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This paper explores the physics of chaos in a localized phase-space region produced by rf phase
modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch
broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking
simulations are introduced to understand the mechanism and applicability of controlled particle diffusion.
When phase modulation is applied to the double rf system, regions of localized chaos are produced through
the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved
invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be
controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in
high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.
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I. INTRODUCTION

There exist numerous techniques to instigate the blowup
of longitudinal beam emittance. Each technique is tailored
to address one or a combination of the following difficulties
in the handling of high-intensity beams in a storage ring:
severe effects of intrabeam scattering that leads to uncon-
trolled transverse emittance blowup, collective instabilities,
large space-charge tune shifts resulting in possible encoun-
ters with lattice resonances that will limit the performance of
a machine, etc. For applications in radiation-effects experi-
ments at Indiana University (IU), a 20-m compact electron
storage ring, designed with a pair of gradient damping
wiggler magnets for momentum-compaction factor variabil-
ity, is currently under construction [1]. The storage ring will
serve as a debuncher and can be injected with 50–100 MeV
electrons from a linac to accumulate a bunch of total charge
up to 600 nC. In the presence of radiation damping, the
natural bunch length is of the order of 10–100 ps. The
radiation experiments require the enhancement of duty factor
by broadening the electron bunch up to 40 ns in length with
longitudinal particle distribution uniformity.

Longitudinal broadening can be attained by employing a
double rf potential with optimally flattened potential well and
elongated rf bucket width [2,3], but this method provides
insufficient broadening for an initially narrow bunch of the
order of 100 ps. The use of barrier rf manipulation, wherein a
set of rf potential barriers of opposing polarity configured on
either end of the particle bunch are shifted adiabatically apart,
can also provide bunch broadening [4]. Unfortunately, for
compact ferrite-dominated rf systems that are often used due
to space limitations, difficulties arise in establishing a barrier
width with rise time less than 0.05 μs arise due to core losses
in ferrite materials at higher frequencies. This renders the
barrier rf technique unsuitable for many compact rings.
Phase modulation applied to a higher harmonic rf

systems has been used for controlled longitudinal emittance
blowup at various facilities [5]. At the CERN SPS, a bunch
of full width ∼1.6 ns had been blown up to ∼3 ns before
transferring to the LHC. The mechanism of the blowup is
by rf phase modulation that drives the bunch partially into
nearby parametric resonant islands. More recent methods
of bunch broadening using band-limited phase noise are
promising [6]. Bunch shaping by rf voltage modulation
with band-limited white noise has been employed to
produce linear density uniformity without blowing up
the longitudinal emittance [7]. At the KEK PS, quadruple
synchrotron oscillation 2ωs was fed into the voltage control
loop of the low-level rf feedback system together with
white-noise band Δω from a waveform generator, where
ωs is the small-amplitude synchrotron frequency and
Δω ≪ ωs. Particles near the bunch center will be driven
into 2∶1 resonances and move away from the bunch center,
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while particles near the edge having synchrotron frequency
less than ωs − Δω=2 will not be affected. This technique
successfully yielded bunch density uniformity, but do not
provide adequate bunch broadening required for the radi-
ation-effects experiments.
Despite the aforementioned longitudinal emittance

blowup techniques, the solutions we require are different.
Wewish to broaden the length of a radiation-damped electron
bunch 400- to 800-fold, or the emittance 105- to 106-fold,
while maintaining bunch density uniformity. We suggest
driving the bunch into large chaotic regions that are bounded
by well-behaved tori. The diffusion of particles by phase
modulation applied to a single cavity in a double rf system
has been observed experimentally at the Indiana University
Cyclotron Facility (IUCF) cooler storage ring (CSR) in 1997
[8,9]. Figure 1 shows the square of the rms bunch length
exhibiting linear growth as a function of time. More impor-
tantly, the experiments at the IUCF found the mechanism of
diffusion to be highly sensitive to the phase difference Δϕo
between the two rf cavities. This motivates the prospect of
bunch dilution where rf cavities are phase modulated for
radiation-effects experiments, first reported in 2010 [10].
This paper has been organized in the following manner.

In Sec. II, a theoretical model of the double rf system, study
of the rf phase modulation parametric dependence, and
discussion on expected resonances that are excited will be
presented. In Sec. III, symplectic multiparticle simulations
are used to produce Poincaré surfaces of section to verify
the mechanisms discussed in Sec. II, and probe relevant
rf parameters resulting in maximal bunch broadening
exhibiting longitudinal particle distribution uniformity.
In Sec. IV, the implementation of the phase-space dilution
studies will be discussed. Finally, the conclusion and
closing remarks will be given in Sec. V.

II. THE DOUBLE RF MODEL

A radiation-damped bunch is first prepared at the rf
phase coordinate ϕ ¼ 0 in longitudinal phase space, which
is the origin of a stationary rf bucket produced by a primary
rf cavity operating with rf harmonic number h1 and rf
voltage V1. A secondary rf cavity with harmonic number
h2 ¼ hh1, voltage V2 ¼ rV1, and rf phase difference Δϕo
referenced to the primary cavity is then switched on
nonadiabatically. Both the rf cavities will receive the
applied rf phase modulation.
The particle motion in the longitudinal phase space with

the secondary rf cavity activated is described by the
Hamiltonian [11]

H ¼ Ho þH1: ð1Þ

Here,

Ho ¼
1

2
νsδ

2 þ VðϕÞ; ð2Þ

where νs is the small-amplitude synchrotron tune refer-
enced to the primary rf cavity in the absence of the
secondary rf cavity,

δ ¼ h1ηc
νs

�
Δp
po

�
ð3Þ

is the normalized fractional momentum deviation coordi-
nate referenced to the primary rf cavity, with ηc being the
longitudinal phase-slip factor and Δp ¼ p − po the off-
momentum coordinate referenced to an ideal particle of
momentum po. The resulting double rf potential with both
rf cavities activated is

VðϕÞ ¼ νs
n
1 − cosϕ −

r
h
½1 − cos ðhϕþ ΔϕoÞ�

o
; ð4Þ

where Δϕo is the rf phase difference between the two rf
waves. The modulation of the rf phases is given by

H1 ¼ νsamδ sin ðνmθ þ ηÞ; ð5Þ

where νm is the phase modulation tune, am is the modu-
lation amplitude, η is the modulation phase, and θ serves as
the independent time coordinate, which increases by 2π
per revolution. In the discussion below, H0 and H1 will be
treated, respectively, as the unperturbed and perturbed
portions of the Hamiltonian.
For the Hamiltonian approach to be valid, some assump-

tions have been made. First, the effects of radiation
damping and quantum excitation in the bunch broadening
process were not included. Bunch broadening is assumed
to occur much faster than radiation damping effects. A
discussion on the validity and limitation of this assumption
will be given in Sec. III D. Second, since the momentum

FIG. 1. Measurement of the squared rms bunch length σ2s as a
function of time where the phase difference between the two rf
cavities was Δϕo ∼ 245°. The data were obtained by digitizing
beam position monitor signals at 1 ns resolution where phase
modulation of frequency fm ¼ 1.4 kHz and amplitude am ¼ 100°
was applied to the higher-frequency cavity of a double rf system
with rf voltage ratio r ¼ 0.11 and harmonic ratio h ¼ 9. (The data
is courtesy of D. Jeon et al.)
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change of a particle is applied locally by the rf cavities, a
turn-by-turn description of the longitudinal motion is more
appropriate. Here, the Hamiltonian in Eqs. (1) and (5) has
been constructed as a smooth approximation of the turn-by-
turn symplectic longitudinal mapping equations by intro-
ducing the continuous time variable θ in order to facilitate
analysis [12]. A discussion concerning its validity will be
given in Sec. III.
Since the equilibrium beam profile is dependent on the

shape of the rf potential, in the absence of applied phase
modulation (H1 ¼ 0), the double rf system can be con-
figured to flatten the potential well to provide larger
bunching factors. When parameters are chosen to satisfy
the condition where rh ¼ 1 and Δϕo ¼ 0, the double rf
potential-well bottom will be optimally flat. This method
alone will only broaden the bunch by a factor of about 2.
Instead, rf phase modulation will be introduced to initiate
controlled diffusion so that the bunch can be broadened
further to fill nearly three-quarters of the primary rf bucket.
The equations of motion for particles in a double rf system
with applied phase modulation are

dϕ
dθ

¼ νs½δþ am sin ðνmθ þ ηÞ�; ð6Þ

dδ
dθ

¼ −νs½sinϕ − r sin ðhϕþ ΔϕoÞ�; ð7Þ

where Eq. (6) implies that the phases of both rf cavities are
being simultaneously modulated in the model.
It has been shown that applied phase modulation will

excite parametric resonances in a particle bunch [8]. When
a multitude of parametric resonances are strongly driven
and overlap, large regions of chaotic particle motion are
generated [9]. In order to facilitate particle diffusion, the
relative phase difference between the two rf cavities will
need to deviate from zero, resulting in an asymmetric
potential [10]. This will allow a small radiation-damped
bunch that is strongly bounded at ϕ ¼ 0 to diffuse outward
to large regions of overlapping parametric resonances
beyond. To avoid confusion, we emphasize that the rf
phase coordinate ϕ, and the location of phase-space origin
(ϕ ¼ 0 and δ ¼ 0) is always referenced to that of the
stationary rf bucket when only the primary rf cavity is
activated. For brevity, the phrase primary-rf-only longi-
tudinal phase space will be used.

A. Choice of phase difference parameter Δϕo

The strengths of parametric resonances driven by rf
phase modulation are functions of the action J [8] [see
Eq. (17) and Fig. 6]. For a given dynamical system with
canonical coordinates ϕ and δ, the expression for JðEÞ
obtained from the unperturbed Hamiltonian in Eq. (2) is
given as

J ¼ 1

2π

I
δðϕ0Þdϕ0 ¼ 1

2π

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

νs
½E − VðϕÞ�

s
dϕ; ð8Þ

and vanishes at the location of the minimum or bottom of
the rf potential well. Up to a scale factor, J represents the
area in phase space enclosed by a torus of a given energy E
as shown in Fig. 3. For a conventional single rf system or
double rf system operating in phase (Δϕo ¼ 0), the mini-
mum of the rf potential or stable fixed point of the rf bucket
is located at the phase coordinate ϕ ¼ 0. Since the bunch is
initially located at ϕ ¼ 0, where J ¼ 0, the resonance
strengths due to phase modulation vanishes. As a result,
the applied phase modulation is extremely ineffective at
driving a small radiation-damped bunch away from the
origin of the primary-rf-only phase space where it may
utilize overlapping and collapsed resonant islands to drive
particle diffusion. For this reason, the minimum of the rf
potential must be shifted away from ϕ ¼ 0 so that the
action at the initial location of the radiation-damped bunch
becomes optimally large. A double rf system with relative
phase Δϕo ≠ 0 and ≠ π will be necessary to accom-
plish this.
The location of the rf potential minimum ϕo is a function

of the phase difference Δϕo between the two rf waveforms,
and is given by

dVðϕÞ
dϕ

����
ϕ¼ϕo

¼ sinϕo − r sinðhϕo þ ΔϕoÞ ¼ 0: ð9Þ

The maximum offset of the rf potential minimum ϕoðΔϕoÞ
is given by dϕo=dΔϕo ¼ 0, and is therefore

ϕo ¼ �sin−1r: ð10Þ

This occurs when the phase difference of the two rf cavities
is configured to be

Δϕo ¼ � π

2
∓ hsin−1r: ð11Þ

We will restrict the discussion for the case where rh ¼ 1.
For r ¼ 1=2 and h ¼ 2, the largest offset of the potential
minimum from the origin of the primary-rf-only longi-
tudinal phase space was found to be ϕo ¼ �30°, corre-
sponding to a phase difference between the two rf cavities
ofΔϕo ¼ �30°. The dependence of the potential-minimum
offset ϕo as a function of the phase difference parameter
Δϕo is shown in Fig. 2 where several shapes of the rf
potential and the corresponding potential minima are
depicted. Figure 3 shows the shape of the potential where
Δϕo ¼ 30° with corresponding phase-space torus of
motion about the stable fixed point at ϕo ¼ π=6 and the
associated energy levels where r ¼ 1=2 and h ¼ 2 have
been chosen. Augmenting the rf potential will enable the
action J, and thus the strengths of the driven parametric
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resonances at the initial location of the particle bunch, to
be nonvanishing. Under these conditions, particles will be
able to be driven to regions of thick overlapping resonances
beyond.

Simulation results described in Sec. III have been
performed for all values of Δϕo varied by small steps. It
shows that diffusion only occurs in the range 20°≲
jΔϕoj≲ 55°. Thus rf phase difference parameters in the
vicinity of Δϕo ¼ 30° will be the focus of this study. When
Δϕo ¼ π or Δϕo ¼ 0, such as in conventional Landau
cavities, simulations reveal that no large chaotic regions are
generated by overlapping resonant island chains. Therefore
large blowup of longitudinal beam emittance will not occur.
Only a few-fold increase in emittance was observed as
particles traveled into nonoverlapping resonant islands.
This result was supported by experiments at the IUCF
CSR [8,9], where a huge emittance increase was observed
at some optimal rf phase difference Δϕo as depicted in
Fig. 1. The emittance increase was negligible when Δϕo
was chosen to be near zero or π.
We wish to point out that the perturbed Hamiltonian of

Eq. (5) implies the phases of both rf systems are modulated
with the same frequency and amplitude. An alternate
method exists that applies phase modulation to only the
secondary rf system. This method has been explored at
the IUCF CSR in 1997 [8,9]. Both methods indicate that
the rf phase difference Δϕo must be nonzero to generate
overlapping resonant island chains that form large chaotic
regions for particles diffusion. Here, we choose to inves-
tigate the method of modulating both rf cavities by the
same modulation parameters as it simplifies analysis,
although the alternate method might be easier to implement
experimentally.

B. Synchrotron tune and resonance strengths

The unperturbed Hamiltonian in Eq. (2) is canonically
transformed to the action-angle variables using the gen-
erating function of the second kind,

F2ðϕ; JÞ ¼
Z

ϕ

ϕ1

δðϕ0Þdϕ0 ¼
Z

ϕ

ϕ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

νs
½EðJÞ − Vðϕ0Þ�

s
dϕ0;

ð12Þ

where the energy EðJÞ is the inverse function of action
JðEÞ as defined in Eq. (8), while the conjugate angle
variable is

ψ ¼ ∂F2

∂J ¼ ∂E
∂J

Z
ϕ

ϕ1

∂δðϕ0Þ
∂E dϕ0 ¼ Qs

νs

Z
ϕ

ϕ1

dϕ0

δðϕ0Þ : ð13Þ

The ϕ1 in Eqs. (12) and (13) is a turning point of phase
excursion in longitudinal phase space for a torus of motion
that corresponds to action J or energy EðJÞ, and Qs ¼
ð∂J=∂EÞ−1 is the synchrotron tune. The angle variable ψ
in Eq. (13) advances by π when ϕ reaches the opposing
turning point of phase excursion where ϕ ¼ ϕ2. This gives
rise to a method of calculating the synchrotron tune by way
of an elliptic integral expression,

FIG. 2. (a) rf potential VðϕÞ as a function of longitudinal phase
ϕ for r ¼ 1=2 and h ¼ 2. The boxes denote each respective
potential minimum where the rf phase difference parameters are
(1) Δϕo ¼ −60°, (2) −30°, (3) 0°, (4) 30°, and (5) 60°. (b) The
resulting potential-minimum offset ϕo with varying Δϕo.

FIG. 3. (a) rf potential VðϕÞ as a function of longitudinal phase
ϕ for r ¼ 1=2, h ¼ 2, and Δϕo ¼ 30°. The particle energy levels
E1 ¼ −0.1, E2 ¼ 0.0, E3 ¼ 0.1, E4 ¼ 0.2, and E5 ¼ 0.3 are
shown corresponding to (b) each respective torus of motion in
phase space.
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QsðJÞ
νs

¼ π

0
B@Z

ϕ2

ϕ1

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
νs
½EðJÞ − Vðϕ0Þ�

q
1
CA

−1

: ð14Þ

The resulting normalized synchrotron tune, obtained by
numerical integration, as a function of torus extrema is
shown in Fig. 4, for the case where r ¼ 1=2, h ¼ 2,
and Δϕo ¼ 30°. The small-amplitude synchrotron tune is
Qs ¼ νsðcosϕo − hr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϕo=r2

p
Þ. At the optimal

potential-minimum offset, the small-amplitude synchrotron
tune becomesQs ¼ νs

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
, which is independent of the

rf harmonic number ratio h. Parametric resonances are
excited within the bunch by coherent kicks from the applied
phase modulation that satisfies the resonant condition,

nQs −Mνm ¼ 0; ð15Þ
where individually driven parametric resonances are iden-
tified using the notation n∶M resonance. The horizontal
dotted line in Fig. 4 depicts the applied phase modulation
where the modulation tune is νm ¼ 2νs. The intercepts of
the synchrotron tune curves with this dotted line reveal the
locations of fixed points of the corresponding parametric
resonant islands driven by the applied phase modulation.
By varying νm, resonances are excited at various locations
in longitudinal phase space.
The synchrotron tune can also be computed as a function

of the action J, which is related to the phase-space
oscillation amplitude, as shown in Fig. 5. When
νm ¼ 2νs, the small bunch at the origin of the primary-
rf-only phase space where J ¼ 0.092 will be driven
strongly by the 5∶2 resonance due to the close proximity
of the initial bunch to the 5∶2 resonant islands. The 3∶1
resonance, being first order, ismore strongly excited andwill
overlap with the 5∶2 resonant island chain to create large

chaotic regions at higher modulation amplitude. The analy-
sis summarized in Figs. 4 and 5 will be used to predict the
location various n∶M parametric resonances driven within a
bunch.With the synchrotron tune being larger near the origin
of the primary-rf-only phase space as compared to at the
edges, this will ensure the condition where the generated
central chaotic region will be bounded by well-behaved tori
preventing particle loss.
The perturbed Hamiltonian can be expressed in terms of

action-angle variables by expanding the fractional momen-
tum deviation δ into a Fourier series,

δðJ;ψÞ ¼
Xþ∞

n¼−∞
gnðJÞeinψ ; ð16Þ

where the resonance strength function is given as [13]

gnðJÞ ¼
1

2π

Z
π

−π
δe−inψdψ : ð17Þ

The complex resonance-strength function can be expressed
as gnðJÞ ¼ jgnðJÞjeþiχn where χn denotes the phase. Using
the fact that the complex Fourier coefficients are related
by gn ¼ g�−n, the total Hamiltonian in terms of action angles
can be expressed as

H ¼ HoðJÞ þ amνs

�Xþ∞

n¼1

jgnðJÞj½sin ðνmθ þ ηþ χn þ nψÞ

þ sin ðνmθ þ η − χn − nψÞ� þ goðJÞ sin ðνmθ þ ηÞ
�
:

ð18Þ

The Hamiltonian in Eq. (18) contains all the parametric
resonances that are excited by the applied phase

FIG. 4. Normalized synchrotron tune Qs=νs as a function of
torus extrema ϕ1 and ϕ2. The νm=νs ¼ 2 horizontal dotted-line
intercepts depict the location of n∶M parametric resonances
driven by phase modulation. The dashed line overlays the
asymmetric shape of the potential VðϕÞ=νs where the double
rf parameters are r ¼ 1=2, h ¼ 2, and Δϕo ¼ 30°.

FIG. 5. Normalized synchrotron tuneQs=νs as a function of the
action J. The νm=νs ¼ 2 horizontal dotted-line intercepts depict
the location of n∶M parametric resonances driven by phase
modulation where the double rf parameters are r ¼ 1=2, h ¼ 2,
andΔϕo ¼ 30°. The initial location of the bunch at the origin of the
primary-rf-only phase space corresponds to the action J ¼ 0.092.
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modulation. The higher-order parametric resonances,
i.e., n∶M resonances with M > 1, are revealed by
performing higher-order perturbations via M canonical
perturbation transformations from action-angle coordi-
nates ðψ ; JÞ to the new coordinates ðψ̄ ; J̄Þ. For example,
the 5∶2 resonance is produced by the combination of
lower-order resonances, such as the 2∶1 and 3∶1
resonances through another canonical transformation
[11]. The first-order perturbation terms are sinusoidal.
The higher-order perturbations, however, will produce
stationary terms (θ-independent). These terms, when
added to the unperturbed Hamiltonian HoðJÞ will
modify the rf potential. The potential-well minimum
as well as the positions of the parametric resonances
will be perturbed accordingly.
The calculations of the resonant strength jgnðJÞj as

functions of the action J are shown in Fig. 6 for harmonics
n ¼ 1, 2, 3, 4 and order M ¼ 1, where the double rf
parameters are r ¼ 1=2, h ¼ 2, and Δϕo ¼ 30°. The same
calculation has been completed for Δϕo ¼ 45° shown in
the dashes. The analysis shows that lower harmonic para-
metric resonances are, in general, more strongly driven than
higher harmonics. Also lower-order resonances are more
strongly driven than higher-order resonances. It is impor-
tant to note that jgnðJÞj does indeed vanish as the action
approaches J ¼ 0 at the location of the rf potential
minimum.
For sinusoidal phase modulations applied to a symmetric

rf potential, only odd harmonic parametric resonances are
generated. Due to the asymmetry of VðϕÞ resulting from
the shifted potential-well minimum, gnðJÞ no longer
vanishes for even n. This implies that both odd and even
n∶1 parametric resonances can be simultaneously excited.
Depending on the choice of νm and am configured in the
double rf system, both odd and even harmonic parametric
resonances can be exploited to optimize the process of
beam dilution.

III. SIMULATION RESULTS

Numerical simulations were carried out by tracking
particles at each successive revolution from the kth revo-
lution to the (kþ 1)th revolution according to [12]

ϕkþ1 ¼ ϕk þ 2πνs½δk þ am sin ð2πkνm þ ηÞ�; ð19Þ

δkþ1 ¼ δk − 2πνs½sinϕkþ1 − r sin ðhϕkþ1 þ ΔϕoÞ�: ð20Þ

Since the rf cavities are localized rather than distributed
continuous along the storage ring, these equations provide
more accurate and realistic particle tracking than the
equations of motion, Eqs. (6) and (7), with continuous
time variable θ. The particle tracking equations also assume
that the primary and secondary rf cavities are situated at the
same location. Thus Eq. (19) gives the longitudinal phase
drift of particles from the exit of the rf cavities, around the
storage ring, and back to the entrance of the rf cavities, and
Eq. (20) gives the momentum delivered to particles while
crossing the rf cavities that are infinitesimally thin. Simple
modifications of these equations can be made to model two
cavities that are located at different places along the storage
ring. The resulting differences between the turn-by-turn
tracking and tracking with continuous time is negligibly
small, because the small-amplitude synchrotron tune νs in
the presence of only the primary rf cavity is typically small.
In the simulations presented here, 1=νs ¼ 1030 was used.
The symplecticity of the multiparticle tracking will be used
to uncover resonance structures arising from the applied
phase modulation and resonant-island topographies pro-
moting particle diffusion bounded by invariant tori.

A. rf phase difference Δϕo ¼ 30°

The Poincaré surface of section for Δϕo ¼ 30° that gives
rise to the largest potential-minimum offset from the origin
of the primary-rf-only phase space will first be studied.
Since the choice of modulation tune near νm ∼ 2νs yields
reasonable diffusion results, it will be used to illustrate
resonant island structures resulting from increasing modu-
lation amplitude am. A detailed discussion on the upper
and lower limits for arbitrarily chosen νm and am param-
eters for optimal phase-space dilution will be presented
later in Sec. III B.
With phase modulation amplitude am ¼ 8°, the Poincaré

section in Fig. 7 was produced by stacking stroboscopic
frames obtained from particle tracking, where the longi-
tudinal motion of 1 × 104 macroparticles were evolved. To
ensure that the phase-space diagrams remain stationary or
nonrotating, stroboscopic frames are taken every modula-
tion number Nm ¼ 1=νm ¼ 515 (for νm=νs ¼ 2), chosen to
be exactly an integer revolution number within the simu-
lations. These Poincaré surfaces of section eliminate unin-
teresting time dependencies due to synchrotron rotation
and sinusoidal phase modulation in the longitudinal phase

FIG. 6. Magnitude of the resonance strength jgnðJÞj as func-
tions of action J for n∶1 parametric resonances where the double
rf parameters are r ¼ 1=2 and h ¼ 2. The curves are in solid for
Δϕo ¼ 30° and dashes for Δϕo ¼ 45°.
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space, leaving behind only the resonant behavior for
analysis.
Since particle diffusion has yet to occur at low am, an

excessively large Gaussian-distributed particle bunch, with
bunch sizes of the order of σϕ ∼ 1 rad and σδ ∼ 1, was
tracked to outline various relevant resonance structures
resulting from the chosen parameters. The result depicted in
Fig. 7 was for modulated phase η ¼ 0 [see Eq. (19)] which
will be used for all the analyses presented in this section.
It shows the 5∶2, 7∶3 and many higher-order resonances
in the central region. Beyond that, remnants of the 8∶3
resonance and higher-order resonances are partially merg-
ing to form chaotic layers surrounding the 3∶1 resonant
islands. At the edge of the phase space, strongly driven
higher-order resonances form the well-behaved tori bound-
ing the layers of chaotic particle motion that are driven by
the applied phase modulation. In order for the particle
bunch that is initially at the primary-rf-only phase-space
origin to be enlarged by diffusion, the 5∶2, 7∶3, and other
centrally bounding higher-order resonances must collapse
and the central region of well-behaved tori shrink. This will
allow the bunch to be driven out to the ever-growing
chaotic region formed by the accumulation of collapsed and
overlapping resonances within the well-behaved bounding
tori. This condition has been found to start occurring when
the modulation amplitude approaches am ≈ 49° for the rf
phase difference parameter Δϕo ¼ 30°.
Now let us examine the effects of phase modulation on

a Gaussian-distributed bunch of rms bunch length σϕ ¼
1 × 10−3 rad and momentum spread σδ ¼ 1 × 10−3 con-
sisting of 1 × 104 macroparticles placed at the origin of the
primary-rf-only phase space. The total bunch length of
∼100 ps corresponds to �5σ of the overall particle dis-
tribution. The Poincaré sections with am ¼ 58°, shown in

Fig. 8, depict the last five modulation periods after tracking
for 1.5 million revolutions where particle diffusion has
taken place. The red points depict stable tori bounding the
diffused chaotic region. The small bunch at the origin of the
primary-rf-only phase space had been driven into the thick
chaotic layers surrounding the separatrices of the 3∶1
resonance. The thick stochastic layers, on the other hand,
come from the overlapping of the 5∶2, 7∶3, 8∶3, and
possibly many other higher-order resonances. Aside from
the four empty spaces corresponding to the four stable
fixed-points associated with the 3∶1 resonance, the result-
ing longitudinal distribution of particles in the bunch is
nearly uniform. Particle tracking was continued by increas-
ing the number of revolutions to be much greater than
1.5 million, to show that the particles filling the large
chaotic region remained bounded and no particle loss was
observed. The Poincaré section as well as the particle
distribution uniformity were left unchanged and persisted
independent of time after equilibration as shown in Fig. 8.
The rms beam sizes are computed turn by turn and

shown in Fig. 9. The squares of the rms bunch sizes, σ2ϕ and
σ2δ, are shown to initially grow linearly with revolution
number (time). This is an indication that the bunch broad-
ening effect is a diffusion process. The growths of both σ2ϕ
and σ2δ eventually level out and equilibrate after ∼1.5 × 105

revolutions. The rms bunch length and momentum spread
were calculated to be σϕ ¼ 0.81� 0.03 rad and σδ ¼
0.57� 0.01, respectively, after diffusion have equilibrated.
Thus the bunch has been broadened roughly 800-fold.
Next we will examine how the small radiation-damped

bunch at the origin of the primary-rf-only phase space
gradually broadened to become the distribution shown in
Fig. 8. The evolution of particle diffusion in phase space is
shown in Fig. 10. Particles are observed to be smoothly

FIG. 7. Nondiffusive Poincaré surface of section with param-
eters am ¼ 8° and Δϕo ¼ 30°. The initial particle bunch is
confined between the (blue) 5∶2 and (green) 7∶3 resonant
islands. The (magenta) 8∶3 resonance can be seen about to
merge with the layers of overlapping (yellow) higher-order
resonances surrounding the resonant islands of the (red) 3∶1
resonance. Well-behaved tori bounding the regions of chaotic
particle motion are observed.

FIG. 8. Poincaré surface of section depicting the diffusion of the
Gaussian bunch of σϕ ¼ 1 × 10−3 rad and σδ ¼ 1 × 10−3 initially
at the primary-rf-only phase-space origin after 1.5 million revo-
lutions where am ¼ 58° and Δϕo ¼ 30°. The red points depict the
single-particle tracking of test particles placed initially near the
edge to show that the structure is indeed bounded.
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streaming from the primary-rf-only phase-space origin to the
3∶1 resonant islands rather than hopping from one island
to the another, and gradually filling up the large bounded
stochastic region. This is another indication that process is a
diffusion process. The boundary of red points in the last
frame in Fig. 10 was obtained by placing single particles
initially at positions approaching the bounding tori then
tracked for 1.5 million revolutions. The innermost torus of
red points constitutes the boundary of a chain of overlapping
resonant islands that forms the well-behaved tori, confirming
that the diffusion of particles will be bounded.
When the modulation amplitude is increased from

am ≈ 49° to 73°, the Poincaré sections remained virtually
unchanged, with rms bunch length and momentum spread
calculated after diffusion staying fairly constant at

σϕ ≈ 0.8 rad and σδ ≈ 0.58, respectively, as shown in
Fig. 11. The only significant change to be noted is the
gradual shifting of the entire phase-space structure to the
left with respect to the origin of the primary-rf-only phase
space. This can be readily observed by noting the
displacement of the central region in Fig. 7 as compared
to Fig. 8. This shift would be to the right instead if
stroboscopic frames were observed at the modulation
phase of η ¼ π in Eq. (19). The gradual shift is a
consequence of the movement of the rf potential-well
bottom and the positions of the parametric resonances as
the modulation amplitude am increases. When one of the
three 3∶1 resonant islands has been shifted to include
the primary-rf-only phase-space origin where the bunch
is originally located, no diffusion will occur. This is
exactly what was observed in the hatched region between
75°≲ am ≲ 85° in Fig. 11.
When the modulation amplitude was increased past

am ≈ 115°, rapid particle loss was observed. The nondiffu-
sive Poincaré section when am ¼ 104°, shown in Fig. 12,
depicts a Poincaré section riddled with many collapsing
higher-order resonances as the phase-space structure is on
the verge of particle loss. The chains of resonant islands at
the edge, associated with many strongly driven resonances
that once formed the well-behaved bounding tori, are
showing signs of overlap and disruption. This will leave
the phase-space structure unbounded and susceptible to
uncontrolled longitudinal beam blowup.

B. Choice of modulation tune and amplitude

Longitudinal particle-tracking simulations were used
to map the modulation fraction νm=νs and modulation

FIG. 9. Squared of the longitudinal bunch sizes as functions of
revolution number for am ¼ 58° and Δϕo ¼ 30° as the diffusion
process evolves. The evolution starts out linearly with time and
equilibrates after about 1.5 × 105 revolutions.

FIG. 10. The evolution of the small bunch of 1 × 104 particles with initial rms length σϕ ¼ 1 × 10−3 rad and momentum spread
σδ ¼ 1 × 10−3 as it undergoes the diffusion process where r ¼ 1=2, h ¼ 2, am ¼ 58°, and Δϕo ¼ 30°. Particles are observed to be
smoothly streaming about the 3∶1 resonant islands as the diffusion evolves until equilibration at about 1.5 × 105 revolutions. The red
points represent particle tracking in the well-behaved bounding tori region.
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amplitude am parameter space. This will be used to find
parameters exhibiting optimal particle bunch diffusion with
equilibrium stability. The rapid diffusion of particles
typically equilibrates after about 1 × 105 revolutions when
the appropriate parameters are chosen. The rms bunch
length and momentum spreads were calculated for 1 × 104

macroparticles after 5 × 105 revolutions to ensure that
only conditions leading to bounded and lossless diffusion
remained in the analysis. The thresholds for maximum rms
bunch length and rms momentum spread were based on
design limitation such as bunch broadening that fills
less than 75% of a given ring with h1 ¼ 1 to allow for
beam extraction.
A map of the rms bunch length in the am and νm=νs

parameter space for Δϕo ¼ 30° is shown in Fig. 13. The
dark blue regions in the parameter space represent bunch
sizes that remained small after 5 × 105 revolutions, i.e.,
particle bunches that have not undergone diffusion, and
dark red regions represent bunch sizes that exceed an upper

operable threshold in which particle loss has occurred. It is
in between these two parameter limits in which bounded
diffusion can be attained.
Referring back to Fig. 5, each normalized synchrotron

tune n
M ×Qs=νs curve exhibits a negative cubiclike behavior

with a minimum near J ≈ 0.4 and maximum near J ≈ 1.5. A
fixed νm=νs dotted line may intercept this curve at three
points, generating three resonant island chains. If the first two
interception points are close to the potential-well minimum,
the corresponding two resonant island chains will overlap
and become chaotic when the modulation amplitude am
exceeds a certain threshold. Diffusion of the initial bunch
will occur when it is close enough to these island chains of
overlapped resonances. If the last two interception points are
close to the maximum, these two corresponding resonant
island chains will overlap, and may lead to chaoticity
extending towards the edges of the rf bucket.
For small values of the modulation fraction, e.g.,

νm=νs ∼ 1 or smaller, the relevant n
M ×Qs=νs curve (inter-

cepting with the n
M ≲ 1) is relatively flat. The minimum

does not differ much from the maximum of the curve. The
implication is that all three interception points may be close
to the minimum and maximum at the same time. Thus with
sufficient modulation amplitude am, the nearby island
chains will overlap and chaotic regions will be generated
from J ≲ 0.4 towards the edges of the rf bucket. This is
especially true because the intercepts take place at rela-
tively small gradients jdð nM ×Qs=νsÞ=dJj, enhancing the
widths of the resonant island chains. Since the bunch is
initially far from the minima of all nearby n

M ×Qs=νs
curves, the bunch particles revolve along well-behaved tori
about the potential-well bottom and the bunch is therefore
not broadened. As the modulation amplitude increases to
am ≳ 20°, resonant island chains near the three interception
points overlap. Chaotic regions are formed and extend to
the entire phase space. This explains why the initial bunch
rapidly diffuses to fill the entire phase space resulting in
particle loss instead of bounded diffusion.
When the modulation fraction increases, for example, to

νm=νs ∼ 1.5 to 2, the relevant n
M ×Qs=νs curves exhibit

large normalized tune differences between the minima and
maxima. It then becomes impossible for the three inter-
ception points to be close to both the minimum and
maximum of the intercepted n

M ×Qs=νs curve. This implies
that the chaotic region generated by resonant island chains
near the maxima of the relevant n

M ×Qs=νs curves (outer
chaotic region) will be separated from the chaotic region
generated by overlapping resonant island chains near the
minima (inner chaotic region) by the well-behaved tori.
Thus the initial bunch will diffuse into this inner chaotic
region when am is sufficiently large, but bounded by well-
behaved tori so that particles will not diffuse into the outer
chaotic region where it would be lost. This explains the
existence of the large region of parameter space resulting in

FIG. 11. The rms bunch spreads σϕ and σδ as a function of
modulation amplitude am, where Δϕo ¼ 30°. The hatched region
depicts the approximate regions where no diffusion was observed.
Beyond am ∼ 115°, particle loss occurs.

FIG. 12. Nondiffusive Poincaré surface of section depicting the
longitudinal phase-space structure on the verge of particle loss
where am ¼ 104° and Δϕo ¼ 30°. Note that instead of the well-
behaved tori, the structure is bounded by layers of overlapping
resonances that will result in particle loss.
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bounded particle diffusion, as shown in Fig. 13, when the
modulation fraction is between νm=νs ∼ 1.5 and 2.
As the modulation fraction increases further from

νm=νs ∼ 2 to 3, the fixed-value νm=νs horizontal line will
intercept with each relevant n

M ×Qs=νs curve at much larger
slopes jdð nM ×Qs=νsÞ=dJj than when νm=νs is small. The
width of the corresponding resonant island chains becomes
narrower. Thus island chains will not overlap as easily, and
chaotic regions will be much more difficult to generate. For
this reason, diffusion of the bunch can hardly occur at large
modulation fractions.
In the modulation fraction range 1.6≲ νm=νs ≲ 2.0,

Fig. 13 shows a relatively sizable parameter region with
bounded particle diffusion for Δϕo ¼ 30°. The rms bunch
lengths in this parameter region are in the range 0.5 rad≲
σϕ ≲ 0.9 rad and rms momentum spread in the range
0.4≲ σδ ≲ 0.6. The parameter insensitivity of the applied
phase modulation in the beam dilution technique indicates
that desired diluted results can be readily obtained without
impractical and prohibitively fine-tuning capabilities of the
rf control system.

C. rf phase difference Δϕo ¼ 45°

Although the rf phase differenceΔϕo ¼ 30° provides the
maximum shift of the rf potential-well bottom from the
origin of the primary-rf-only phase space, this scenario
does have some shortcomings. According to Figs. 4 and 5,
the intercepts of the νm=νs ¼ 2 horizontal dotted line with
the 3 ×Qs=νs resonance curve are far away from the initial
location of the particle bunch, implying that the bunch is
initially far from the fixed points of the first-order 3∶1
resonance. This limits the bunch from falling inside the
stochastic layers surrounding the separatrices unless the
modulation amplitude am is sufficiently large. In addition,
Fig. 6 shows that the resonance strength function of the 3∶1
resonance is much smaller than that of the 2∶1 resonance.

As a result, relatively large modulation amplitude is
necessary to drive the bunch into diffusion. These short-
comings motivated the examination of another rf phase
difference Δϕo ¼ 45°, corresponding to the potential-well
bottom offset of ϕ0 ¼ 29.12° which is only 3% less than the
maximum potential-well bottom offset when Δϕo ¼ 30°.
For Δϕo ¼ 45°, Fig. 15 shows the 2 ×Qs=νs curve

shifted up to intercept the νm=νs ¼ 2 horizontal dotted
line. With the boxed interception points occurring at
approximately J ¼ 0.085, the 2∶1 resonant islands, and
more importantly, the unstable fixed points of the 2∶1
resonance are now much closer to the initial location of the
bunch at J ¼ 0.106. Now relatively smaller modulation
amplitudes are expected for particle diffusion to occur.
The resonance strengths jgnðJÞj for Δϕo ¼ 45°, shown in

FIG. 14. Nondiffusive Poincaré surface of section depicting
the longitudinal phase-space structure with parameters am ¼ 7°,
νm=νs ¼ 2, and Δϕo ¼ 45°. The resonant islands pertaining to
the 2∶1 resonance can be seen near the primary-rf-only phase-
space origin.

FIG. 13. Parameter map of the rms bunch length σϕ as a
function of the modulation amplitude am and modulation fraction
νm=νs at Δϕo ¼ 30°. The dark blue regions represent parameters
where the particles are confined and no diffusion occurs. The dark
red regions represent parameters where the diffusion is un-
bounded and particles are lost.

FIG. 15. Normalized synchrotron tune Qs=νs as functions of
the action J. The νm=νs ¼ 2 horizontal dotted-line interception
illustrates the parametric resonances driven by phase modulation
where the double rf parameters are r ¼ 1=2, h ¼ 2, and
Δϕo ¼ 45°. The vertical dotted line where J ¼ 0.106 depicts
the initial location of the bunch at the origin of the primary-rf-
only phase space. The circular interception points depict the two
relevant 8∶3 resonances that are required to be disrupted to enable
a larger chaotic region.
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Fig. 6, were found to deviate only slightly from the case
when Δϕo ¼ 30° with no other unique features to be noted.
The nondiffusive Poincaré section when am ¼ 7° and

Δϕo ¼ 45° is illustrated in Fig. 14. Immediately, the 2∶1
resonance structure can be identified near the origin of the
primary-rf-only phase space, as predicted. The small
bunch, however, will remain confined to the thin layer
higher-order resonances surrounding the 2∶1 resonant
islands and cannot be driven to the larger chaotic regions
formed by the overlap of the 7∶3, 8∶3 and higher-order
resonances beyond. For the bunch to escape and diffuse, the
thin higher-order chains of islands enclosing the 2∶1
resonance structure must be disrupted and collapse. The
sharp increase in the rms bunch size σϕ and σδ, shown in
Fig. 16, was observed when am ≈ 9°. This marks the
condition where the thin bounding higher-order chains
of resonant islands have successfully collapsed to allow for
the diffusion of the small particle bunch.
With the modulation amplitude increased just beyond

am ≈ 9°, the bunch size briefly levels off and then increases
again for the second time at am ≈ 23°. This second sudden
increase of the σϕ and σδ can be explained by the
bifurcation of multiple 8∶3 resonances, each with its
own set of resonant islands. Their individual positions in
action space are depicted as circles in Fig. 15. The first set
of resonant islands associated with the 8∶3 resonance
nearest to J ¼ 0 collapses resulting in the first sharp
increase in the bunch size when am ≈ 9°. As the modulation
amplitude increases to am ≈ 23°, the collapse of the second
set of 8∶3 resonant islands results in the sharp increase in
the bunch size for the second time. The Poincaré section in
Fig. 17 depicts the condition just before the second set of
8∶3 resonant island chain shrinks and collapses. The chain
of eight resonance islands associated with the second 8∶3
resonance can be seen surrounding the entire phase-space
structure. The remnants of both sets of the 8∶3 resonant

islands, after the modulation amplitude has been increased
beyond am ¼ 23°, can be readily identified in Fig. 18 as
small empty voids in an otherwise homogeneous structure.
The Poincaré section where am ¼ 28° and Δϕo ¼ 45° is

shown in Fig. 18. As compared to Fig. 10, the large voids of
the 3∶1 resonance stable fixed points are now replaced by
smaller voids, pertaining to the stable fixed points of the
2∶1 and 8∶3 resonance. These resonant islands are now
completely enveloped by the thick layer of chaos. The
overall phase-space structure can be seen to be broader
and more rectangular as compared to the case where
Δϕo ¼ 30°. The rms bunch length and momentum spreads,
calculated after equilibration, are σϕ ¼ 0.93� 0.02 rad
and σδ ¼ 0.689� 0.004.
The choice of these parameters provides a greater degree

of longitudinal particle distribution uniformity, as shown in

FIG. 16. The rms bunch spreads σϕ and σδ as functions of
modulation amplitude am where Δϕo ¼ 45°. The hatched region
depicts the approximate regions where no diffusion was ob-
served. The solid band depicts the approximate region where
beam loss was encountered. Data points where the error is much
less than 1% have negligible error bars.

FIG. 17. Poincaré surface of section depicting the diffusion of a
small bunch where am ¼ 23° and Δϕo ¼ 45° just as the bunch
sizes sharply increase for the second time. Note the islands of the
8∶3 resonance at the edge of the diffused structure just before
collapse and subsequent shrinking.

FIG. 18. Black: Poincaré surface of section of a small Gaussian
bunch of rms length σϕ ¼ 1 × 10−3 rad and momentum spread
σδ ¼ 1 × 10−3 initially at the phase-space center at the last
modulation periods of 1.5 million revolutions where am ¼ 28°
and Δϕo ¼ 45°. The red points depict single-particle tracking of
test particles placed initially near the edge of the phase-space
structure.
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Fig. 19. Furthermore, the diffusion process converges about
twice as quickly, after 6.5 × 104 revolutions shown in
Fig. 20, as opposed to 1.5 × 105 revolutions. These
improvements were attained at am ¼ 28°, about half the
modulation amplitude compared to the dilution case where
Δϕo ¼ 30°. The parameter map of the rms bunch lengths in
the am and νm=νs parameter space for Δϕo ¼ 45°, shown
in Fig. 21, depicts a similar parameter region for beam
dilution as compared to Fig. 13 where Δϕo ¼ 30°. The
parameter map of the rms momentum spread exhibits
the same features as Fig. 21 with range 0.5≲ σδ ≲ 0.7
observed for bunch dilution. The sizable operable region of
parameter space ensures beam dilution will be observed
in experiments without unnecessarily strict constrains on
operating parameters and rf control systems.

D. Effects of radiation damping

When radiation damping occurs at a much longer time
scale as compared to the rapid particle diffusion, the effects

of radiation damping can be neglected in the theoretical
analysis and numerical simulations [8]. The particle motion
then becomes Hamiltonian, which facilitates analysis,
e.g., through the introduction of action-angle variables.
Nevertheless, radiation damping can be important in certain
cases. To incorporate the effects of radiation damping in
the investigation, Eq. (20) has been modified to

δkþ1 ¼ δke−To=τ∥ − 2πνs½sinϕkþ1 − r sin ðhϕkþ1 þ ΔϕoÞ�;
ð21Þ

where τ∥ is the radiation damping time of the longitudinal
emittance and To is the period of one revolution. This
modification constitutes an overestimation of the damping
effects as random quantum excitations have not been
included. We can continue to neglect quantum excitations
as the phase-space area of the chaotic region in which
particles diffuse into is much larger than the area of the
initial radiation-damped bunch. For the 20 m compact
electron storage ring at Indiana University, the longitudinal
emittance damping time is of the order of seconds, due to
the low operating energy of ∼50 MeV. On the other hand,
simulation results that are shown in Fig. 20 where am ¼ 28°
and Δϕo ¼ 45°, indicate that it takes about nreq ∼ 5 × 104

revolutions for the bunch diffusion to reach equilibrium.
Thus radiation damping plays no role in the beam dilution
process for this storage ring.
According to the derivation given in Sec. II, the small-

amplitude synchrotron tune νs in the absence of the higher
harmonic rf system is an important parameter in the rate at
which particles diffuse towards the chaotic regions for
beam dilution. The number of required revolutions to reach
particle diffusion equilibrium is inversely proportional to
νs. Thus, for any electron ring with a secondary rf cavity,
phase difference of Δϕo ¼ 45°, and with small-amplitude
synchrotron tune νs in the presence of only the primary rf

FIG. 19. Histogram of 30 bins spanning the entire length
comparing the linear particle distribution of the two different
double rf settings after diffusion. The black line depicts the turn-
by-turn averages of the individual bins 1 × 106 revolutions after
diffusion, confirming the stability of the structure.

FIG. 20. Longitudinal bunch sizes as functions of revolution
number for am ¼ 28° and Δϕo ¼ 45° as the diffusion process
evolves and equilibrates after about 6.5 × 104 revolutions.

FIG. 21. Parameter map of the rms bunch length as a function
of the modulation amplitude and modulation fraction at
Δϕo ¼ 45°. The dark blue regions represent particle confinement
where no diffusion occurs. The dark red regions represent
diffusion occurrence, where the diffusion is unbounded with
particle loss.
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cavity, the number of revolution to reach equilibrium is
approximately given by

nreqνs ¼ ðnreqνsÞALPHA; ð22Þ

where for the electron storage ring at IU, ðnreqÞALPHA ≈
5 × 104 and ðνsÞALPHA ¼ 1=1030. The time to reach
blowup equilibrium is therefore Treq ¼ nreqTo, where To
is the revolution period of the storage ring under consid-
eration. For ALPHA, Treq ∼ 3.3 ms.
The longitudinal damping times of some electron rings

are tabulated in Table I. With the exception of the ALPHA
storage ring, the longitudinal damping times range from
τ∥ ¼ 4.7 to 77 ms. These damping times should be
compared with the corresponding time Treq to reach
emittance blowup. The effects of radiation damping will
not be important when τ∥=Treq ≳ 1 or n∥=nreq ≳ 1. This is

true for the lower-energy rings like the ALS at LBL, BEPC
at IHEP, LER and HER of PEP II at SLAC.
Next the effects on radiation damping on the beam

diffusion process when τ∥=Treq ≤ 1 (n∥=nreq ≤ 1) will be
investigated. Continuing the simulations with electron
storage ring at IU where the rf phase difference Δϕo ¼
45° and phase-modulation amplitude am ¼ 28°, but with
finite longitudinal damping time reduced to n∥ ¼ 5 × 104

revolutions. The top row of the Poincaré sections, depicted
in Fig. 22, shows the evolution of particle diffusion after
nreq ¼ 5 × 104 revolutions and the bottom row shows
2nreq ¼ 1 × 105 revolutions for various values of n∥=nreq.
The amount of radiation damping is characterized by
n∥=nreq. These Poincaré sections are to be compared to
those in Fig. 18, where radiation damping was not included
(n∥ ¼ ∞) in the simulations. The effect of radiation damping
is easily observed in that the diffused bunch occupies a

TABLE I. Properties of various electron or positron rings, ALS at LBL, BEPC at IHEP, LER and HER of PEP II at
SLAC, CESR at Cornell, APS at ANL, and LEP at CERN, showing in particular the longitudinal damping time τ∥,
number of revolutions required for emittance blowup via diffusion nreq ¼ Treq=To, and ratio τ∥=Treq.

ALPHA LER CESR BEPC HER ALS LEP APS

Beam energy (GeV) 0.05 3.2 6 2.2 9 1.5 55 7
Circumference (m) 20 2199 768.4 240.4 2199 196.8 26659 1104
Revolution period To (μs) 0.067 7.34 2.563 0.802 7.34 0.656 88.93 3.683
Synchrotron tune νs 0.00097 0.034 0.064 0.016 0.0522 0.0082 0.085 0.0061
Longitudinal damping time τ∥ (ms) 10000 77 8.0 8.8 19 8.8 19 4.7
n∥ (revolutions) 1.50 × 108 10500 3120 11000 2590 13400 214 1280
Revolution required for emittance
blowup nreq ¼ Treq=To

50000 1430 758 3030 930 5920 571 7960

τ∥=Tsð103Þ 154000 309 48.7 686 50 1640 2.52 209
τ∥=Treqð¼ n∥=nreqÞ 2998 7.35 4.11 3.62 2.78 2.27 0.375 0.161

FIG. 22. Poincaré surfaces of section where am ¼ 28°,Δϕo ¼ 45°, νm ¼ 2νs, rh ¼ 1, and radiation damping considered as opposed to
the case in Fig. 18 where radiation damping has been neglected. The top row (a) corresponds to a tracking simulation where nreq ¼
50;000 revolutions and the bottom row (b) 2nreq ¼ 100; 000 revolutions with the columns n∥=nreq ¼ 1, 0.8, 0.6, and 0.4, respectively. As
the radiation-damping time decreases and as the viewing time increases, the general trend is the continual shrinking of the stable diffused
bunch area with more empty spaces and more particles spiraling into the attractors.
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smaller area in phase space and exhibits more empty regions.
Nevertheless, the small bunch is broadened, is still bounded,
and maintains uniform longitudinal density as required by
the radiation-effects experiments. It is to be noted that there
are also a number of small empty regions in Fig. 18. Each of
them, in fact, contains a stable fixed point. In the presence of
radiation damping during the dilution process, these stable
fixed points become attractors in which particles are drawn
towards. This explains the areas of higher particle density
about these stable fixed points observed in the Poincaré
sections on the bottom row of Fig. 22 where particle tracking
was carried out for 100,000 revolutions.
The longitudinal damping time is lowered to n∥ ¼ 40;000

revolutions corresponding to n∥=nreq ¼ 0.8. The resulting
Poincaré sections after nreq ¼ 5 × 104 and 2nreq ¼ 1 × 105

revolutions are depicted in the second column of Fig. 22.
The third and fourth columns show similar simulation results
with n∥ ¼ 3 × 104 revolutions (n∥=nreq ¼ 0.6) and n∥ ¼
2 × 104 revolutions (n∥=nreq ¼ 0.4), respectively. A trend in
the shrinking of the phase-space area occupied by the
diffused particle bunch is observed with particles being
drawn towards the attractors. Two conclusions can be drawn.
First, this diffusion process of bunch broadening with
uniform longitudinal distribution uniformity is possible only
when n∥=nreq ≳ 1, where the number of required revolutions
nreq is calculated according to Eq. (22). Second, the
equilibrium diffused particle bunch must be extracted before
∼2n∥ revolutions otherwise particles will eventually migrate
towards the attractors preventing the condition of longi-
tudinal particle distribution uniformity.

E. Discussion of beam dilution parameters

There are many parameters in this applied phase modu-
lation beam dilution model. Besides the phase-modulation
amplitude am, the other parameters are the rf harmonic ratio
h ¼ h2=h1, the rf voltage ratio r ¼ V2=V1, the modulation
tune fraction νm=νs, the rf phase difference Δϕo, and the
modulation phase η. To reduce the number of parameters,
the constraint rh ¼ 1 was introduced for the analysis.
Choice of various beam dilution parameters are discussed
and summarized as follow:
1. It is necessary to shift the rf potential-well bottom as

far as possible from the origin of the primary-rf-only
longitudinal phase space at ϕ ¼ 0, so that the strengths
of parametric resonances will be optimally large. The
maximum shift, ϕo ¼ sin−1r, is independent of the rf
harmonic ratio h. Since h must be an integer larger than
one for the secondary rf cavity to form the higher-harmonic
cavity system and r must not be too small as to maximize
potential-well offset ϕo, with the restriction rh ¼ 1, it has
been shown that the choice h ¼ 2 would lead to an
optimally large r. Therefore the largest ϕo can be obtained
so that parametric resonances driven by the applied phase
modulation would become most efficient.

2. The rf phase difference Δϕo for the maximum shift
of the rf potential-well bottom from ϕ ¼ 0 is Δϕo ¼
π=2 − hsin−1r. For small values of r, the phase difference
is approximately Δϕo ¼ 30°. As shown in Fig. 2, however,
shifting of the rf potential-well bottom ϕo is not very
sensitive for values of Δϕo about Δϕo ¼ 30°. The choice
of Δϕo ¼ 45° rather than the ideal 30° will reduce the
maximum shift by only 3%. As a result, the choice of Δϕo
can be varied so as to allow the small particle bunch initially
located at ϕ ¼ 0 to be closest to a chains of overlapping
resonant islands that strongly excite the particle motions to
drive bunch diffusion.
3. The choice of the modulation fraction νm=νs was

found to be between νm=νs ∼ 1.6 and νm=νs ∼ 2 for optimal
rapid particle diffusion to occur. This was described in
detail near the end of Sec. III B where the map of the
relevant parameter space shown in Figs. 13 and 21 was
introduced. 4. The longitudinal phase-space structure
rotates in phase space after every subsequent revolution.
To avoid the confusing effect of this rotation, stroboscopic
frames at every 1=νm revolutions were depicted. When a
nonvanishing modulation phase η ≠ 0 is chosen, the strobo-
scopic Poincaré section will also rotate about the potential-
well minimum ϕo as compared to the case where η ¼ 0.
Due to the differences in the synchrotron rotational
frequency at various actions or distances from the rf
potential-well bottom, the Poincaré section at various
instants in the rotation for η ≠ 0 will differ from pure
rotation where η ¼ 0. This will cause the phase-space
structure to twist and be distorted.
The dilution model has also been studied with relaxation

of the restriction rh ¼ 1. However, the lengthy and similar
results will not be reported.

IV. IMPLEMENTATION

The Advanced Electron Photon Facility (ALPHA) is a
joint collaboration between the Indiana University Center
for Exploration of Energy and Matter (CEEM) and the
Crane Naval Surface Warfare Center [1], designed for
extreme environment radiation-effects experiments. The
20 m circumference electron storage ring, designed with
betatron tunes of νx ¼ 1.75 and νz ¼ 0.75, will be injected
with electrons at full energy from a 50–100 MeV linac
source. The gradient damping wigglers pair enables vari-
ability of the momentum-compaction factor for storage ring
operations in the isochronous condition.
The project requires a single 50–100 MeV electron

bunch to be broadened up to 40 ns with uniform longi-
tudinal particle distribution. Electrons are introduced into
the storage ring through a series of multiturn injections,
utilizing closed-orbit distortions, for charge accumulation to
attain a total bunch charge of up to 600 nC. The stored bunch
then undergoes radiation damping to reach an equilibrium
bunch length of 10–100 ps. Beam dilution is initiated by
activating the secondary rf cavity in conjunction with rf

ALFONSE N. PHAM, S. Y. LEE, and K. Y. NG Phys. Rev. ST Accel. Beams 18, 124001 (2015)

124001-14



phase modulation with chosen parameters am and Δϕo
applied to both rf cavities. After the dilution process have
equilibrated, the broadened bunch is ready to be extracted. A
traveling-wave fast-extraction kicker will divert the beam
through a Lambertson septum into the extraction line where
third-order focusing with an octupole magnet pair will
provide nonlinear beam spreading before the beam impinges
on a target. The resulting beam will have longitudinal
particle distribution uniformity with minimal secondary
effects at the device under test. Due to the size of the
compact storage ring and requirements of the radiation-
effects experiments, the beam dilution method proposed will
be an ideal candidate for the task.
The electron storage ring is currently under construction.

A compact ferrite-loaded quarter-wave 15 MHz rf cavity
[14] has been designed, fabricated, and commissioned for
the electron storage ring. The design of the second rf cavity
operating at 30 MHz and the low-level rf controls to
facilitate the beam dilution technique are currently being
carried out and awaiting final approval for construction.
The implementation of phase-space beam dilution method
using an ac dipole has been proposed to simplify the
application of beam dilution. This study will be presented
at a later time.

V. CONCLUSION

A method of phase-space beam dilution has been
presented for the broadening and longitudinal uniformiza-
tion of a small radiation-damped particle bunch. This is
accomplished by applying phase modulation to a double
rf system configured for variability in the relative phase
between the two rf cavities. Parametric resonances are
driven within the particle bunch in the presence of the
applied phase modulation. When a multitude of these
resonances combine and overlap, large regions of chaotic
particle motion are generated. The size and effectiveness of
various chaotic regions for bounded particle diffusion are
related to the dilution properties that include the resonance
strengths, topologies of resonant islands driven within the
bunch, initial location of the small bunch, and existence
of the well-behaved bounding tori. These properties are
determined by the important rf parameters that include the
phase difference parameter Δϕo, modulation amplitude am,
and modulation tune fraction νm=νs.
The theoretical model for the double rf system has been

presented to analyze parametric resonances that arise from
the applied phase modulation. Symplectic multiparticle
tracking simulation results have been presented to charac-
terize phase modulation driven parametric resonant struc-
tures and find resonant island topologies that promote
particle bunch dilution. It has been shown that a large
parameter region in the am and νm=νs parameter space
exists where bounded diffusion of a particle bunch was
observed. This ensures that the beam dilution method
presented can be readily achieved in experimentation

without strict tolerances on the rf control system. Optimal
parameters for phase-space beam dilution for radiation-
effects experiments in the compact storage ring at Indiana
University have been found.
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