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A formalism for describing the coupled two-dimensional motion of high energy particle beams
storage ring is developed and extended to circumstances where the coupling is very strong, suc
the Möbius twist accelerator.

PACS numbers: 29.20.Dh, 29.27.Bd
ca
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I. INTRODUCTION

The parametrization of linear one-dimensional opti
systems using the so-called Twiss parameters,b, a,
and f, has been well established for some time [
The extension to two dimensions involves identifying t
normal modes by transforming the full turn4 3 4 transfer
matrix to block diagonal form [2]. The system is the
parametrized using the six Twiss parameters for b
normal modes and four additional parameters specify
the orientation of the normal modes with respect to
laboratoryx, y axes.

For “weak” coupling where the normal modes cor
spond quite closely to uncoupled horizontal and vert
motion, this analysis is conceptually simple since, to fi
order in the coupling, the Twiss parameters are unaffe
by the coupling. However, when the coupling is stron
the situation is more complicated since the Twiss para
ters now no longer have their standard meanings.
example,

p
b is now no longer proportional to the bea

size. Furthermore, as discussed below, the identifica
of which mode is which at different places in the latti
can be obscured by the formalism. Since strong coup
has been put forward as a means to create round be
(for example, Talman [3] has proposed a “Möbius” tw
accelerator), these subtleties need to be addressed, an
is the purpose of this paper.

II. NORMAL MODE ANALYSIS

A. Similarity transformation

Consider the motion of a particle in a storage ring a
consider the 1-turn mapT for the two-dimensional phas
spacex � �x, x0, y, y0�. The motion is assumed linear s
T can be represented as a4 3 4 matrix. If we writeT in
terms of its2 3 2 submatrices

T �

µ
M m
n N

∂
, (1)

then the motions in thex andy planes will be decoupled
if m � n � 0. In this case, the standard Twiss analy
can be performed upon the matricesM and N [1]. If
the motion is not decoupled then we seek a simila
1098-4402�99�2(7)�074001(5)$15.00
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transformation to normal modes form

T � VUV21, (2)

whereV is symplectic, andU is of the form

U �

µ
A 0
0 B

∂
. (3)

There are many possible solutions forV that will satisfy
the above conditions. Following Edwards and Teng
and Billing [4], V is written in the form

V �

µ
gI C

2C1 gI

∂
, (4)

where the symplectic conjugate is

C1 �

√
C22 2C12

2C21 C11

!
. (5)

Since we demand thatV be symplectic,kVk � 1. With
some algebra this condition relatesg andC via

g2 1 kCk � 1 , (6)

andV21 is given by

V21 �

µ
gI 2C
C1 gI

∂
. (7)

B. Solution

Substituting Eq. (4) into Eq. (2), and after some alg
bra, it is found that a solution forV is given by

g �

vuut 1
2

1
1
2

s
�Tr�M 2 N��2

�Tr�M 2 N��2 1 4kHk
, (8)

and

C �
2H sgn�Tr�M 2 N��

g
p

�Tr�M 2 N��2 1 4kHk
, (9)

where

H � m 1 n1, (10)

and

sgnx �

Ω
21 , for x # 0 ,
11 , for x $ 0 . (11)
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Equations (8) and (9) give a real solution for Eq. (2) as
long as

�Tr�M 2 N��2 1 4kHk . 0 . (12)

However, Eq. (12) is also the condition for stable motion
(see the discussion in Courant and Snyder [1] after
Eq. 4.84). Thus, if the motion is stable, there is a solution
to Eq. (2) with V of the form given by Eq. (4).

From the above equations the normal mode matrices A
and B can be computed from Eqs. (1)–(4),

A � g2M 2 g�Cn 1 mC1� 1 CNC2, (13)

B � g2N 2 g�nC 1 C1m� 1 CMC2. (14)

From A and B the normal mode Twiss parameters can be
computed using the standard formulas [5]

A �

√
cosua 1 aa sinua ba sinua

2ga sinua cosua 2 aa sinua

!
, (15)

with a similar equation for the b mode Twiss parame-
ters. From Eq. (2), the normal mode coordinates a �
�a, a0, b, b0� are related to the laboratory frame via

a � V21x . (16)

It is important to remember here that since the normal
mode axes are linear combinations of the laboratory
axes, some standard equations used in analyzing one-
dimensional motion are not valid in the two-dimensional
case. For example, the equation 2a � 2db�ds is now
no longer valid.

C. Second solution

As long as kHk . 0 it is possible to construct a second
solution for V which is given by

g �

vuut 1
2

2
1
2

s
�Tr�M 2 N��2

�Tr�M 2 N��2 1 4kHk
, (17)

C �
H sgn�Tr�M 2 N��

g
p

�Tr�M 2 N��2 1 4kHk
, (18)

Physically, the two solutions can be explained as follows:
Call the two eigenmodes of the system “h” and “y” (for
a physical picture think, for example, of the h eigenmode
as the mode with the higher tune and the y mode as the
mode with the lower tune). The difference between the
two solutions is whether the h mode is associated with
the a mode (i.e., gets placed in the upper-left-hand corner
of the U matrix) or whether the h mode is associated with
the b mode. From a physics standpoint it does not matter
whether the h mode is associated with the a mode or the
b mode, but using a different g and C will change the
normal mode matrices A and B [Eqs. (13) and (14)], and
hence the computed values of the Twiss parameters will
be different [see Eq. (15)]. Another way of looking at
074001-2
this is to note that even with one-dimensional motion the
Twiss parameters are dependent upon the choice of axes.
For example, a transformationµ

a
a0

∂
� Gx

µ
x
x0

∂
, (19)

with Gx taken to be

Gx �

0
BBB@

1
p

bx
0

ax
p

bx

p
bx

1
CCCA , (20)

will give, in terms of the new coordinates, normalized
Twiss parameters of ba � 1 and aa � 0. Thus, by
using Eqs. (17) and (18) instead of Eqs. (8) and (9) the
eigenaxes are changed [Eq. (16)] and this affects the
values for the Twiss parameters.

For a weakly coupled lattice where H is “small,” one
should always choose the solution given by Eqs. (8) and
(9) over Eqs. (17) and (18). There are two reasons for
this. First, Eqs. (17) and (18) are not valid where kHk ,

0. Second, with Eqs. (8) and (9), the interpretation of
the similarity transformation is simple: V is nearly the
identity matrix and the a and b modes are associated with
the (nearly) horizontal and vertical modes, respectively.

For a highly coupled lattice, the situation becomes
more complicated. Since there is only one solution where
kHk , 0, it can happen that at one place in the ring where
kHk , 0, the h mode is forced to be associated with the
a mode and that, at another place in the ring, the h mode
is forced to be associated with the b mode. Indeed, this
characteristic has been found in investigations of Möbius-
type lattices at the Cornell CESR ring. The switching
of the h and y modes between the a and b modes as
one propagates the Twiss parameters through the ring is
something we call “mode flipping.”

From the above discussion it is seen that the bookkeep-
ing for a highly coupled lattice is more complicated than
if the lattice is only slightly coupled. For example, the
Twiss parameters at a point computed from similar lattices
may be wildly different due to mode flipping. In other
words, in order to compare two lattices to see how similar
they are, one cannot just compare the Twiss parameters,
but has to look in detail at what the eigenaxes are. This
problem with identifying which mode is which at different
points in the lattice is not due just to the choice of form
for V [Eq. (4)]; it is inherent in the similarity transforma-
tion itself [Eq. (2)].

III. NORMAL MODE PROPAGATION

Given that the normal mode analysis has been done at
point 1, and given the transfer matrix T12 between points
1 and 2, how can the normal mode analysis be propagated
from 1 to 2? One straightforward way is simply to form
the 1-turn matrix at point 2,

T2 � T12T1T21
12 , (21)
074001-2
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and the analysis can be done as outlined in the previous
section. Mode flips can be checked for by comparing
the trace of the eigenmatrices, A and B, between the
two points. An alternative is to directly construct the
transformation matrix between the eigenmatrices at
the two points. A benefit with this method is that only
2 3 2 (rather than 4 3 4) matrices need to be used, which
makes the calculation computationally quicker.

Using Eqs. (1) and (21), the propagation of the normal
mode matrix U is given by

U2 � V21
2 T2V2 � W12U1W21

12 , (22)

where

W12 � V21
2 T12V1 . (23)

W12 is the similarity transformation connecting the eigen-
mode matrices U1 and U2. Since the eigenmodes are inde-
pendent there cannot be any terms in W12 that connect the
two modes. Since the Ui are block diagonal, this means
that W12 is either block diagonal or is “off-block diago-
nal” (has zeros on the 2 3 2 block diagonals). A formal
074001-3
proof of this is given in Appendix A. The exceptions to
the above statement come when the modes can “mix” at
the coupling resonance or at the stop band resonance. We
will not consider these exceptional cases further. W12 will
be off-block diagonal when there is a mode flip with the a
mode at point 1 becoming the b mode at point 2, and vice
versa for the other mode.

A. Propagation without a mode flip

Consider first the case where W12 is block diagonal (no
mode flip). In this case W12 has the form

W12 �

µ
E12 0
0 F12

∂
. (24)

In terms of its 2 3 2 submatrices, T12 is written as

T12 �

µ
M12 m12

n12 N12

∂
. (25)

From Eq. (23) we have V2W12 � T12V1 which gives
with Eqs. (24) and (25)
√
g2E12 C2F12

2C1
2 E12 g2F12

!
�

√
g1M12 2 m12C1

1 M12C1 1 gm12

g1n12 2 N12C1
1 n12C1 1 g1N12

!
. (26)
Consider first the �2, 2� component in Eq. (26). Since W12
is the product of symplectic matrices, W12 is symplectic
and thus kF12k � 1. Hence

g2
2 � kn12C1 1 g1N12k . (27)

Equating the rest of the terms in Eq. (26) gives

E12 � �g1M12 2 m12C1
1 ��g2 , (28)

F12 � �n12C1 1 g1N12��g2 , (29)

C2 � �M12C1 1 g1m12�F21
12 . (30)

From Eq. (24) the normal mode vectors propagate as

a2 � E12a1 , (31)

b2 � F12b1 . (32)

In the special case of propagation through an element
that does not couple x and y motions, T12 is block
diagonal. That is, n12 � m12 � 0. In this case, W12

is automatically block diagonal and Eqs. (27) and (29)
reduce to

g2 � g1 , (33)

W12 � T12 , (34)

C2 � M12C1N21
12 . (35)

B. Propagation with a mode flip

For the case when W12 is off-block diagonal, so that
W12 is of the form
W12 �

µ
0 F12

E12 0

∂
, (36)

an analysis analogous to that of the preceding section
gives

g2
2 � kM12C1 1 g1m12k , (37)

with

E12 � �g1n12 2 N12C1
1 ��g2 , (38)

F12 � �M12C1 1 g1m12��g2 , (39)

C2 � �g1M12 2 m12C1
1 �E21

12 , (40)

and the normal mode vectors propagate as

b2 � E12a1 , (41)

a2 � F12b1 . (42)

Notice that if the right-hand side of Eq. (27) is zero
or negative, then one is forced to mode flip and use the
solution given by Eqs. (37)–(40). If g is calculated as
a continuous function of longitudinal position, then the
point at which a mode flip is forced is where g ! 0. At
such a place, the Twiss parameters and eigenaxes will be
discontinuous. Furthermore, the integer part of the phase
is not well defined across a mode flip. Note that since
g is constant when propagated through elements without
coupling [Eq. (34)], mode flipping will be forced only
when propagating through an element that couples the x-y
motions. In any case, a lattice should always have an even
number of mode flips so that the eigenaxes at the start and
074001-3
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end of the full turn are the same. If this is not done, then
the computed full turn phase advance will not be correct.

While it is not a necessary condition, the beta func-
tion as g ! 0 may diverge to infinity and it is a fairly
simple matter to construct examples that exhibit this be-
havior. Though b may diverge, any physically meaningful
parameter, for example the beam sizes, will remain finite
(see below).

IV. C COUPLING MATRIX

The 2 3 2 submatrix C is a measure of the coupling:
If C � 0, then V � 1 and the motion is decoupled. It
turns out that it is convenient to normalize out the b

dependence in C via the matrix G

G �
µ

Ga 0
0 Gb

∂
, (43)

where Ga and Gb are the normalization matrices for the
a and b modes, respectively, and have the form as given
in Eq. (20). The normalized normal mode matrix U is
defined by

U � GUG21, (44)

Using Eqs. (3), (15), (20), and (43) in Eq. (44) shows that
U is simply made up of rotation matrices.

U �

µ
R�ua� 0

0 R�ub�

∂
, (45)

where the rotation matrix R is

R�u� �
µ

cosu sinu

2 sinu cosu

∂
. (46)

The similarity transformation is now written in terms of
U. Putting Eq. (44) into Eq. (2) gives

T � G21V U V21G , (47)

where

V � GVG21. (48)

Using Eq. (43), V can be written in the form

V �

µ
gI C

2C1
gI

∂
, (49)

with the normalized matrix C given by

C � GaCG21
b . (50)

To see how C can be used, consider the motion when
a single mode is excited [6]. The motion in normal mode
space a � �a, a0, b, b0� is particularly simple. For the a
mode µ

a
a0

∂
� Aa

µ
cosca

sinca

∂
, (51)

where the phase ca on the nth turn at position s is

ca�n, s� � uan 1 fa�s� 1 fa0 , (52)

where fa�s� is the betatron phase at point s, and fa0 is
calculated from the initial conditions. Form Eq. (47) the
074001-4
transformation from normalized normal mode space to the
laboratory frame is

x � G21Va . (53)

Using this, the motion in the x-y plane isµ
x
y

∂
� Aa

√
g
p

ba cosca

2
p

bb �C22 cosca 1 C12 sinca�

!
. (54)

For the b mode, a similar analysis can be done with the
resultµ

x
y

∂
� Ab

√p
ba �C11 coscb 2 C12 sincb�

g
p

bb coscb

!
. (55)

C is useful for characterizing the amount of coupling
in a lattice [7]. Using modeling programs, measurements
of C also allow correction of the coupling [6]. From the
above equations the rms beam sizes in the x and y planes
for the a mode are

sx,a � g
p

eaba , (56)

and

sy,a �
p

eabb �C
2
22 1 C

2
12�1�2, (57)

where ea is the a mode emittance (which must be
calculated using a formula generalized from the formula
used in the one-dimensional case). For the b mode

sx,b �
p

ebba �C
2
11 1 C

2
12�1�2, (58)

and

sy,b � g
p

ebbb . (59)

Since the normal mode motions are at different frequen-
cies, the rms beam sizes add in quadrature. The total
beam size in the x and y planes is then

s2 � s2
a 1 s2

b . (60)
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APPENDIX A: BLOCK DIAGONAL PROOF

To show that W12 is block diagonal or off-block
diagonal, we use the normalized U [Eq. (44)]

W12 � U2W12U
21
1 , (A1)

where

W12 � G21
2 W12G1 , (A2)

with G1 and G2 given by Eq. (43). Obviously W12 is
block diagonal (or off-block diagonal) if and only if
W12 is.
074001-4
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U1 will be of the form Eq. (45), and either U2 will also
be of the same form or, if there has been a mode flip
in between, will have R�ua� and R�ub� interchanged. We
first take the nonmode flip case where the eigenmodes stay
in their respective places between points 1 and 2. Writing

W12 �

µ
p q
r s

∂
, (A3)

and inserting this into Eq. (A1) gives for q

q � R�ua�qR21�ub� . (A4)

We want to show that q � 0. To see this we note the
following without proof:

(i) Any 2 3 2 matrix z can be decomposed into
“ rotational” and “antirotational” matrices

z �

µ
z11 z12

z21 z22

∂

�
1
2

µ
z11 2 z22 z12 1 z21

z12 1 z21 2�z11 2 z22�

∂

1
1
2

µ
z11 1 z22 z12 2 z21

2�z12 2 z21� z11 1 z22

∂

� lS�f� 1 kR�u� , (A5)

where l and k are constants, R is a rotational matrix
given by Eq. (46), and S is of the form

S�f� �
µ

cosf sinf

sinf 2 cosf

∂
. (A6)

The inverse (if it exists) is

z21 �
1

l2 2 k2 �lS�f� 2 kR�2u�� . (A7)

(ii) Given any z, the product lS�f� is unique and the
product kR�u� is also unique so that if

z1 � l1S�f1� 1 k1R�u1�

and z2 � l2S�f2� 1 k2R�u2� ,
(A8)

then z1 � z2 if and only if

l1S�f1� � l2S�f2� , (A9)

and

k1R�u1� � k2R�u2� . (A10)

(iii) Rotation matrices and antirotation matrices multi-
ply as

R�u1�R�u2� � R�u1 1 u2� ,

S�f1�R�u2� � S�f1 1 u2� ,

R�u2�S�f1� � S�f1 2 u2� ,
(A11)

S�f1�S�f2� � R�f2 2 f1� .

Using the above, q is written in the form q �
lS�f� 1 kR�u�. Using this with assertions (ii) and (iii)
074001-5
in Eq. (A4) gives

lS�f� � lS�f 2 ua 2 ub� , (A12)

kR�u� � kR�u 1 ua 2 ub� . (A13)

Since we are assuming that we are not at the stop band
resonance where ua 1 ub � 2pm for some integer m,
Eq. (A12) can be true only if l � 0. Additionally, since
we are assuming that we are not at the coupling resonance
where ua 2 ub � 2pn for some integer n, Eq. (A13) can
be true only if k � 0. Thus q � 0. Similarly, it can
be shown that r � 0, and thus W12 and W12 are block
diagonal. For the case where there is a mode flip, then it
can similarly be shown that p � s � 0, and hence W12 is
off-block diagonal.

APPENDIX B: MODE FLIP TRANSFORMATION

Given one decomposition solution for V [Eqs. (8) and
(9), or Eqs. (17) and (18)] with g , 1, the other “fl ipped”
solution (denoted by a subscript f ) is related to the first
via

gf �
q

1 2 g2 , Cf �
2g

gf
C ,

Uf � WUW21,
(B1)

where

W �

0
BBBB@

0
C
gf

2C1

gf
0

1
CCCCA , (B2)

which gives for the

Af �
1

g
2
f

CBC1, Bf �
1

g
2
f

C1AC . (B3)
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