
081301-3
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respectively. The unknowns are the density n, the veloc-
ity relative to the bunch centroid uz , and the electric field
Ez , each of which is a function of w and z. The cross-
sectional area of the beam A�z� (see Fig. 1), depends on
the focusing optics and will be described shortly. Con-
sider the self-similar forms

n�z� �
QMl

2elM
�A�z�l�z��21, (9a)

uz�z, w� �
cl

2p

1
l
dl
dz

w , (9b)

Ez�z, w� � 2
el

2p´0
n�z�w . (9c)

This is the case of linear microbunching �uz ~ w� corre-
sponding to an ideal sawtooth modulation. Note that the
density profile in this self-similar case is “square”; i.e., the
density is uniform between the leading and trailing edges
of the bunch. These self-similar forms identically satisfy
Eqs. (6) and (7), and the equation of motion simplifies to

d2l
dz2

� ssc
lA´

2L2
d

�A�z��21. (10)

The initial conditions are as follows. The energy modu-
lation is Dg�w, z� � g 2 g � bg3Db � bg3uz�c.
From Eq. (9b), the energy modulation Dg ~ w also has
a sawtooth form. A more realistic form is sinusoidal,
Dg ~ sinw. Although the sawtooth form is artificial, it
is roughly consistent with the sinusoidal form over half of
the phase range, jwj # p�2. Electrons in the other half of
the phase range, p�2 # jwj # p, are not bunched. This
division of phases between electrons that are bunched and
those that are not is characteristic of any periodic modu-
lation, including the sinusoidal form. The unbunched
electrons do not contribute to the space charge field in the
microbunch. Therefore, the analytic model applies only
to the electrons in the bunching range jwj # p�2. Note
that a realistic sinusoidal modulation will be assumed in
the PARMELA simulations of Sec. IV; this will offer an
a posteriori check on whether the sawtooth approximation
of the analytic model is a valid one.

The initial condition on the microbunch width is
therefore half the periodicity length,

l�0� � l�2 . (11)

The initial condition on dl�dz is found as follows.
The modulation at the microbunch edge �z � l�2� is
Dgedge � �1�c�bg3�uz�edge � �1�2�bg3dl�dz. The
root mean square (rms) modulation is 1�

p
2 of the edge

value. Therefore the initial condition on the derivative is

dl
dz

É
z�0

� 2
2
p

2
bg3 �Dgrms�pre, (12)

where Dgrms is the initial modulation. The minus sign
is because the modulation leads to a shortening of
081301-4
the microbunch length. Since half the electrons are
microbunched, a factor of 1�2 must be included on the
right-hand side of Eq. (10). Then, including the 2D
reduction factor (Appendix A),

d2l
dz2

� sscF2D
lA´

4L2
d

�A�z��21. (13)

Here we are considering only the case where l does not
change sign, i.e., microbunching electrons do not pass the
centroid. It is conventional to measure microbunching in
terms of the phase spread,

Df�z� � 2pl�z��l .

An expression for A�z� is needed to complete the
analytic solution. The drift space in Fig. 1 has an
idealized focusing lens located at z � zL, i.e., the thin
lens approximation. In practice the lens would be a triplet
of quadrupole magnets occupying a finite length. In the
regions before Region 1 and after Region 2, the e-beam
width w�z�, is

w2 � W2
i 1 4u2

i �z 2 Zi�2,

where Wi ,Zi are the waist width and location, and ui is
the asymptotic divergence angle; the subscripts �i � 1, 2�
denote the two regions. The normalized emittance ´N �
gWiui�2 is the same in both regions. For a circular beam
the area function is

A�z� � Awi 1
A2

´

AwiL
2
d

�z 2 Zi�2,

where Awi � pW2
i �4, and A´ is the emittance area

[Eq. (3)]. The two area functions �i � 1, 2� must match
at the lens �z � zL�. The parameters in Region 1 are
set by the prebuncher properties (length Lpre): the waist
is at the center of the prebuncher, Z1 � 2Lpre�2, and
the area at the end of the modulator is twice the waist
area, A�0� � 2Aw1. The latter is the design choice in the
STELLA experiments. Then the maximum area (at the
triplet) is

AL � A´

Lpre

2Ld

"
1 1

√
1 1

2zL
Lpre

!2#
.

The parameters in Region 2 are set by the matching
requirement A�zL� � AL and by the focusing strength of
the lens. In place of the latter, we simply specify the
second waist location Z2. Then the area at the second
waist is

Aw2 �
AL
2

2
641 6

vuut1 2

√
2A´

AL

Z2 2 zL
Ld

!2
3
75 .

In most cases the lower sign �2� is appropriate; only for
extremely weak focusing (small divergence angle) is the
upper sign needed. Figure 2 shows the e-beam diameter
as a function of distance for typical parameters. In this
081301-4
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FIG. 2. Beam optics example in the drift space: ´N �
1 mm mrad, g � 88, Ld � 2 m, zw1 � 20.235 m, zT �
1.0 m, and zw2 � 2.0 m.

case the first beam waist is in the modulator section (not
shown).

C. Analytic solution

The phase and rms energy spreads at the end of the drift
space (subscript f ) are

Dff

p
� 1 2

4
p

2Ld
lg3 Dgpre 1

sscF2D

2
K , (14)

Dgf

g
�

É
2

Dgpre

g
1

lg2

4
p

2Ld

sscF2D

2
J

É
, (15)

where the relativistic limit b ! ` is assumed. The
right-hand side of these equations represents the space
charge effect. The appearance of ssc in both expressions
reflects the self-consistent coupling of the phase Df and
modulation Dg. Geometric effects of the beam optics are
contained in the J and K factors, which are derived in
Appendix B. Note that space charge tends to increase
the phase spread [Eq. (14)] and reduce the energy spread
introduced by prebunching [Eq. (15)].

Figure 3 shows the dependence of the beam optics fac-
tors on the location of the second waist. The nominal
values for the factors are J � 2,K � 2�3. Their de-
pendence on the optics arrangement (Fig. 3) can be ex-
plained as follows. Space charge effects are enhanced in
the neighborhood of a beam waist because of the high
density there. Thus if the second waist is located before
the end of the drift space, then J and K are larger. If
the second waist is after the end of the drift space, then
no second waist appears in the drift space and J and K
are lower. Note that a solid line in Fig. 3 is used when
the final beam diameter �z � Ld� is smaller than its initial
�z � 0� value, and a dashed line when the final diameter
is larger. This affects the issue of beam acceptance in the
accelerator sections.
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FIG. 3. Geometric factors in coupling between beam optics
and space charge. J is the energy spread, and K is the
phase spread. All examples have ´N � 1 mm mrad, g � 88,
Ld � 2 m, and zw1 � 20.235 m.

The purpose of the buncher is to create short mi-
crobunches, i.e., to make Dff as small as possible. In the
idealized sawtooth model, this corresponds to Dff ! 0.
Then from Eq. (14), the prebuncher modulation would be
set to

Dgpre

g
�

lg2

4
p

2Ld

√
1 1

sscF2D

2
K

!
. (16)

The corresponding final energy spread is then

Dgf

g
�

lg2

4
p

2Ld

É
1 2

sscF2D

2
�J 2 K�

É
. (17)

Since J . K, the effect of space charge is to reduce
the final energy spread. Indeed, it may be possible in
some cases to eliminate the coherent energy spread intro-
duced by the modulator, which occurs if ssc � 2��J 2

K�F2D . This possibility has been suggested elsewhere;
see, e.g., Fig. 5 of Ref. [7]. Therefore, space charge in
081301-5
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TABLE II. Beam optics in the buncher of STELLA.

Laser wavelength l 10.6 mm
Drift space length Ld 2 m
First waist location Z1�Ld 20.125
Lens location zL�Ld 0.5
Second waist location Z2�Ld 1

combination with an appropriate beam optics design can
be exploited to minimize both the microbunch length and
energy spread.

Consider a practical example. Table II shows beam op-
tics parameters relevant to the prebuncher in the STELLA
experiment [4]. Here the beam widths are 151, 544,
and 85 mm at the beginning, lens position, and end of
the drift space, respectively. In this example the 2D
correction factor (see Appendix A) is in the range of
0.75–0.85 in the region after the focusing lens and, thus,
F2D � 0.8 has been chosen as a representative value.
That F2D � constant reflects the fact that the elongation
of the microbunches remains about the same in this re-
gion. Near the lens the pancakes have a large diameter,
but are fairly thick; while near the end, both the diameter
and thickness are much reduced, but remain in about the
same proportion.

Table III shows examples of the energy spread for
optimal microbunching [Eq. (17)]. In the first example
(no space charge) the 0.73% energy spread introduced
by the prebuncher remains the same throughout the drift
space. In the 0.2 nC example, the prebuncher energy
spread must be raised to 0.95% (a factor of 1.3 higher) to
compensate for space charge. In this case the final energy
spread is reduced by a factor of 3 by space charge effects.
It may be possible to reduce the energy spread further by
adjusting the optics arrangements, e.g., by adjusting the
triplet and second focus locations.

IV. COMPARISON WITH PARMELA SPACE
CHARGE SIMULATION CODE

The purpose of this section is to validate the analytic
approximation by comparison with a series of computa-
tions with the PARMELA code [8]. The initial conditions
for the PARMELA simulations (phase space distribution of
the electrons) are generated by an FEL modeling code [9]

TABLE III. Energy spread in the buncher.

Prebuncher
Space charge energy Final energy

Microbunch parameter spread spread
charge Qb ssc Dgpre�g Dgf�g

No space charge 0 0.73% 0.73%
0.1 nC 0.61 0.84% 0.49%
0.2 nC 1.21 0.95% 0.25%
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with the IFEL operated well below saturation. This pro-
duces an approximately sinusoidal energy modulation of
the beam. Note that the FEL modeling code does not in-
clude space charge effects; this assumption is reasonable
since little bunching takes place within the 47 cm long
IFEL assumed in the simulation. For simplicity the case
of nearly constant beam area is considered. The parame-
ters for the FEL modeling code and PARMELA are listed in
Table IV. For a more accurate comparison, the analytic
model assumes the following: (i) The drift length includes
the 2 m drift space plus half the length of the 0.47 m
long prebuncher (IFEL wiggler in STELLA); this roughly
accounts for the partial microbunching that takes place
within the prebuncher. (ii) The beam radius of 100 mm
is roughly the average of the PARMELA example (89 mm
initial to 109 mm final). (iii) The macrobunch charge is
reduced by a factor of �1 2 e21� � 0.632 to account for
the difference between a sharp edge beam (analytic) and
the Gaussian radial profile (PARMELA); this is the fraction
of electrons in a Gaussian distribution that lie within the
root mean square radius of the beam.

The analytic model developed in Sec. III allows vari-
able beam area. Here it is simplified to the case of con-
stant area. As before, the model is not valid after bunch
inversion, i.e., the point when trailing electrons catch up
and pass the centroid, and leading electrons fall back past
the centroid. Then Eq. (13) becomes

d2l
dz2

� s

√
l

2L2
d

!
, (18)

where s � sscF2DA´�2A is a modified space charge
parameter. For the parameters in Table IV, sscA´ �
3.416 3 1028 m2, and A � pr2

rms � 3.14 3 1028 m2.
For constant area, the J and K functions (Sec. III)
simplify to J � A´�A, and K � A´�2A. By simple
integrations, the solution of Eq. (18) for no bunch inver-
sion is

l0f � l0i 1 sl�2Ld , (19a)

lf � �1 1 s�2�l�2 1 l0iLd , (19b)

TABLE IV. Parameters for the IFEL modeling code and
PARMELA.

Parameter Value

e-beam energy 45 MeV
Intrinsic energy spread 1.5 3 1024%
Emittance (x and y) 2 3 10212 m rad
Twiss parameter ax , ay 8000 m
Twiss parameter bx , by 0
Wiggler length 47 cm
Wiggler wavelength 3.33 cm
Laser wavelength l 10.6 mm
Laser power 0 8 MW
Macrobunch charge 0.2 nC
Microbunch charge 7 3 1024 nC
Number of electrons 5000
081301-6
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where the subscripts i and f denote initial and final
values, respectively, and the prime denotes the derivative
with respect to z. This result is valid for l $ 0 (no bunch
inversion). It is convenient to express the initial energy
spread in terms of the amplitude of the maximum energy
spread imparted by the laser; then

Dgi�g � 2l0i�g
2 2 1��p . (20)

It is also conventional to express the final energy using the
root mean square value, which is lower than the amplitude
by a factor of

p
3 for a sawtooth modulation,

Dgf�g � jl̃0f j �g2 2 1��
p

3 p . (21)

The final phase spread (full width) is Dff � �p�2�lf .
The foregoing model assumes a constant value of

s. Actually, the 2D correction F2D (Appendix A)
varies somewhat. At the start of the drift space, the
microbunches are fairly thick so that 2D effect may
be significant, whereas near the end they are relatively
thin (pancakelike), i.e., roughly 1D. By contrast, in the
variable area case (Sec. III) the elongation remains low
and roughly constant after the focusing lens. Here, as an
approximation, we use the average of F2D from Df � p

(initial) down to Dff (final).
The phase space (DW vs w) results for the PARMELA

computation and the analytic model are shown in Fig. 4.
Important numerical values for these comparisons are
shown in Table V. The no-space-charge case, Fig. 4(a),
shows the expected differences in the way a sinusoid and
a sawtooth “bunch up.” In the former the sinusoid is
distorted in the usual manner so that the central section
envelopes into a vertical stripe; in the latter the “bar”
representing the distribution simply rotates. Adding space
charge [Fig. 4(b)] causes the output phase distribution to
broaden and reduces the energy distribution amplitude.

In the comparisons that follow shortly, the “top 50%”
of the electrons in the PARMELA computation will be
selected. These are the half of the electrons with the
best bunching (lowest values of jwj) as marked in Fig. 4.
Take note that one aspect of the PARMELA results can be
misleading in the phase space diagram. The distribution
of electrons along the vertical “bands” (8± width “bins”)
is by no means uniform. For example, in the first bin to
the right of zero phase position in Fig. 4(b) (bin centered
at Dw � 18±), most of the electrons are concentrated
toward the lower energy end of the band.

Comparisons between the analytic and PARMELA results
as a function of initial modulation are shown in Figs. 5
and 6. The analytical predictions are shown as lines
and the PARMELA results as symbols. Consider first the
energy spread in Fig. 5. For no modulation �Dgi�g � 0�,
the energy spread is caused by space charge alone. For
low, but increasing modulation, DWrms decreases because
modulation partially compensates for the space charge
effect. At Dgi�g � 0.12%, the energy spread is perfectly
081301-7
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FIG. 4. Phase space diagrams for the analytic and PARMELA
results. The initial energy modulation amplitude is Dg�g �
0.51%. Other parameters for the PARMELA computation are
listed in Table IV. (a) No space charge effects, (b) with space
charge effects.

compensated. However, very little bunching (Fig. 6)
has occurred at that point �Dff � 2.8 rad�. For higher
modulation, Dff falls monotonically, but DWrms begins
to increase. The latter indicates overcompensation with
respect to energy spread. The analytic solution is valid
only up to Dgi�g � 0.76% at which point bunch inver-
sion takes place. Evidently the analytic model reproduces
the PARMELA results quite well in the range where it ap-
plies. The good agreement between the analytical model

TABLE V. Comparison of analytic model and PARMELA com-
putation.

Dff (rad) DWrms (keV)

No space charge
Analytic 0.40 �jwij # p�2� 138
PARMELA 0.82 (best 50%) 149

With space charge
Analytic 0.97 �jwi j # p�2� 76
PARMELA 1.13 (best 50%) 86
081301-7
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FIG. 5. Comparison between the analytic model and PARMELA
code simulations of the final rms energy spread.

(sawtooth modulation) and the PARMELA simulations
(sinusoidal modulation) is a posteriori verification that the
sawtooth approximation was not critical.

V. SUMMARY

Space-charge-induced spreading of an electron
microbunch is a potentially important issue in high-
frequency accelerators where the microbunches can
have longitudinal distributions a fraction of an optical
wavelength. The competition between space charge
forces and inertial effects can be estimated in terms of the
space charge parameter ssc [Eqs. (2)–(4)]. A significant
space charge debunching tendency is likely in a typical
buncher (ssc of order unity). However, in the accelera-
tion section ssc is generally quite small so that space
charge debunching is insignificant. This is the result of
the relativistic increase in electron inertia at high energy.
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FIG. 6. Comparison between the analytic model and PARMELA
code simulations of the phase spread of the top 50% of the
electrons in the center of the microbunch. The analytic model
is not valid after bunch inversion [see Eq. (19b)] and, therefore,
the dashed line stops at this point.
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A quantitative prediction of space charge debunching is
found using a quasi-1D model. The 1D approximation
is approximately valid in a high-frequency accelerator
where the microbunches are like thin pancakes. Realistic
beam optics (varying cross-sectional area) is taken into
account in the quasi-1D model. Other 2D effects are
added using a correction factor.

The analytic model highlights the basic tendencies of
space charge effects. (i) Space charge debunching can
be compensated for by overmodulation in the prebuncher,
i.e., by increasing the energy modulation introduced there.
A few tenths of a percent overmodulation is sufficient in
typical systems. (ii) Space charge forces naturally reduce
the coherent energy spread introduced in the prebuncher.
(iii) By proper design of the beam optics (lens location,
focusing strength) it may be possible to simultaneously
achieve strong bunching and eliminate the energy spread
introduced in the prebuncher. (iv) Using a reference
case, the analytic model was compared with computations
using the PARMELA code. The results showed that the
analytic model reproduces the gross features and many
of the details found by the computation. This exercise
accomplished the dual purposes of verifying that the
analytic model is detailed enough to account for the basic
phenomena, and assuring that PARMELA computations are
suitable for high-frequency applications with very short
bunching lengths.

In brief then, space charge effects can readily be
compensated for in high-frequency accelerators by simple
measures. Future work will apply PARMELA computations
in parallel with the analytic model to predict the detailed
space charge effects in the STELLA experiments.
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APPENDIX A: TWO-DIMENSIONAL
CORRECTION

The 2D correction on the debunching electric field
has been modeled by others. Barletta et al. [7] assumed
a charge density with a square radial profile and a
Gaussian longitudinal distribution. Serafini [10] assumed
a cylindrical bunch with a uniform charge density. The
results from both are quite close and can be approximated
by the expression

F2D � 1��1 1 0.58��2, (A1)

where � is the elongation ratio [Eq. (1)]. This expression
is accurate to within 4% for � , 3.
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These analyses neglect the influence of all other mi-
crobunches in the series, which are separated from the
microbunch in question by integer multiples of the wave-
length. Roughly speaking, the electrons in a given mi-
crobunch are pushed forward or backward by space
charge fields from other microbunches; since they are
pushed more-or-less as a unit, there is little debunching
effect. This can be verified by a comparison between
the single microbunch analysis [Eq. (A1)] and one includ-
ing the other microbunches. This has been done by as-
suming an infinite train of microbunches and applying a
Fourier analysis [6]. Retaining the leading term in the
Fourier expansion gives the 2D correction for a train of
microbunches: �F2D�t � 1 2 xK1�x�, with x � kw�2g

and k � 2p�l. Note that if lm ~ 1�k then x ~ 1��.
For a particular phase width of Df � 2 rad �lm � 2�k�,
the microbunch train result �F2D�t is quite close in value
to F2D [Eq. (A1)], differing by less than 20% over a broad
range of �. The difficulty with the microbunch train re-
sult is that it effectively chooses a particular microbunch
phase width Df. This is a consequence of retaining only
the leading term of the Fourier expansion.

APPENDIX B: ANALYTIC SOLUTION IN
BUNCHER

The microbunch length is governed by Eq. (13), subject
to the initial conditions Eqs. (11) and (12). The two
081301-9
parts of the solution match at the lens as follows.
Adopt as reference quantities lR � l�2,AR � A´, and
define dimensionless quantities using the tilde z̃ � z�Ld ,
z̃L � zt�Ld , z̃wi � zwi�Ld , Ã�0� � A�0��A´, Ã�Ld� �
A�Ld��A´, ÃL � AL�A´, and Ãwi � Awi�A´. Then the
differential equation and initial conditions become

d2 l̃
dz̃2

�
ssc

2Ãwi

"
1 1

√
z̃ 2 z̃wi
Ãwi

!2#21

, (B1)

l̃�0� � 1 , (B2)

√
dl̃
dz̃

!
z̃�0

�
2Ld
l

Dgmod

bg3 . (B3)

The solution simplifies if general expressions are used
covering each region. In each region the “initial” con-
ditions at z̃i are l̃�z̃i� � l̃i , �dl̃�dz̃�z̃i � l̃0i . Of course, the
actual initial conditions apply to Region 1 where z̃1 � 0,
l̃1 � 1, and l̃01 � 2LdDgpre�lbg3. In Region 2 the ini-
tial conditions are at the end of the drift section, z̃2 � Ld .
These are not known a priori, but will be found later by
requiring agreement between l̃ and dl̃�dz̃ for the two re-
gional solutions where they join at z̃L.

The first integral of Eq. (B1), with the initial condition
in Region i, is
dl̃
dz̃

� l̃0i 1
ssc

2

"
tan21

√
z̃ 2 z̃wi
Ãwi

!
2 tan21

√
z̃i 2 z̃wi
Ãwi

!#
. (B4)
Then the derivative at the focusing lens location can be
expressed in simplified form as

l̃0L � l̃0i 1 �ssc�2�Ji , (B5)

where

Ji � tan21

√
z̃L 2 z̃wi
Ãwi

!
2 tan21

√
z̃i 2 z̃wi
Ãwi

!
. (B6)

The second integral taken over the range z̃i to z̃L with the
initial condition in Region i is

l̃T � l̃0i�z̃L 2 z̃i� 1 �ssc�2�Li , (B7)

where

Li � �z̃L 2 z̃wi�Ji 2
Ãwi
2

ln

(
1 1 ��z̃L 2 z̃wi��Ãwi�2

1 1 ��z̃i 2 z̃wi��Ãwi�2

)
.

(B8)

These solutions [Eqs. (B5) and (B7)] are matched at the
lens location. The matching of the derivatives implies

l̃02 2 l̃01 � �ssc�2�J , (B9)

where J � J1 2 J2. The matching of the values of l̃ at
the lens implies

l̃2 2 l̃01 2 1 � �ssc�2�K , (B10)
(recognizing that l̃1 � 1) where K � K1 2 K2, with

Ki � �1 2 z̃wi�Ji 2
Ãwi
2

ln

(
1 1 ��z̃L 2 z̃wi��Ãwi�2

1 1 ��z̃i 2 z̃wi��Ãwi�2

)
.

(B11)
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