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Dependence of bunch energy loss in cavities on beam velocity
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(Received 22 December 1998; published 5 March 1999)

Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain
like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated becau
difficulties with its numerical formulation in the time domain. We calculate the cavity loss factor
a bunch in frequency domain as a function of its velocity and compare results with the relativistic
[S1098-4402(99)00030-0]
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I. INTRODUCTION

Many accelerator facilities, which are now in the d
sign or construction stage such as Accelerator Produc
of Tritium (APT) [1], Spallation Neutron Source (SNS) [2
and projects aimed toward the accelerator-driven trans
tation of nuclear waste (ATW) [3], will use linacs to acc
erate intense proton or H2 beams providing the final bea
power in the range 1–200 MW. Most of them will also re
on superconducting (SC) technology for the accelera
cavities, e.g., [1,3], to reduce operational costs. With
final beam energies around 1–2 GeV, the ion beam du
acceleration changes its velocity from a nonrelativistic
to b ­ yyc ­ 0.9 0.95. At the same time, the numbe
of types of SC cavities is limited to a few due to cost a
production reasons. For example, in the APT linac des
[1] there will be only two types of SC cavities, optimize
for b ­ 0.64 andb ­ 0.82, respectively. They will ac
celerate protons in the velocity range fromb ­ 0.58 (pro-
ton energy 211 MeV) to 0.94 (1.7 GeV); at lower energ
the normal conducting cavities will be used. Obviously
is important to know how the amount of the beam ene
that is deposited in the cavities and heats them depend
the beam velocity. In other words, one needs to calcu
how the beam loss factors depend onb.

It is common to believe that loss factors of a bun
moving along an accelerator structure at velocityy ­ bc
with b , 1 are lower than those for the same bun
in the ultrarelativistic caseb ! 1. The physical reaso
for this is that the energy loss should vanish wh
b ! 0. Direct computations with time-domain codes li
MAFIA [4] or ABCI [5] are possible only forb ­ 1. The
main difficulty in the numerical time-domain approa
for b , 1 is to formulate proper boundary conditio
at the open ends of the beam pipe. Instead, the
factors are computed numerically for the ultrarelativis
bunch, which is a relatively straightforward task, and
considered as upper estimates for the case in ques
b , 1. However, it is not obvious that the energy lo
depends on the beam velocity monotonously.

The present paper studiesb dependence of loss facto
in more detail. We are primarily concerned about
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cavity modes below the beam pipe cutoff frequency, si
these modes mostly contribute to the cavity heat lo
The frequency-domain approach is applied to calcu
the velocity dependence of the bunch energy loss i
few different cases. In general, it would be desirable
develop a simple method for obtaining the answer for
b , 1 beam directly from the results forb ­ 1. We
find, however, that the results for specific cases depen
the properties of the structure, such as the cavity sh
and size, as well as on the bunch length. Moreov
the above assumption on the upper estimate from
ultrarelativistic case might be incorrect, especially if on
some individual modes of the cavity are concerned.

II. BEAM COUPLING IMPEDANCES AND LOSS
FACTORS OF A CAVITY

In the frequency domain and in the “closed-cavit
approximation (which means very narrow beam pipe
the beam coupling impedance calculation can be redu
to an internal eigenvalue boundary problem. Since
solution of an inhomogeneous equation can be re
sented in the form of a series in eigenfunctions (EFs),
impedance is expressed as a formal series. Let$Es, $Hs,
where s ­ ss1, s2, s3d is a generalized index, be a com
plete set of EFs for the boundary problem in a clos
cavity with perfect walls. The longitudinal impedance
then given by (e.g., [6])

Zsb, vd ­ 2iv
X

s

1
v2

s 2 v2

jIssb, vdj2

2Ws
, (1)

where Issb, vd ­
R

L dz exps2ivzybcdEsz s0, zd is the
overlap integral andWs is the energy stored in thesth
mode. HereEszs0, zd is the longitudinal component o
thesth mode electric field taken on the chamber axis.

As seen from Eq. (1), there is a resonant enhancem
of the sth term in the seriesZsb, vd at v ! vs. Let us
introduce a finite, but small, absorption into the cav
walls by adding an imaginary part to the eigenval
vs ! v0

s 2 iv00
s ­ v0

ss1 2 iy2Qsd [7]. Here, the Q
value of thesth mode isQs ­ v0

sWsyPs ¿ 1, wherePs
© 1999 The American Physical Society 032001-1
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is the averaged power dissipated in the cavity walls (a
or, in a real structure, is due to radiation into beam pipe
The wall loss can be expressed as

Ps ­
1

2swd

Z
S

ds jHst j2, (2)

where sw is the conductivity of the wall material,d is
the skin depth at the frequencyv0

s, Hst is the tangential
component of the field near the wall, and integration
over the inner cavity surface. Forv . v0

s, the sth term
in Eq. (1) for the longitudinal impedance dominates

Zsv . v0
sd . Rs ­

Qs

2v0
sWs

jIssb, v0
sdj2; (3)

or, taking into account the expression for theQ value,

Rssbd ­
swdj

R
L dz exps2i

vsz
bc dEszs0, zdj2R

S ds jHstj2
. (4)

The quantityRssbd is the shunt impedance of thesth
cavity mode and, unlike theQ factor, it depends onb.

The bunch loss factor is defined as

k ­
1
p

Z `

0
dv ReZsb, vd jlsvdj2, (5)

wherelsvd ­
R

ds expfivsysbcdglssd is a harmonic of
the bunch spectrum. For a Gaussian bunch with rms len
2s, the line density islssd ­ exps2s2y2s2dys

p
2p sd

and lsvd ­ exph2fvsysbcdg2y2j. As a result, Eq. (5)
takes the form

ksb, sd ­
1
p

Z `

0
dv ReZsb, vd exp

"
2

√
vs

bc

!2#
.

(6)

The loss factor is related to the energyDU lost by the
bunch asDU ­ kq2, whereq is the bunch charge. As
a result, the power deposited by the beam consis
of bunches following through the cavity with the bunc
repetition ratefrep is

P ­ kq2frep ­ kI2yfrep , (7)

whereI ­ qfrep is the average beam current. Of cours
this equation does not account for possible interaction
the bunches through their wakes.

Assuming allQs ¿ 1 and integrating formally Eq. (1)
for the ReZsb, vd, one can express the loss factor (6)
a series,

ksb, sd ­
X

s
kssb, sd , (8)

where the loss factors of individual modesks are given by

kssb, sd ­
1
2

exp

"
2

√
v0

ss

bc

!2#
jIssb, v0

sdj2

2Ws

­ exp

"
2

√
v0

ss

bc

!2#
v0

sRssbd
2Qs

. (9)
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From a physical viewpoint, the loss factor (9) of a giv
mode includes two velocity-related effects. The expon
factor shows that the bunch lengths effectively increases
to syb. Theb dependence ofRs is essentially due to tha
of the cavity transit-time factor for this resonance mode
one can see from Eq. (4). Some qualitative guesses a
the transit-time factor behavior can be made by con
ering the effective cavity length that scales as1yb, but
quantitative conclusions from this observation are rea
derived only for resonators with short accelerating gap

In principle, Eqs. (8) and (9) give us the dependence
the loss factor onb. However, one should remember th
the answer was obtained in the closed-cavity approxi
tion and can be applied to real problems only when
loss factor is dominated by the lowest resonances, be
the pipe cutoff, e.g., for a cavity with narrow beam pip
Moreover, it is only practical when the number of stro
resonances is reasonably small, since Eq. (9) shows
theb dependence varies from one resonance to anoth

kssb, sd
kss1, sd

­ exp

"
2

√
v0

ss

c

!2
1

b2g2

#
Rssbd
Rss1d

, (10)

whereg ­ 1y
p

1 2 b2.
It is obvious from Eq. (10) that for long bunche

loss factors will decrease rapidly withb decrease, a
exps2b22d. Indeed, one should expect the lowest re
nances at frequenciesv0

s ø cyd, where d is a typical
transverse size of the cavity. The exponent argum
2ssydd2 will have a large negative value fors $ d, and
the exponential decrease for smallb will dominate the
impedance ratio. The impedance ratio dependence onb is
generally more complicated, and we consider a few ty
cal examples below.

III. EXAMPLES

A. Cylindrical pill box

Obtaining explicit expressions for the mode frequenc
and impedances of a cylindrical cavity in the limit of
vanishing radius of beam pipes,b ! 0, is rather easy
Let the cavity length beL and its radius bed. Then the
mode index iss ­ sm, n, pd, wherem is the number of
radial variations,p the number of longitudinal variation
for the E field, and mmn is the nth zero of the first-
kind Bessel functionJmsxd. The resonancesm, n, pd
has the frequency approximately equal to the ca
eigenfrequency,vmnp ­

p
m2

mn 1 sppdyLd2 cyd. Then
the longitudinal impedance of such a “pill-box cavity” is

R0np ­
Z0

2pb2

L3

d2d

m
2
0n

J2
1 sm0nd

c
v0npd

1
1 1 dp0 1 2dyL

3

"√
v0npL

2bc

!2

2

√
pp
2

!2#22(
sin2

cos2

) √
v0npL

2bc

!
.

(11)
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FIG. 1. (Color). The ratio of loss factors for a short bunc
syd ­ 0.05, versusb and resonator aspect ratioLyd.

The upper line inh· · ·j corresponds to evenp and the
lower one to oddp.

The ratio of loss factors Eq. (10) for the lowestE mode,
E010, is then

k010sb, sd
k010s1, sd

­ exp

"
2

√
m01s

d

!2
1

b2g2

# √
b

sin m01L
2bd

sin m01L
2d

!2

.

(12)

Obviously, it is almost independent ofb when the bunch
is short,s ø d, and the cavity is short compared to
radius, L ø d. For longer cavities, however, the rat
oscillates and might exceed 1; cf. Fig. 1.

A strong resonance behavior is clearly seen in Fig
for large values ofLyd, while for smallLyd the k ratio
slowly decreases withb decrease. One should note th
for some particular choices of the parameters,k010sbd
can be many times larger thank010s1d. A picture for a
longer bunch will look similar except that the resonan
at smallerb’s would be damped heavily.

Obviously, a similar behavior is expected for any oth
individual resonance mode in this case, with peaks
some other values ofb, and of the aspect ratio. Certainl
this example is not practical: we should be interested
the sum of all physically important modes contributi
to the bunch energy loss and the cavity heating, say, th
below the cutoff. There is no cutoff frequency for the pi
box cavity, and the number of modes to take into acco
is infinite. Therefore, let us consider some cases wit
small number of modes below the pipe cutoff.

B. Small discontinuity

The simplest case is a small discontinuity on a smo
beam pipe, such as a small axisymmetric cavity o
hole. Let the area of the longitudinal cross section
the cavity be A, and its length and depth be sma
compared to the pipe radiusb; i.e., A ø b2. It was
demonstrated [8] that in this case there exists a trap
032001-3
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FIG. 2. The loss factor versusb for the lowest mode in the
pill-box cavity. The dashed line shows the dependence (13
a small discontinuity.

mode with the frequency slightly below the pipe cuto
frequencyfc ­ m01cys2pbd. The on axis longitudina
electric field of the mode is given by a simple express
Ezszd ­ Ezs0d exps2jzjyLd, whereL ­ b3ysm2

01Ad ¿ b
is the characteristic length occupied by the trapped m
in the pipe.

Then the overlap integral in (3) is easily calculated a
lytically, and the ratio of the shunt impedances Eq. (10

Rssbd
Rss1d

­ b4

"
svLycd2 1 1

svLycd2 1 b2

#2

. b4, (13)

wherev . 2pfc ­ m01cyb is the resonance frequenc
The last simplified expression in the right-hand side
Eq. (13) follows from the previous one due to the fa
thatvLyc ¿ 1, sincevbyc . m01 andL ¿ b. All the
above results hold for a small hole in the pipe wall: o
just has to substituteA ­ amys4pbd, where am is the
magnetic susceptibility of the hole, in all expressions [8

For larger discontinuities, one can expect some de
tion from the simple behavior Eq. (13), even if there is s
only one mode below the beam-pipe cutoff. As a sim
example, we considered a cylindrical pill-box cavity
depthh ­ 1 cm and lengthg ­ 2 cm on the circular pipe
of radius 2 cm. Eigenmode calculations withSUPERFISH

[9] find a single mode atfr ­ 4413 MHz, below the
pipe cutoff frequency. Calculating the overlap integ
in Eq. (9) numerically gives us the mode loss factor
a function ofb; see Fig. 2. For comparison, the limitin
case of a small discontinuity, Eq. (13), is also presen
in Fig. 2. For the ultrarelativistic case,b ­ 1, the loss
factor is 0.24 VypC, close to the result for this mode fro
time-domain calculations performed withABCI [5].

C. APT 1-cell cavity

As a more realistic example, we consider an A
superconducting 1-cell cavity, e.g., [10]. Of course, su
a cavity with wide beam pipes to damp higher ord
modes cannot be described completely by the forma
032001-3
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FIG. 3. Longitudinal component of the on axis electric fie
(arbitrary units) for the fundamental mode in a 1-cell AP
b ­ 0.64 cavity with a power coupler versusz (m): MAFIA
results (solid line) and analytical fit (dashed line).

of Sec. II, except for the modes below the pipe cuto
Direct time-domain simulations with the codesMAFIA [4]
andABCI [5] show the existence of only two longitudin
modes below the cutoff for theb ­ 0.64 cavity, and only
one such mode forb ­ 0.82, in both cases including th
fundamental mode atf0 ­ 700 MHz. The loss factor
contributions from these lowest resonance modes fo
Gaussian bunch with lengths ­ 3.5 mm for the b ­
0.64 section, ands ­ 4.5 mm for theb ­ 0.82 section,
are about 1y3 of the total loss factor.

We useMAFIA results for the field of the lowest mod
(see Fig. 3) to calculate the overlap integral and study
loss factor dependence onb. The on axis longitudina
field of the fundamental mode is fitted very well by
simple formulaEzszd ­ Ezs0d expf2szyad2g, wherea ­
0.079 m for b ­ 0.64 anda ­ 0.10 m for b ­ 0.82.

The ratio of the shunt impedances in Eq. (10) is th
easy to get analytically,

Rssbd
Rss1d

­ exp

"
2

1
2

√
va
c

!2
1

b2g2

#
, (14)

where v ­ 2pf0. The resulting dependence for th
b ­ 0.82 cavity is shown in Fig. 4, and we see a smoo
decrease at lowerb’s. For b ­ 0.64, the result is
practically identical.

The resulting loss factor for the lowest mode for t
cavity design value ofb ­ 0.64 is 0.378 times tha
with b ! 1, and for b ­ 0.82 it is 0.591 times the
correspondingb ! 1 loss factor.

D. APT 5-cell cavities

For 5-cell APT SC cavities, the lowest resonances
split into five modes which differ by a phase advance
cell, DF, and their frequencies are a few percent ap
[10]; see below in Tables I and II. The calculated on a
fields of all five modes in the TM010 band, withDF from
py5 to p —the last one is the accelerating mode of
032001-4
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FIG. 4. The loss factor ratio versusb for the fundamenta
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cavity, are shown for the cavity withb ­ 0.82 in Fig. 5,
left-hand column.

We useMAFIA results for the fields of the modes
calculate overlapping integrals in Eq. (9) with an arbitra
b and, therefore, to find their loss factors as a function
b. The obtainedb dependencies of the loss factors f
the five TM010 modes are shown in the right-hand colum
of Fig. 5. Obviously, the shunt impedance (and the l
factor) dependence onb is strongly influenced by the
mode field pattern. The most interesting thing happe
however, when we sum up all five contributions to t
loss factor for this band: the resulting dependence onb is
smooth and the total loss factor decreases monotonic
as b decreases; see Fig. 6. Another interesting fea
shown in Fig. 6 is that the loss factor of the accelerat
mode is maximal near the designb, while for all
other modes it is almost zero in that region. This
not surprising, since the cavity design is optimized
that value ofb to provide a strong interaction of th
accelerating mode with the beam.

A similar picture holds for theb ­ 0.64 APT cavity:
loss factors of individual modes in the given band ha
a rather irregularb dependence, with peaks at differe
values ofb, but their sum smoothly decreases with t
b decrease. It works for both bands below the cut
frequency of the pipe, TM010 and TM020. The total loss
factor for all longitudinal modes below the cutoff is show
versusb in Fig. 7, as well as the separate contributio
of both bands. The contribution of the TM010 band is
certainly larger, about 0.5 VypC for b ­ 1, compared
to less than 0.1 VypC from the TM020 band. For the
velocity range near the design value ofb ­ 0.64, TM010

contribution dominates completely. Moreover, in th
range the total loss factor is mostly due to the accelera
p mode, as one can see in Fig. 7.

Time-domain simulations with the codeABCI [5] give
us the total loss factor of a bunch atb ­ 1, as well
as contributions of separate resonance bands to that
032001-4
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TABLE I. Loss factors (in VypC) of the lowest modes in the APT 5-cellb ­ 0.64 cavity.

Mode DF f (MHz) ks0.64d ks1d ks0.64dyks1d

py5 682.03 2.14 3 1026 2.88 3 1024 7.4 3 1023

2py5 687.02 2.80 3 1025 0.031 9.0 3 1024

3py5 693.16 9.05 3 1026 0.219 4.1 3 1025

4py5 698.10 5.60 3 1025 0.251 2.2 3 1024
TM010

p 699.96 0.186 6.76 3 1023 27.46

Total 0.186 0.507 0.366

py5 1396.82 6.45 3 1024 5.44 3 1024 1.187
2py5 1410.73 1.24 3 1026 9.02 3 1024 1.4 3 1023

3py5 1432.74 1.83 3 1025 0.017 1.1 3 1023

4py5 1458.80 8.02 3 1025 0.058 1.4 3 1025
TM020

p 1481.02 3.50 3 1025 9.50 3 1023 3.7 3 1025

Total 6.7 3 1024 0.086 7.8 3 1023
th
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factor. Figure 8 shows the loss factor spectrum for
b ­ 0.64 APT cavity integrated up to a given frequenc
versus that frequency. The two lowest steps in Fig
one near 700 MHz with the height 0.5 VypC and the
other near 1400 MHz with the height about 0.1 VypC,
correspond to the two bands of the trapped monop
modes in the cavity, TM010 and TM020. These results
agree quite well with our calculations using the frequen
domain approach; cf. Fig. 7 forb ­ 1 and Table I.

The results for the loss factors of the lowest monop
modes are summarized in Tables I and II. As we m
tioned already, the totals for the TM010 and TM020 bands
at b ­ 1 in Table I agree very well with the time-domai
results in Fig. 8. Of course, the contribution from highe
frequency modes to the bunch loss factor is also signific
as one can see from Fig. 8. However, the beam ene
transferred to the higher modes, which have frequen
above the cutoff and propagate out of the cavity into
e

,

le

-

e
-

-
t,

gy
es
e

beam pipes, will be deposited elsewhere outside the
ity. For the SC cavities, we are mostly concerned ab
the lowest resonance modes, below the cutoff, since
contribute to the heat load on the cavity itself.

It is worthwhile to note that our results for the desi
values ofb are reasonably close to the rough estima
obtained by Krawczyk [10] usingMAFIA time-domain
simulations with some artificial boundary conditions. T
tapered pipes have been introduced at the ends of a r
long structure to reduce reflections caused by impro
(at b , 1) boundary conditions at the open ends of
beam pipe. After some tricks with the subtraction of wa
potentials with and without the cavity, one can get
estimate for the bunch loss factor in that way.

The important observation, however, is that the to
loss factors for a given resonance band in Tables I
II are lower for the designb than atb ­ 1. The only
exception is the TM020 band in Table II. It, however
TABLE II. Loss factors (in VypC) of the lowest modes in the APT 5-cellb ­ 0.82 cavity.

Mode DF f (MHz) ks0.82d ks1d ks0.82dyks1d

py5 674.29 9.21 3 1026 7.55 3 1024 0.012
2py5 681.11 1.43 3 1024 2.51 3 1024 0.570
3py5 689.73 3.58 3 1024 0.029 0.012
4py5 696.87 2.94 3 1024 0.220 1.3 3 1023

TM010

p 699.89 0.284 0.243 1.17

Total 0.285 0.493 0.578

py5 1357.69 4.18 3 1025 7.98 3 1027 52.4
2py5 1367.65 1.36 3 1024 8.00 3 1025 1.71
3py5 1384.50 1.58 3 1026 1.44 3 1024 0.011
4py5a 1409.56 8.04 3 1027 1.29 3 1023 5.6 3 1023

TM020

p b 1436.90 1.62 3 1022 2.16 3 1023 7.50

Total 1.62 3 1022 3.67 3 1023 4.41

aMode near the cutoff.
bPropagating mode, above the cutoff.
032001-5
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FIG. 6. (Color). The loss factor for all TM010 modes in the
5-cell APT b ­ 0.82 cavity versus b (solid line). The
contribution of the accelerating (p) mode is plotted by the
short-dashed line, and that of all others is plotted by the lo
dashed line.
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FIG. 7. (Color). The total loss factor for all modes below t
cutoff in the 5-cell APTb ­ 0.64 versusb. The contribution
of the TM010 band is plotted by the long-dashed line, and t
of the TM020 band is plotted by the short-dashed line. T
thin solid line shows the loss factor for the accelerating mo
TM010 p mode.

includes some propagating modes, and, for those,
results of the frequency-domain approach cannot
trusted. Its contribution is certainly very small anywa

IV. DISCUSSION

In the examples above, the bunch loss factors w
calculated as functions of the beam velocityb , 1 and
compared with the correspondingb ! 1 results. It has
been done by applying the frequency-domain appro
rather than the time-domain approach. This approach
be practical when we know the fields of all modes wh
contribute significantly into the bunch energy loss.
particular, calculating the modes with frequencies ab
the pipe cutoff presents the most difficulties, since ther
no well-established numerical method, except for perio
structures. Nevertheless, for many practical applicatio
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FIG. 8. (Color). Loss factor spectrum integrated up to a giv
frequency versus that frequency. Results from time-dom
simulations withABCI for a 3.5-mm bunch in the 5-cell APT
b ­ 0.64 cavity.
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especially in superconducting cavities, the contribution
the lowest modes is a major concern, because the ab
cutoff modes travel out of the cavity and deposit th
energy far away from the structure cold parts, where
heat removal is not a big problem. The method is read
applicable also for cavities with narrow beam pipes.

An interesting observation is that the loss factor
an individual mode at someb , 1 can be larger (and
many times larger) than that atb ­ 1. While not very
surprising due to the relation between the loss fac
and the transit-time factor discussed in Sec. II, it has
obvious implication that one should exercise caution us
b ­ 1 results as upper estimates for ab , 1 case.
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