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The beam-beam limit at hadron colliders manifests itself in the form of degraded luminosity lifetime
and/or reduced beam lifetime. In particular, for increasing beam intensity, the nonlinear beam-beam force
causes incoherent emittance growth, while the (linear) coupling force between the two colliding beams can
result in coherent beam-beam instabilities. These phenomena may be enhanced (or suppressed) by lattice
errors, external noise, and other perturbations. We investigate the luminosity degradation caused both by
incoherent emittance growth and by coherent beam-beam instability. The resulting beam-beam limit for an
ideal machine and the of question how it is affected by some of the aforementioned errors are discussed in
theory and simulation.
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I. INTRODUCTION

The beam-beam limit is conventionally characterized in
terms of the permissible tune shift due to the beam-beam
interaction, i.e., by a value for the maximum beam-beam
tune shift. Most hadron colliders are designed so that the
two counter-circulating beams collide at one or several
interaction points with equal emittances (εx ¼ εy ¼ ε) and
equal beta functions (β�x ¼ β�y ¼ β�) in the horizontal and
vertical plane. In this case and at zero crossing angle, for
p-p collisions the beam-beam tune shift (ξ) per interaction
point is expressed by

ξ ¼ Δν ¼ −
Nprp
4πγε

; ð1Þ

where γ, Np and rp are the relativistic factor, bunch
populations, and the proton classical radius. The total tune
shift in one revolution, ξtot, is given by summing (1) over all
interaction points.
Noticeable emittance growth occurs for collisions with a

high tune shift. The beam-beam limit may be defined as the
value of the tune shift above which the luminosity degra-
dation due to the emittance growth is significant.
While the tune shift limit approaches ξ ∼ 0.1 per

interaction point for electron-positron colliders in the
presence of strong synchrotron radiation damping [1], in

the past the beam-beam limit for hadron colliders had been
supposed to be at least an order of magnitude lower than for
lepton colliders, since the hadron beams, unlike the lepton
beams, did not feature any damping mechanism for the
transverse or longitudinal particle oscillations.
Based on the experience at the Spp̄S collider [2], the

Large Hadron Collider (LHC) was designed with a nominal
beam-beam parameter of ξ ¼ 0.0034 for each of three
interaction points. Many simulations using both strong-
strong and weak-strong models were performed to predict
the beam-beam limit in the LHC, e.g., Ref. [3]. These
simulations indicated beam-beam parameters even much
larger than 0.01 not to be associated with significant
emittance growth per se. Therefore, if the real beam-beam
tune shift of the LHC were actually limited around
ξ ∼ 0.01, other ingredients like noise or additional errors
would need to be invoked to explain such a tune-shift limit.
Since the start of LHC beam operation, several beam

experiments related to the beam-beam limit have been
performed in the LHC. These demonstrated that beam-
beam tune shifts far larger than the design value could be
reached without an appreciable degradation of the lumi-
nosity lifetime [4,5], which appears fully consistent with
the past simulations.
In this article we explore the fundamental beam-beam

limit for the LHC and we investigate various mechanisms
potentially restricting the beam-beam performance. We will
vary the bunch population to study the beam-beam limit as
a function of the tune shift. After examining the limit for the
ideal machine, we consider the additional effects of cross-
ing angle, transverse offset, linear and chromatic optics
errors at the interaction point, nonlinear fields in the
interaction region, and external noise. Long-range parasitic
beam-beam interactions are not considered in this article.
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Empirical data on the beam-beam limit is available from
a few hadron colliders. A total beam-beam tune shift from
two interaction points (IPs) of 0.03 was routinely achieved
in the Tevatron [6], with a complex long-range collision
scheme. The Tevatron was a single ring collider, where 36
bunches per beam encountered bunches of the other beam
at a total of 70 locations in the arc. At the LHC, dedicated
experiments have been performed, which, at least in the
absence of parasitic encounters, reached a total beam-beam
tune shift (sum of ξ over two IPs) as high as 0.034 without
any difficulty [4,5]. At the RHIC, the betatron tune is
constrained to the range between the 2=3 and 7=10
resonances in order to preserve the proton polarization.
For future operation at higher beam intensities the tune
footprint shall still be confined to the same area in the tune
plane with the help of electron lenses [7,8].
Understanding the beam-beam limit is crucial for the

optimization of the future High Luminosity LHC (HL-
LHC), which may operate with about 3 times the brightness
(bunch charge divided by transverse emittance) of the
nominal LHC. Parameters of the LHC are summarized
in Table I. Throughout this paper the number of interaction
points is taken to be two. The design beam-beam parameter
is 0.0034 per collision. In the actual LHC there are four
interaction points (IPs), and a standard bunch collides at 2
IPs with low beta for highest luminosity (β� ¼ 0.55 m at
the ATLAS and CMS experiments) and at the other 2 IPs at
a higher beta with lower luminosity (β� ¼ 3 − 10 m for
ALICE and LHCb). For the ALICE experiment in IP2 the
colliding beams are also separated transversely by several
times the rms beam size in order to further lower, and to
control, the luminosity, which much reduces the contribu-
tion of this IP to the total beam-beam tune shift.
This paper is organized as follows. Section II summa-

rizes the simulation method employed to study the
beam-beam limit. The simulated beam-beam limit without
errors, as inferred from both incoherent emittance
growth and coherent instability, is discussed in Sec. III.

The beam-beam limit with optics errors and collision offset
noise is discussed in Sec. IV. Section V draws some
conclusions. The Appendixes A and B present numerical
coefficients for the Hamiltonian amplitude-detuning and
resonance-driving terms for a single beam-beam collision
with horizontal crossing at the LHC, and analytical
expressions for the emittance growth due to random offset
noise in collision-based on a weak-strong model,
respectively.

II. SIMULATION METHOD

Beam particles experience an electromagnetic force
induced by the counter-rotating colliding beam. This force
is strongly nonlinear as a function of the transverse
amplitude, because the charge distribution of the beam is
localized. The betatron amplitude of the beam particles may
be subject to chaotic diffusion due to this nonlinear force,
leading to emittance growth. This emittance growth is
regarded as an incoherent phenomenon in which beam
particles independently move in a given potential of the
colliding beam. To study this type of emittance growth the
weak-strong model is available, in which the weak and
strong beams are represented by a group of particles being
tracked and by a given (fixed) potential, respectively. The
potential is taken to be the one of a Gaussian distribution
for example.
Two colliding beams can move coherently, correlated

with each other. A π mode instability, in which the two
beams oscillate with the betatron phase difference of π, is
the typical phenomenon. The coherent beam-beam insta-
bility results in emittance growth due to the nonlinear
interaction. For the study of the coherent beam-beam
instability, the strong-strong model is used, where both
beams are represented by (macro)particles, which interact
with each other. The shape of each beam, which can deviate
from a Gaussian as a result of the dynamical evolution,
affects the beam-beam interaction. The motion of the
particles in the two beams is treated self-consistently.

TABLE I. Parameters for LHC and HL-LHC. Two parameter sets are quoted for the HL-LHC, referring to the baseline bunch spacing
of 25 ns and to a backup option of 50 ns, respectively.

LHC(2013) LHC(design) HL-LHC(25 ns) HL-LHC(50 ns) Simulation model

Circumference (L½m�) 26,658
Energy (E½TeV�) 4 7 7 7 7
Normalized emittance (μm) 2.0 3.75 2.5 3.0 2.0
β�½m� 0.6 0.55 0.15 0.15 0.55
rms bunch length [m] 0.0755
Tune (x=y=z) 64.31=59.32=0.0019
Bunch population Np (1011) 1.65 1.15 2.2 3.5 variable
Number of bunches 1380 2808 2808 1404 � � �
Bunch spacing [ns] 50 25 25 50 � � �
Crossing angle [μrad] 285 285 0-590 0-285
Beam-beam parameter/IP 0.009 0.0034 0.003–0.011 0.005–0.014 variable
Luminosity (1034 cm−2 s−1) 0.7 1 5 (lev.) 2.5 (lev.) variable
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For the beam-beam limit in hadron colliders, slow
emittance growth and the associated lifetime degradation
are the primary effects, as coherent dipolar instabilities can
be suppressed by a bunch-by-bunch feedback system.

A. Weak-strong model

In the weak-strong model, particles in a (weak) beam
move through another colliding (strong) beam, experienc-
ing its electromagnetic field. The motion under the influ-
ence of this field is integrated along the bunch length s.
A transfer map at the interaction point s ¼ 0ðþnLÞ is
expressed by

xð0þ ϵÞ ¼ S exp

�
−∶
Z

Δ

−Δ
V−1
0 ðsÞHbbV0ðsÞds∶

�
xð0 − ϵÞ;

ð2Þ
where S designates the s-ordered product and �Δ is the
interaction region of the two beams, which is taken to be
several times σz. [The s-ordered product is based on the
same concept and definition as the t-ordered product
commonly used.] V0 denotes the transfer map in the drift
space between slice-by-slice collision points,

V0ðsÞ≡ V0ðs; 0Þ

¼ S exp

�
−∶
Z

s

0

H0ds∶
�

¼ exp

�
−∶

p2
x þ p2

y

2
s∶
�
: ð3Þ

The operator ∶∶ represents the Poisson bracket, namely
∶px∶x ¼ ½px; x� ¼ −1. The integration in Eq. (2) is per-
formed through discretization by slicing of the strong
beam: that is, it is replaced by the product of the beam-
beam transfer map between the sliced beam at zi and a
particle at z, with collision point si ¼ ðz − ziÞ=2. The drift
transformation from s ¼ 0 to the collision point si and its
inverse in Eqs. (2) and (3) are repeatedly applied for the
slice-by-slice collision [9,10].
The colliding strong beam is assumed to be characterized

by a round Gaussian distribution with the transverse
position ½xiðsÞ; yiðsÞ� and the rms size σrðsÞ. The transverse
centroid position and the transverse size depend on s due to
the crossing angle and due to the hourglass effect, respec-
tively. The beam size varies with the longitudinal position
si of the slice-by-slice collision point. Without crossing
angle, the beam-beam transfer map (e−∶Hbb∶x) for the round
beam collision at si is expressed by

ΔprðsiÞ ¼
2Np;irp

γ

1

r

�
1 − exp

�
−

r2

2σrðsiÞ2
��

ΔpzðsiÞ ¼
Np;irp

γ

1

σrðsiÞ2
exp

�
−

r2

2σrðsiÞ2
�
dσ2rðsiÞ
dz

ð4Þ

whereNp;i are the bunch population of the ith beam slice and
r is the transverse distance, at si, between the centroid
position of the ith slice of the opposite beam and the particle
being tracked, i.e., r2¼ðxðsiÞ−xiðsiÞÞ2þðyðsiÞ−yiðsiÞÞ2.
The same equations can be found in Refs. [9,10]. For
a finite horizontal crossing angle, transformations
x� ¼ xþ z tanðϕc=2Þ, δ� ¼ δ − px tanðϕc=2Þ and their
inverse are executed before and after collision [11,12].
The distance is x�ðsiÞ − x�i ðsiÞ ≈ xðsiÞ þ si tanϕc, where
si ¼ ðz − ziÞ=2.
The bunch luminosity is calculated as

L=frev ¼
Xnsl
i¼1

Np

np

Xnp
j¼1

Np;i

2πσrðsijÞ2

× exp
�
−
rðxjðsijÞ; yjðsijÞÞ2

2σrðsijÞ2
�
; ð5Þ

where Np;i denotes the true number of beam particles in the
ith slice of the strong beam, np the number of macro-
particles in the weak beam, and frev the revolution
frequency. The weak beam is represented by np ¼ 131,
072 macroparticles. The luminosity in Eq. (5) is converted
to the real bunch population NP [Oð1011Þ] of the weak
beam through the factor Np=np. The number of beam slices
nsl is chosen as 10. For β� ≫ σz and without a crossing
angle a single slice would be sufficient. A number of
nsl ¼ 5 is sufficient for modeling crossing collisions with a
Piwinski angle of about ϕpiw ¼ ϕcσz=ð2σxÞ ≈ 1 [13].

B. Strong-strong model

The electromagnetic field induced by the colliding
beams is calculated by solving the Poisson equation using
the particle-in-cell method.
The beam-beam map of Eq. (2) is applied to both beams

(first and second; x1 and x2), and Hbb is expressed by

Hbb ¼ ϕ2ðx1Þ þ ϕ1ðx2Þ; ð6Þ

where ϕ2;1ðx1;2Þ is the potential induced by the second and
first beam at the position of the first or second beam, ðx1;2Þ,
respectively.
The potential ϕ is determined, using a particle-in-cell

(PIC) approach, by the two-dimensional Poisson equation,

Δ⊥ϕ2=1ðx; y; z; sÞ ¼
re
γ1=2

ρ2=1ðx; y; z; sÞ ð7Þ

where Δ⊥ is the transverse Laplacian operator, ρ denotes
the particle density of the beam at a given location ðz; sÞ,
and ðx; y; z; sÞ are the coordinates of each tracked proton in
its respective beam.
The three-dimensional effect (longitudinal force) is taken

into account by [13,14]
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Δpz;1;2 ¼ −
∂ϕ2;1½siðz1;2Þ�

∂z1;2 : ð8Þ

For the case of a transversely Gaussian beam, this equation
is the same as the second line of Eq. (4). We recall that the
coordinate z ¼ ðs − ctÞ can be interpreted as time, and
pz ¼ ðp − p0Þ=p0 ¼ ðE − E0Þ=E0 (for ultrarelativistc par-
ticles) as the relative energy deviation. In the strong-strong
simulation, Eq. (8) is calculated by differentiation with
respect to time t, not with respect to any of the spatial
coordinates.
The transformations of Eqs. (7) and (8) are repeated slice

by slice using Eq. (2). The luminosity is calculated by
summation over the overlap of the number of particles in
the simulation cells as

L=frep ¼
Z

ρ1ðx; y; z; sÞρ2ðx; y; z0;−sÞdxdydzdz0; ð9Þ

where s ¼ ðz − z0Þ=2.
The three-dimensional strong-strong simulation is time

consuming. Taking the number of slices equal to one, we
obtain the simpler case of a two-dimensional simulation,
which will be employed to study the coherent instability in
Sec. III B.

III. BEAM-BEAM LIMIT FOR IDEAL LHC

A. Incoherent emittance growth

1. Collision without crossing angle

The incoherent emittance growth is studied using the
weak-strong approach. We first consider a simple model
consisting of the round beam collision from Eqs. (2)–(4)
and a linear arc. This arc is approximated by a 6 × 6 matrix
transformation (M2×2×2) of the form

M2×2×2 ¼

0
B@

Mx 0 0

0 My 0

0 0 Mz

1
CA; ð10Þ

where

MiðsÞ ¼
�
cos μi þ αi sin μi βi sin μi

−γi sin μi cos μi − αi sin μi

�
; ð11Þ

with μi ¼ 2πνi and μz < 0 for positive momentum com-
paction. The simulation is performed by tracking beam
particles, alternately applying Eq. (4) to represent the
collision, and the matrix transformation for motion through
the arc. The beam parameters are given in Table I [15]. The
simulation results strongly depend on the betatron tunes,
the beam-beam parameter, and the Piwinski angle
ϕpiw ≡ θcσz=2σx. We vary the bunch population in order
to study the beam-beam limit as a function of the tune shift.

A superperiodicity of 2 is assumed for the betatron phase
between the 2 IPs. Breaking this superperiodicity almost
always degrades the simulated performance.
The macroparticles are tracked over 106 turns, and the

luminosity is calculated as a turn-by-turn average over
every 100 turns. Figure 1 shows the luminosity decrement
for several beam-beam parameters obtained with this
simple model. The plot (a) depicts the luminosity evolution
for several values of ξtot. The luminosity decrements are
estimated by fitting these evolutions. The plot (b) summa-
rizes the luminosity decrement per turn as a function of the
beam-beam parameter. The decrement ΔL=L0 ¼ 10−9

corresponds to a luminosity lifetime of about 1 day for
the LHC, as its revolution frequency is roughly 109 per day.
The simulated beam-beam limit corresponds to a high total
tune shift ξtot > 0.2 at the working points ðνx; νyÞ ¼
ð0.31; 0.31Þ and (0.31,0.32). Even for the injection tunes
(0.28,0.31), the limit is ξtot > 0.1. For equal tunes,
(0.31,0.31), the beam-beam system has approximately
one degree of freedom since β� > σz, Therefore, the very
high beam-beam limit ξ > 0.2 is not surprising [16–18].
To analyze the mechanism of the luminosity degradation,

a frequency map analysis (FMA) [19–21] is performed. A
number of 40 × 40 ¼ 1600 particles are initialized on an
x − y grid space with grid steps of 0.2σ, where z ¼ 0.
Thereby, an 8σ × 8σ area is covered in the transverse
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FIG. 1. Luminosity decrement obtained from the simple model
consisting of the round beam interaction Eq. (4) and a linear arc.
Picture (a) shows the luminosity evolution over 106 turns for
various values of ξtot at ðνx; νyÞ ¼ ð0.31; 0.32Þ. Picture (b) sum-
marizes the luminosity decrement per turn as a function of the
total beam-beam parameter ξtot at three different working points
in the tune plane.
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amplitude space. The particles are tracked for 4096 turns.
The tune is calculated from the turn-by-turn particle
coordinates using a Hanning window over 1024 turns.
This window is shifted every 128 turns. From the tune
fluctuation a “diffusion index” is computed as [19]

D ¼ 1

2
log10ðδν2x þ δν2yÞ: ð12Þ

Figure 2 shows the diffusion index obtained from the FMA.
Pictures (a) and (b) depict this index in the tune and
amplitude space, respectively, for ξtot ¼ 0.06. The size of
the tune footprint displayed in the figure corresponds to ξtot.
Several resonance lines of low or moderate order cross the
areas of the tune footprint. The diffusion index remains
small even near this resonance. If a resonance has a visible
width the tune should fluctuate near its resonance line. This
indicates that the resonances are not excited. Also in the
amplitude space no sign of diffusion is seen.
The emittance growth is related to the local diffusion

index and to the resonance width. The formation of
resonance islands in phase space is a well-known phe-
nomenon. The width in terms of transverse amplitude
increases with the resonance strength and decreases for
larger tune slope (i.e., tune shift with amplitude). Near the
unstable fixed point of the resonance, the tune fluctuates
leading to a local increase of the diffusion index, while the
amplitude of a particle inside or close to a resonance may

change over a range approximately equal to the resonance
width. In the following we discuss emittance growth
and luminosity degradation for various scenarios and
assumptions.

2. Collision with a crossing angle or a collision offset

The crossing angle and collision offset degrade the
luminosity performance, since the number of degrees of
freedom of the beam-beam system is increased by the loss
of collision symmetry: a crossing angle or a transverse
offset break the symmetry between horizontal and vertical
angles pxðpyÞ or coordinates xðyÞ, respectively. In case of
the collision with a crossing angle, the beam-beam inter-
action also depends on the longitudinal position z of the
particle, mainly through the coordinate r in Eq. (4). By
contrast, in case of a transverse collision offset, and no
crossing angle, there hardly is any dependence on z
provided that σz < β�.
Figures 3 and 4 present the simulated luminosity

decrements for the crossing and horizontal offset collision,
respectively. The half crossing angle is θc=2 ¼ 143 μrad,
corresponding to a Piwinski angle ϕpiw≡θcσz=2σx ¼ 0.89.
LHC adopted horizontal/vertical crossing for two IPs. Tune
operating point is ðνx; νyÞ ¼ ð0.31; 0.32Þ. Figure 3 com-
pares the luminosity decrement for horizontal/horizontal
(blue) and horizontal/vertical crossing (cyan) with the case
of zero crossing angle (red). For the alternating (horizontal/
vertical) crossing skew resonances are excited in addition to
the normal resonances encountered for purely horizontal
crossing. Nevertheless there is no significant difference in
the simulated luminosity decrement: The alternating cross-
ing yields somewhat better performance for the case of a
crossing angle. Due to this crossing angle, the beam-beam
tune shift in the crossing plane decreases to 63% of the
value expected for a head-on collision, while the tune shift
in the other plane is about 86% of the latter. Therefore, in
the case of alternating crossing. the tune shift in either plane
becomes 75%ð¼ ð86%þ 63%Þ=2Þ of the head-on tune
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FIG. 2. Diffusion index in tune (a) and amplitude (0 − 8σ)
(b) space for ðνx; νyÞ ¼ ð0.31; 0.32Þ using the simple model.
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FIG. 3. Luminosity decrement as a function of total tune shift
for collision with or without a crossing angle of 286 μrad, where
the tune shift (ξtot) is 75% of Eq. (1). Blue, cyan and red points
refer to horizontal/vertical and horizontal/horizontal crossings or
to no crossing angle, respectively.
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shift (see Eq. (1)). The nonzero crossing angle also
decreases the geometrical luminosity to 75% of the
head-on case.
The geometrical luminosity reduction due to a collision

offset of Δx ¼ 0.2σ is only 1–2%, and roughly the nominal
tune shift is experienced for a collision with such an offset.
Further below the tune shift for both cases is studied using
the FMA analysis.
In the case of the crossing-angle collision for ξtot ≥

0.038 the luminosity degrades by more than ΔL=L0 >
10−9 per turn, as is illustrated in Fig. 3. The luminosity
degradation for the offset collision is mild compared with
the one for the crossing-angle collision. The beam-beam
limit, determined from the condition ΔL=L0 ¼ 10−9,
corresponds to a total tune shift of 0.038 for the collision
at the nominal LHC crossing angle, and to ξ ¼ 0.06–0.08
for the offset collision with Δx ¼ 0.1σx.
A frequency-map analysis (FMA) sheds some light on

the degradation mechanism for collisions with either a
crossing angle or transverse offset. Figures 5 and 6 present
the FMA results for alternating crossing planes and for an
alternating (hor./vert.) transverse offset of 0.2σxy, respec-
tively. The bunch population is the same for Fig. 2,
resulting, for Fig. 5, in a total tune shift (with nonzero
crossing angle) of ξtot ¼ 0.06 × 0.75 ¼ 0.045. For both the
crossing-angle and offset collisions, resonances of order 7,
10 and 13 are seen in the FMA. The order of a resonance
mxνx þmyνy ¼ n with mx and my integer is given by the
sume of the moduli jmxj þ jmyj. All 7-th order resonances
(i.e., (mx, my) with jmxj þ jmyj ¼ 7) should be excited for
the alternating (horiz./vert.) crossing and offset, but only
resonances of even number my for horizontal-horizontal
crossing angles. The tune points are scattered near the
resonance lines. Some red points are seen in the vicinity of
the (7,0) line. The corresponding red points are also seen at
around x=σx ≈ 2, y=σy ≈ 0 in the amplitude planes of
Figs. 5(b) and 6(b). The resonance lines with positive
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FIG. 4. Luminosity decrement as a function of total beam-beam
tune shift for collisions with a horizontal offset equal to 0, 10%
and 20% of the rms beam size, and zero crossing angle. The
abbreviations “HH” and “HV” refer to horizontal/horizontal and
horizontal/vertical offsets, respectively.

(a)

0.26 0.27 0.28 0.29 0.30 0.31
0.27

0.28

0.29

0.30

0.31

0.32

y

(b)

0 2 4 6
0

2

4

6

3

4

5

6

7

3

4

5

6

7

y
y

x x

x

FIG. 5. Diffusion index for the crossing-angle collision with
alternating horizontal and vertical crossing in two IPs. The top
and bottom pictures show tune and amplitude spaces.

(a)

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

x

y

(b)

0 2 4 6
0

2

4

6

x x

y
y

3

4

5

6

7

3

4

5

6

7

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31

FIG. 6. Diffusion index for collision with a transverse offset of
20%σ. The topandbottompictures show tune andamplitude spaces.

KAZUHITO OHMI and FRANK ZIMMERMANN Phys. Rev. ST Accel. Beams 18, 121003 (2015)

121003-6



slope may be of order 11 (4, −7) and/or 13 (5, −8). The
10-th, 12-th and 13-th order resonances visible at large
amplitudes (x=σx ≈ 4–7) do not seem to contribute to the
luminosity degradation. The size of the tune footprint of
Fig. 5 agrees with the expected tune shift for the crossing-
angle collision, since 2 × 0.03 × 0.75 ≈ 0.045.
Figure 7 shows simulated trajectories in the x − px phase

space for a single collision with (a) horizontal crossing
angle and (b) horizontal offset, at zero vertical amplitude
(y ¼ 0). In both pictures 7 islands, corresponding to the
(7,0) resonance, are seen. While the diffusion index and the
resonance width are similar for the collision with crossing
angle and with transverse offset, the emittance growth rate
for the case of nonzero crossing angle is stronger than the
one with a transverse offset collision, as can be seen by
comparing Figs. 3 and 4.
The island amplitudes at 2.5 − 3σx in Fig. 7 seem to be

somewhat different from the amplitudes of highest diffu-
sion index, around 2σx, in Figs. 5 and 6. One reason for the
difference lies in the detailed footprint areas for horizontal/
horizontal (HH) and horizontal/vertical (HV) crossing
[Figs. 5 and 6]. For HH crossing the tune shifts are ξx;tot ¼
0.06 × 0.63 ¼ 0.0378 and ξy;tot ¼ 0.06 × 0.86 ¼ 0.0516,
which is to be compared with ξx;tot ¼ ξy;tot ¼ 0.06×0.75¼
0.045 for the HV crossing.

3. Tayler map analysis and resonance width

We study the transverse resonance in more detail for the
case of a single collision with horizontal crossing. The
resonances for the collision with crossing angle can be
investigated by a Taylor map analysis. The one-turn Taylor
map containing the beam-beam interaction is calculated up
to 12-th order for the betatron variables. The map is
factorized as [22]

M expð−∶H∶Þ; ð13Þ

where M represents the linear part of the map, which
consists of the arc transfer map and the linear beam-beam
tune shift, and H the nonlinear part in the form of
polynomials higher than 2nd order. H can be expressed
through action-angle variables, Ji and ϕi, i ¼ x, y.

The Fourier decomposition into harmonics of the betatron
phases ϕi yields

H ¼ H00ðJx; JyÞ þ
X

Gmx;my
ðJx; JyÞ expðmxϕx þmyϕyÞ:

ð14Þ

The terms H00 and Gmx;my
characterize the amplitude

dependent tune shift and the resonance strength, respec-
tively. The coefficients of H00 and G can be calculated by
the code SADþ, as discussed in Appendix A. The beam-
beam force (Eq. (4)) is strongly nonlinear, so that it is
difficult to express as a Tayler expansion. Nevertheless, an
expansion up to 12-th order, approximately valid forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx;y=εxy

p
< 2.5 in case of a Gaussian beam, can be

employed to analyze the emittance growth occurring near
the beam core. The difference between the 12-th order
expansion and the exact expression of Eq. (4) increases
from 2% to 75% for x amplitudes between 2 and 2.5σx.
A resonance is represented by a curve in action space

(Jx, Jy) satisfying the relation

mx

�
νx;0 þ

∂H00

∂Jx
����
J¼JR

�
þmy

�
νx;0 þ

∂H00

∂Jy
����
J¼JR

�
¼ n:

ð15Þ

where J ¼ JR means Jx ¼ Jx;R and Jy ¼ Jy;R. The reso-
nance half width is expressed by

ΔJx ¼ 2mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmx;my

ðJx;R; Jy;RÞ
Λ

s
; ð16Þ

where

Λ ¼ m2
x
∂2H00

∂J2x þmxmy
∂2H00

∂Jx∂Jy þm2
y
∂2H00

∂J2y
����
J¼JR

: ð17Þ

Figure 8 presents the resonance lines and their widths in
the action space, considering the case of horizontal/hori-
zontal crossing. Overall the resonance locations and widths
are consistent with the diffusive areas of Figure 5. For
example, the width of the (7,0) resonance is �ΔJx ¼
4.6 × 10−11 m for Jx ¼ 6.0 × 10−10 and Jy ¼ 0 m. In

phase space, the resonance island is located at x=σx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx=εx

p ¼ 2.1 and its width is Δx=σx ¼ �0.1. The island
position and width agree fairly well with those in Figure 7.
One difference should, however, be pointed out between

the purely horizontal crossing model analyzed here and
the case of horizontal/vertical crossing considered in
Fig. 5. Namely, in Fig. 8 the tune footprint ðξx;tot; ξy;totÞ ¼
ð0.0378; 0.0516Þ overlaps with the linear coupling reso-
nance, where several resonance lines intersect at (0.286,
0.286). This resonance intersection is evident in Fig. 8.
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FIG. 7. Phase space (x − px) plot for the crossing-angle (a) and
offset collision (b).
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By contrast, the tune footprint shown in Fig. 5(a) does not
cross the linear coupling resonance, and, as a consequence,
for this example of horizontal/vertical crossing the
resonance lines do not intersect in amplitude space.
Interestingly and importantly, the differences in the emit-
tance growth obtained for horizontal/horizontal and verti-
cal/horizontal crossing are not significant, as can be seen in
Figs. 3 and 4. Therefore, the large resonance width induced
by the crossing angle appears to be the key ingredient
responsible for the simulated emittance growth, whereas
the crossing scheme chosen for multiple interaction points
is of minor relevance. In particular, crossing the linear
resonance at (0.286, 0.286), as in the case of horizontal/
horizontal crossing, does not seem to enhance the emittance
growth. Indeed, the linear resonance (νx ¼ νy) has little
impact on the emittance growth for a round beam, because
the sum of the two transverse action variables, Jx þ Jy, is
conserved on such a resonance.

4. Synchrotron motion

We now discuss why the crossing-angle collision is far
more harmful than the offset collision. An essential element
is that the beam-beam force strongly depends on z for the
crossing-angle collision, while only faintly for the offset
collision.
The luminosity evolution of the crossing-angle and offset

collision is shown in Fig. 9 as red and green lines,
respectively. The one for the crossing collision without
synchrotron motion is plotted as a blue line. The luminosity
decrement for the crossing collision-angle without syn-
chrotron motion (blue) shows a behavior similar to the one
for the offset collision (green). The decrement changes
dramatically when synchrotron motion is included (the
red curve).
The FMA analysis shown in Fig. 5 was performed for

z ¼ 0. The horizontal crossing angle induces additional
resonances for particles at z ¼ 0, which arise due to the
asymmetry with respect to px. The characteristics of the
transverse resonances for this case is similar to the one for

the offset collision. Namely, in the (horizontal) crossing
collision, particles with a finite value of z collide with the
other beam at a transverse offset δx ¼ zθc=2, and the
effective horizontal rms size of the beam collision becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ ðθcσz=2Þ2

p
. A collision offset induces the same

resonances. However, in the case of the crossing angle
synchrotron motion results in a slow variation of the
resonance strength and resonance location, i.e., in a
variation of the resonance amplitude (JR) and width
(ΔJ), experienced by individual particles. Therefore, dur-
ing a synchrotron period (or half period), these particles can
be trapped, moved, and released by the resonances. This
process, which repeats every synchrotron period, causes an
enhancement of the emittance growth [18,23]. The same
diffusion mechanism appears if the dispersion at the
collision point or the chromaticity are nonzero, as we will
illustrate later.
Figure 10 presents some FMA results for x − zmotion in

the case of horizontal/horizontal crossing. The diffusive area
in the horizontal plane increases for finite synchrotron
oscillation amplitudes, z ≤ 0.5σz. In particular, the 7-th
order resonance becomes stronger at the synchrotron ampli-
tudes. Emittance growth can be caused by a resonance
overlap between synchrotron side bands.We remark that the
synchrotron sideband νx � νs (νs ¼ 0.0019) is not visible
with the resolution of this picture, and that the longitudinal
oscillations, i.e., synchrotron tune or synchrotron amplitude,
are not noticeably affected by the transverse motion, since
εz ≫ εxy. The emittance growth is also explained by the
afore-mentioned resonance crossing. Though it is not clear
whether these two understandings mention the same phys-
ics, as far as this FMA results, understanding with the
resonance crossing seems to be feasible.

5. Tune scans

The beam-beam limit depends on the operating point in
tune space. The luminosity degradation is caused by
resonances as was discussed above. Therefore, it has long
been a common understanding that the beam-beam limit is
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determined by the combination of the beam-beam tune shift
and the distance in tune from strong resonances.
Figure 11 shows the luminosity decrement as a function

of tune for collisions with the crossing angle θc=2 ¼
143 μrad in the horizontal and vertical planes, for a
beam-beam tune shift of ξ ¼ 0.045. The two transverse
tunes are varied together, while keeping the difference
of the horizontal and vertical tunes constant, equal to
νx − νy ¼ 0, −0.01, −0.02, −0.04, and −0.06. The lines for
0, −0.01, and −0.04 are shown in the figure. The
luminosity decreases monotonically as the tune difference
increases. the tune space around the diagonal is mostly free
of resonances (see Sec. III).

In actual beam operation arranging for equal tunes or at
least close tunes in the two planes is a delicate manoeuvre.
Small perturbations can lead to exchanges between the x
and ymodes. A small difference, e.g., 0.01, allows for more
stable operational conditions, the LHC design working
point ðνx; νyÞ ¼ ð0.31; 0.32Þ being one of the best choices.
The optimum working points found in our simulations are
slightly below the half integer or the integer resonance, e.g.,
(0.47,0.48) and (0.97,0.98).
The tune scans for collisions with θc ¼ 0 yield much

better results. The decrement is smaller than 10−9 per turn
for most working points in the regions 0.12< νx ¼ νy < 0.5
and also at 0.12 < νx < 0.5 at νy ¼ 0.32.
We suppose that the luminosity degradation for different

operating points can be explained by the resonance-driven
diffusion mechanism discussed earlier in this section.

B. Coherent beam-beam instability

The onset of coherent instability is studied by the
strong-strong simulation (using the simulation code
BBSS [13,24]). The simulation is performed using a
two-dimensional model. Thus the crossing angle and
longitudinal effects are not taken into account. In the
case of KEKB, any transverse coherent motion was
suppressed in three dimensional simulations [13].
Based on the KEKB experience the results from the
two-dimensional model should, therefore, be considered
pessimistic. However, the synchro-betatron modes are
missed by the two dimensional model. In the simulations
for the LHC no coherent motion is observed at the
nominal operating point. The appearance of the coherent
beam-beam instability strongly depends on the tunes,
because the instability is driven either by linear beam-
beam resonances or by mode coupling between higher-
order beam-beam modes. Keeping the horizontal tune
constant, we scan the vertical tune to look for instabilities.
Figure 12 shows the luminosity decrement as a function of
the vertical tune, as simulated with the two dimensional
model (x − y). A luminosity degradation is seen near
the integer and half-integer resonances as well as at
νy ≈ 59.36. At the same time the coherent π mode
instability is seen near the integer tune, in the range
νy ¼ 59.0–59.2. Since the number of interaction points is
two, the corresponding phase advance between successive
interaction points is ∼29.5–29.6 in units of 2π. This
instability is predicted by linear theory [25].
A coherent instability is also observed near the half

integer tune for νy ¼ 59.52–59.54, which corresponds to a
phase advance between interaction points of ∼29.76–
29.77. In addition, near the half integer tune a coherent
variation of the beam size is seen, related to the quadrupole
mode, which is absent near the integer resonance.
Finally, the instability at νy ∼ 59.36 is enhanced by a

transverse collision offset (see the second picture of
Fig. 12). Frequency spectra near νy ∼ 0.36 are shown in

FIG. 10. Diffusion index for the crossing-angle collision with
horizontal crossing only, and zero vertical amplitude (y ¼ 0). The
x and z amplitudes are scanned from 0 to 4σ with a 0.1σ step.
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Fig. 13. This coherent instability, which is predicted by
theory [26], is caused by mode coupling between the dipole
π mode and the quadrupole mode. This interpretation is
confirmed by comparing the Fourier transforms of the
beam position and beam size. A broad peak of quadrupole
mode at 1 − 2νy, which is seen in the FFT of the beam size,
shifts towards lower frequencies for increasing tune. Two
peaks corresponding to the π and σ modes are visible at
νy ¼ 0.34. Though the σ and quadrupole modes overlap
here, the beam remains stable. On the other hand, the
overlap of the π and quadrupole modes at νy ¼ 0.36 − 0.38

results in a coherent instability, which can indeed be
explained by the coupling of these two modes.
These simulation results indicate that the coherent

instability is not the source of the beam-beam limit for
hadron colliders, since it is easily suppressed by a proper
choice of tune.

IV. BEAM-BEAM LIMIT FOR LHCWITH ERRORS

In the real machine, the beam-beam performance is likely
to be influenced, and limited, by errors. In our beam-beam
map, only the optics parameters at the interaction point affect
the beam-beam collision, while the effect of the ring is
characterized through global accelerator parameters, such as
emittance, tune, amplitude-dependent tune shift, etc. In eþe−
colliders, the optimization of the optics parameters at the IP,
especially for x − y coupling, vertical dispersion and local
chromatic dependence, proved to be essential for achieving
the highest luminosity [27,28]. In hadron colliders, collision
with round beams is popular. Under these conditions the
effects of x − y coupling or chromatic x − y coupling should
be different from those in eþe− colliders.
In a strongly nonlinear system, a fluctuation of the

dynamical variables enhances the emittance growth.
Therefore, a fluctuation of the collision offset can degrade
the luminosity performance of a collider. In eþe− colliders,
an intrinsic fluctuation is caused by the synchrotron
radiation: the magnitude of this fluctuation for a single
particle is given by δx=σx ¼

ffiffiffiffiffiffiffiffiffi
2=τx

p
where τx denotes the

horizontal emittance damping time due to the synchrotron
radiation in units of turns. An additional fluctuation of the
collision offset smaller than the one caused by the syn-
chrotron radiation does not affect the beam-beam limit.
However, in the case of hadron colliders, the damping time
τ is extremely long, e.g., τ ≈ 109 turns (∼1 day) in the LHC.
This implies that in hadron colliders the sensitivity to
external fluctuations could be much enhanced compared
with the case of eþe− colliders.
In this section we discuss the LHC tolerances to both

optics errors and collision fluctuations.

A. x − y coupling and dispersion

The r parameters which characterize the x − y coupling
are introduced by factorizing the revolution matrix at the
collision point as

M4 ¼ R−1M2×2R ð18Þ

where

R ¼

0
BBB@

r0 0 −r4 r2
0 r0 r3 −r1
r1 r2 r0 0

r3 r4 0 r0

1
CCCA; ð19Þ
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without (top) and with a transverse offset of 0.05σ (bottom).
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M2×2 ¼
�
Mx 0

0 My

�
; ð20Þ

and

MiðsÞ ¼ B−1ðsÞUBðsÞ; ð21Þ

with

U ¼
�

cos μi sin μi
− sin μi cos μi

�
; B ¼

 1ffiffiffi
βi

p 0

− αiffiffiffi
βi

p ffiffiffiffi
βi

p
!
;

with i ¼ x or y.
The ri’s characterize the tilt angles in phase space at

the IP for the elliptic trajectories of each betatron mode,
e.g., r1 ≈ −hxyi=hx2i is the tilt angle in the x − y space
for the horizontal (dominant) betatron mode if αi ¼ 0

at IP. Concerning the other ri’s, r2 ≈ −hpxyi=hp2
xi, r3 ≈

−hxpyi=hx2i, and r4 ≈ −hpxpyi=hp2
xi are the tilt angles in

the respective coordinate-momentum space. The diagonal
component of R is r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r1r4 þ r2r3

p
.

Figure 14 presents the simulated luminosity degradation
due to residual x − y coupling and spurious dispersion at
the interaction point.

The tolerance depends on the beam-beam parameter.
From Fig. 14, for ξtot ¼ 0.06 without crossing angle we
infer a tolerance of ri ∼ 0.3–0.4 and η ∼ 0.01 m, while for
the crossing-angle collision with ξtot ¼ 0.038 we have
ri ∼ 0.1.
The beam-beam force of Eq. (4) is a function of

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In the presence of coupling, r in the force

is replaced by rðR−1xÞ. Using the matrix form of Eq. (19),
we have

r2 ¼ x2 þ y2 þ 2ðr1 − r4Þxyþ 2r2ðxpy þ pxyÞ; ð22Þ

where only the first-order terms of the coupling are taken
into account. The beam-beam force is independent of r3.
The effect of r1 and r4 is similar, since the force is a
function of r1 − r4. For r2 in standard units the sensitivity is
1=β ∼ 2 m−1 stronger than for r1; r4, because x; y ∼ βpx;y.
It is then no surprise that the luminosity degradation is

significant for the crossing-angle collision, since here, in
Eq. (22), the term x is replaced by x − θcz. The force
containing z leads to a worse luminosity performance as we
have seen in the aforementioned simulation results.
For a similar reason a clear luminosity degradation is

also seen in the case of nonzero IP dispersion for the
collisions without a crossing angle. The underlying
dynamical mechanism is the same as the one for the
crossing angle. With nonzero IP dispersion, a particle
collides with a transverse orbit offset which depends on
the energy deviation, and varies from turn to turn due to the
particle’s synchrotron motion. This modulated offset indu-
ces resonances. The size of the offset is ησδ=σx ¼ 0.09 for
η ¼ 0.01 m, considering the LHC rms momentum spread
of σδ ¼ 1.13 × 10−4 (δ ¼ Δp=p0). The normalized offset
is still small compared with θcσz=σx ¼ 0.89, which
explains why no clear luminosity degradation due to the
additional dispersion is seen in the case of the crossing-
angle collision. For the latter, the degradation due to the
crossing angle is dominant and, in addition, the beam-beam
parameter is small.
The results of Fig. 14 are plausible from these

discussions.

B. Chromaticity and IR nonlinearity

Chromaticity in tunes and beta functions at IP affects the
luminosity degradation [29]. The chromaticity is modeled
by an effective Hamiltonian (generating function) of the
form [30],

Hx;chrom ¼ ðaxx2 þ 2bxxpx þ cxp2
xÞδ; ð23Þ

where ax, bx, cx are related to dνx=dδ, dβx=dδ, and dαx=dδ.
The same description can be applied for the vertical motion.
Figure 15 presents the simulated luminosity decrement as a
function of chromaticity (dνx=dδ ¼ dνy=dδ) without and
with a crossing angle, keeping the chromatic aberrations for
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αxy and βxy equal to zero. The luminosity degradation is
significant for the crossing-angle collision.
For dν=dδ ∼ 10 and σδ ¼ 1.13 × 10−4, the tune variation

due to chromaticity is one order of magnitude lower than
the beam-beam tune shift. However, the tune variation with
the synchrotron period results in a periodic variation of the
resonant amplitude JR, for the resonances existing within
the area of the tune spread. The chromaticity, thereby,
causes an effect similar to those of the crossing angle and of
the IP dispersion. The enhancement of the emittance
growth for the crossing-angle collision seen in Fig. 15
appears reasonable.
In this figure, the cyan line shows an interesting

phenomenon for the combined effect of beam offset
(without crossing angle) and chromaticity. The collision
with transverse offset only was nondetrimental and resulted
in a small luminosity decrement even in the presence of
resonances (Fig. 4). Adding to the transverse offset the tune
variation due to chromaticity and synchrotron motion
results in a larger luminosity decrement.
Figure 16 presents the luminosity decrement as a

function of the chromatic beta aberration at the IP (assum-
ing dβx=dδ ¼ dβy=dδ), where now the tune chromaticity is
set to zero (dν=dδ ¼ 0). Also here the simulated luminosity
strongly degrades for the cases with crossing angle. The
responsible mechanism is again similar. The beam-beam
tune shift depends on the beta function, which varies due to
the synchrotron motion. A beta variation is around 10% for dβ=dδ ¼ 100 m and results in a tune shift variation of

about 10%. The chromatic beta dβ=dδ ∼ 100 causes an
effect comparable to the effect of the chromaticity dν=dδ.
The combined effect of beta variation and a transverse
beam offset of 0.2σ (for zero crossing angle) is also seen
in Fig. 16.
The final triplet in the interaction region is the dominant

source of nonlinearity for the squeezed accelerator lattice.
The quadrupole magnets contain nonlinear field compo-
nents and are located in a region with extremely high beta
functions. For this reason, in collision the dynamic aperture
is mainly limited by the nonlinearity of the IR magnets. The
beam-beam interaction, coupled to this IR nonlinearity,
may limit the luminosity performance. We employ a simple
IR model [31] to study the resulting beam-beam limit. The
description of the nonlinearity is obtained from magnetic
field measurements of IR quadrupole magnets [32]. In our
model the linear chromaticity induced in the IR is com-
pensated by using the effective Hamiltonian of Eq. (23).
The uncorrected nonlinear chromaticities are d2ν=dδ2 ¼
362 and d2β=dδ2 ¼ 19.6. In the simulation this nonlinear-
ity degrades the luminosity only at high beam-beam
parameter, ξ > 0.1. For beam-beam tune shifts ξ < 0.1,
the effect of the IR nonlinearity is not significant.
Therefore, we do not present these results here in greater
detail.
In the real machine, resonances excited by nonlinear

magnetic fields (lattice sextupoles, octupoles, field errors,
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etc.) also affect the emittance growth. The aforemen-
tioned IR model may be insufficient for a proper
evaluation of these resonances driven by the real accel-
erator lattice with imperfections. In general, the important
question is whether the relevant resonances excited by the
nonlinear magnetic fields lie within the tune footprint
area of the beam-beam force, whether their widths are
sufficiently large [33], and if their widths and resonant
amplitudes JR vary with the synchrotron motion. As we
have shown, resonances are more detrimental in the case
of the crossing-angle collision, and chromaticity enhances
the emittance growth.
Lattice nonlinearities may affect, and ultimately, limit the

beam-beam performance of the Large Hadron Collider as
the β� will further be reduced, e.g., to values a factor 2–4
below the original design. A detailed study of this complex
phenomenon for the LHC, and for its HL-LHC upgrade, is
beyond the scope of the present paper and planned for the
future.

C. Random noise for collision offset

We now discuss the interplay of the beam-beam effect
with fast external noise, which introduces a fluctuation of
the beam trajectory. Adding a fast offset fluctuation with
turn-by-turn or longer-term correlation to the nonlinear
beam-beam interaction causes emittance growth and lumi-
nosity degradation. Phase noise of crab cavities as well as
the detection (position monitor) and kicker noise of the
bunch by bunch feedback system, or magnetic-field varia-
tion due to power-converter ripple, are possible sources of
such fluctuation.
We first use the weak-strong model to explore the beam-

beam effects in the presence of a fluctuation. In our model,
an external noise is introduced for the transverse position of
the strong beam at the collision point.
We consider an orbit (horizontal position) shift of the

strong beam of the form,

Δxiþ1 ¼ ð1 − 1=τÞΔxi þ δxr̂; ð24Þ

where Δxi is the horizontal orbit shift on the ith turn. τ, δx,
and r̂ are a (normalized) damping time, a constant char-
acterizing the random fluctuation amplitude, and a
Gaussian random number with unit standard deviation,
respectively. This equation is known as the Ornstein-
Uhlenbeck process. In the following we will refer to this
type of noise as the first type. A vertical noise without
correlation to the horizontal one can be considered
independently.
All particles in the weak beam experience the fluctuation

of the strong beam. Thereby, a transverse collective motion
is induced. This collective motion results in emittance
growth through filamentation due to the nonlinear beam-
beam force.

For τ ≫ 1 the stable (equilibrium) amplitude of the
fluctuation of the strong beam is given by

Δx2 ¼ hΔx2n→∞i ¼
τδx2

2
: ð25Þ

The correlation function between the ith and iþ nth
turns is expressed through the damping time as

hΔxlΔxlþni ¼ Δx2e−jnj=τ; ð26Þ

i.e., the damping time τ can be identified with the
correlation time of the fluctuation. For turn-by-turn white
noise, which corresponds to τ ¼ 1, the correlation function
is expressed by

hΔxlΔxlþni ¼ Δx2δn0; ð27Þ

where δn0 designates the Kronecker delta.
The beam oscillates at the betatron frequency. This

motivates considering another (second) type of noise of
the following form:

Δxiþ1 ¼ ð1 − 1=τÞðΔxi cos μo þ Δpi sin μoÞ þ δxr̂

Δpiþ1 ¼ ð1 − 1=τÞð−Δxi sin μo þ Δpi cos μoÞ þ δxr̂;

ð28Þ

where x and p are the coordinate and its canonical
momentum normalized by the beta function, so that
J ¼ ðx2 þ p2Þ=2, and μo ¼ 2πνo is the betatron tune
multiplied by 2π. The stable dipole oscillation amplitude
is expressed by an equation analogous to Eq. (25).
The correlation function contains the betatron tune as
follows:

hΔxlΔxlþni ¼ Δx2e−jnj=τ cos nμo: ð29Þ

For turn-by-turn white noise, the diffusion of J is
expressed by

hΔJ2i ¼ hΔJ2ðNÞi
N

≈
N2

pr2pΔx2

8γ2σ2r

X∞
k¼0

ð2kþ 1Þ2GkðaÞ2; ð30Þ

where a ¼ J=ð2εÞ and Gk is defined in Eq. (B13). The
derivation of Eq. (30) is explained in Appendix B and in
Ref. [34]. The two types of noise cause a diffusion of the
particle motion and result in emittance growth.
For the fluctuation of Eq. (24) the diffusion of J per

revolution is given by
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hΔJ2i ≈ N2
pr2pΔx2

8γ2σ2r

×
X∞
n¼−∞

X∞
k¼0

ð2kþ 1Þ2G2
k cos½ð2kþ 1Þnμo�e−jnj=τ

≈
N2

pr2pΔx2

8γ2σ2r

X∞
k¼0

ð2kþ 1Þ2GkðaÞ2 sinh 1=τ
cosh 1=τ − cosð2kþ 1Þμo

: ð31Þ

Using the correlation of Eq. (29) the diffusion of J for the
second type of noise, Eq. (28), becomes

hΔJ2i ≈ N2
pr2pΔx2

16γ2σ2r

X∞
k¼0

ð2kþ 1Þ2GkðaÞ2 sinh 1=τ

×

�
1

cosh 1=τ − cosð2kμ − δμÞ

þ 1

cosh 1=τ − cosð2ðkþ 1Þμþ δμÞ
�
; ð32Þ

where δμ is the tune difference between the weak and
strong beam oscillations (δμ ¼ μ − μo).
Figure 17 shows the diffusion rate of J as a function of J,

where ν ¼ 0.31. The diffusion rate is proportional to the
square of the fluctuation amplitude Δx and to the square of
the beam-beam parameter (∝Np). The rate is normalized
by the combined factor, A ¼ ½NprpΔx=ðγσrÞ�2=8 in the
figure. The diffusion rate depends on the tune except for
turn-by-turn noise. For large τ and ν ¼ m=ðnþ 1Þ, with
integers m and n, a small denominator for (n ¼ k) yields a
high diffusion rate. The dependence on the tune is less
strong for other tune values.
The rms emittance ε equals the average value of the

action J. Considering a Gaussian beam distribution the
initial distribution function in action-angle variables is
ρðJ; 0Þ ¼ expð−J=εÞ=2πεÞ.
The emittance growth can be obtained from the

calculated diffusion rate. For a Hamiltonian system the
Fokker-Planck equation describing the general time

evolution of the phase-space distribution ρ reduces to a
diffusion equation [35]

∂ρðJ; nÞ
∂n ¼ 1

2

∂
∂J
�
DðJÞ ∂ρðJ; nÞ∂J

�
; ð33Þ

where n is the turn number andDðJÞ≡ hΔJ2i the diffusion
coefficient.
The description is further simplified if the diffusion rate

hΔJ2i is proportional to J, that is if hΔJ2i ¼ D0J, in which
case [34]

∂ρðJ; nÞ
∂n ¼ 1

2

∂
∂J
�
D0J

∂ρðJ; nÞ
∂J

�
: ð34Þ

The solution of this equation for an initial emittance ε is
given by

ρðJ; nÞ ¼ 1

2πðεþD0n=2Þ exp
�
−

J
εþD0n=2

�
: ð35Þ

In other words, for the linear diffusion hΔJ2i ¼ D0J, the
emittance increases by Δε ¼ D0=2 every turn. The emit-
tance growth rate per turn can be expressed as

Δε
ε

¼ D0

2ε
¼ 1

4ε2
dhΔJ2i
da

; ð36Þ

where a ¼ J=ð2εÞ.
Figure 17 shows that indeed the diffusion rate is

approximately proportional to J for small values of
J=ð2εÞ < 2, or x=σx < 2.82. Fitting the slope of hΔJ2i
for turn-by-turn noise (τ ¼ 1) gives

dhΔJ2i
da

≈
N2

pr2p
8γ2

Δx2

σ2r
× 4.4: ð37Þ

The luminosity degradation rate per collision is then
estimated from the emittance growth rate as

ΔL
L

≈ −
�
ξ
Δx
σr

�
2

× 21.7: ð38Þ

For multi-IPs with the same collision condition, the same
noise level and superperiodicity of tune, the formula is
modified by

ΔL
L

¼ −
�
ξtot

Δx
σr

�
2

×
21.7
NIP

; ð39Þ

where NIP is the number of IPs.
Under the same conditions the tolerance on the noise

amplitude is obtained from the one-day luminosity lifetime
ΔL=L ¼ 10−9 for two IPs (NIP ¼ 2) as
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ξtot
Δx
σr

≈ 10−5: ð40Þ

This equation was derived by linearly extrapolating the
diffusion coefficient to larger amplitudes. As shown in
Fig. 17 this extrapolation overestimates the actual diffusion
coefficient at amplitudes above about 2 sigma, and, hence,
it yields an upper bound on the luminosity decay.
Figure 18 shows the diffusion rates for the second type of

noise, given by Eq. (28). Plots (a) and (b) refer to beam-
orbit oscillations with the same tune (δμ ¼ 0) and with a
difference of δμ ¼ ξ ¼ 0.01, as could be due to the beam-
beam tune shift, respectively. In the top picture, for large
correlation times a strong enhancement of the diffusion at
small amplitudes is seen. The strong modulation at a
frequency equal to the tune of the weak-beam particles
drives an externally forced oscillation on resonance.
The diffusion rate for δμ ¼ ξ in plot (b) may be a better

representation of the real beam-beam system. For τ > 1 this
diffusion rate saturates at J=ð2εÞ ≈ 1, and it assumes values
similar to the one for τ ¼ 1 below 3.5σ, or for J=ð2εÞ < 3.
The analytic theory considers a near solvable system,

normally far from resonances. There is no such limitation in
the beam-beam simulations. The only drawback is that
considerable computing time is required to evaluate a slow
emittance growth by means of simulations. Simulating the
external noise is straightforward. Namely, a modulation is
applied to the strong beam according to Eq. (24) or (28).

The effects of resonances, longitudinal motion, and cross-
ing angle are easily taken into account in the simulations.
We first discuss weak-strong simulations including an

external noise with τ ¼ 1. Figure 19 shows the simulated
luminosity degradation for collisions without crossing
angle. The degradation is plotted as a function of the
fluctuation amplitude for three values of the total beam-
beam parameter, ξtot ¼ 0.02, 0.04, and 0.05. The corre-
sponding three predictions from the analytic formula
Eq. (40) are also drawn in the figure. The simulation
results and the formula agree fairly well.
If the noise contains a tune frequency component, the

weak-strong model, in which the noise is treated as an
external driving force, leads to ambiguous results, since the
noise induces a coherent beam-beam mode. The luminosity
degradation due to various types of noise has also been
studied through strong-strong simulations [3,36]. Here the
limited number of macroparticles induces numerical noise,
e.g., δx=σx ¼ 0.001 for 1 million macroparticles, and the
simulation time is much longer than the one needed for the
weak-strong simulations. Figure 20 shows the simulated
luminosity decrement as a function of the noise amplitude
Δx. The strong-strong simulation is performed in 106 turns
with the macroparticle number 106. Luminosity decrement
is estimated as 5.3 × 10−9 using Eq. (38) (ξIP ¼ 0.011) for
only the statistical noise δx=σx ¼ 0.001 of the strong-
strong simulation. The luminosity decrement depends on
the value ofΔx, but it is insensitive to δx for τ > 1. The line
from Eq. (39) is also shown in Fig. 20. At small noise
amplitude (ΔL=L0 < 20 × 10−9), i.e., the amplitudes of
practical interest, the simulated luminosity decrement is
close to the analytical formula. Shown in the figure are the
luminosity decrements computed over several correlation
times. The decrement scales with Δx, independently of the
value of τ. This behavior could be related to the saturation
of the diffusion rate in Fig. 18(b). In the future, increasing
computer power will enable more detailed strong-strong
beam-beam simulations which may yield an even better
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understanding of the beam-beam behavior in the presence
of noise.
Now we consider the luminosity performance in the

presence of both a crossing angle and external noise. In
Fig. 21 the luminosity degradation is shown for collisions
with a crossing angle (θc ¼ 290 μrad), corresponding to a
Piwinski angle of θcσz=ð2σrÞ ¼ 0.89. The beam-beam tune
shift with this crossing angle is 75% of that for a head-on
collision. The simulations were executed for the same
bunch intensity as those without a crossing angle in Fig. 19.
Predictions from Eq. (38) are also drawn in the figure. The
simulated decrements are smaller than those expected from
the analytical formula, but the difference appears unrelated
to the presence of a nonzero crossing angle (compare
Fig. 19).
Figure 22 shows the luminosity degradation as a

function of the beam-beam parameter with two offset
noises of amplitude Δx=σx ¼ 0.0002 and 0.001, respec-
tively. Predictions from Eq. (38) are also displayed in the

figure. The tune shift is 25% lower for the crossing-angle
collision. The luminosity degradation due to noise is fairly
independent of the crossing angle. At higher beam-beam
parameter ξtot > 0.038, the luminosity degradation due to
the crossing angle becomes dominant.
As far as the response to the external noise is concerned,

there is no qualitative difference for the collisions with or
without crossing angle. The degradation due to the crossing
angle experienced for ξtot ¼ 0.038 is observed even without
any noise, while a clear cross-talk between the effects of the
crossing angle and of the noise is not seen. The degradation
of the luminosity due to the fluctuation depends on ξtot, but
it only weakly depends on the presence of the crossing
angle. Basically emittance growth should be enhanced by
noise near resonances, especially near low-order resonan-
ces. Seventh order resonances, which appear in crossing or
offset collision, are weak in solely. The emittance growth
due to a crossing angle is driven by the variation of
transverse resonances via the synchrotron motion. On
the other hand, the effect of noise, especially of turn-by-
turn noise, is independent of the tune in the tune area far
from strong resonances, and it is insensitive to the presence
of such weak resonances as is evident in the above
simulation results and analytical treatments.

V. CONCLUSIONS

At hadron colliders the beam-beam limit manifests
itself in the form of luminosity degradation and enhanced
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emittance growth. In this paper the beam-beam limit in
the LHC has been studied in view of several possible
limiting mechanisms, focusing on collisions between two
bunches.
We have found that there is no fundamental limitation up

to total tune shifts of at least 0.2, in case of a perfect round
beam collision at the nominal fractional tunes of the
LHC, ðνx; νyÞ ¼ ð0.31; 0.32Þ.
Our results indicate a hurdle ξtot ≈ 0.038 − 0.05 in the

presence of a transverse offset or nonzero crossing angle.
The crossing angle and the offset collision both induce
additional transverse resonances due to the breaking of the
symmetry (x → −x, y → −y). By contrast, the diffusion
caused by the purely transverse resonances alone appears
weak.
For collisions with a nonzero crossing angle, the beam-

beam force depends on z. The synchrotron motion together
with such a z-dependent beam-beam force greatly enhances
the diffusion. The beam-beam limit with a finite crossing
angle (for the nominal LHC Piwinski angle ϕpiw ≈ 0.89)
and including synchrotron motion is around 0.038 for
the luminosity decrement 10−9/turn (1 day). This limit
depends on the operating point in tune space, because
of the amplitude-dependent tune shift and the varying
distance from resonances. At certain operating points,
the beam-beam tune shift can also be limited by a coherent
instability.
The beam-beam limit due to optical errors may be a more

practical concern. IP dispersion results in a collision offset
which varies with the energy deviation, e.g., with the phase
of the synchrotron motion. Resonances excited by the
offset are modulated by the synchrotron motion, enhancing
the emittance growth. Nonzero chromaticity and chromatic
beta induce an additional tune modulation at the synchro-
tron frequency, which aggravates the effect of the reso-
nances driven by crossing angle or collision offset. A
nonzero x − y coupling at the interaction point also affects
the luminosity performance. Nonzero coupling parameters
r1, r2, and r4 break the symmetry of the collision and
induce new resonances. The luminosity degradation is
further enhanced by a crossing angle or by nonzero
chromaticity, for the same reason as in the case of
dispersion. For hadron, the tolerances with respect to
residual IP coupling are relaxed compared with those at
(flat-beam) electron-positron colliders, e.g., at KEKB.
We did not consider any realistic ring lattices in this

paper. The essential questions for judging the importance of
the lattice are whether the resonances induced by the
nonlinear magnetic fields lie within the tune footprint area
of the beam-beam force, whether their resonance widths
(ΔJ) are sufficiently large, and if these widths and the
resonant amplitudes (JR), vary as a result of synchrotron
motion. In general, the effect of the resonances is more
serious in cases with a nonzero crossing angle and/or
nonzero chromaticity.

Fast fluctuations of the collision offset are a serious issue
for proton colliders. For the (HL-)LHC the use of crab
cavities is foreseen in order to recover the geometrical
luminosity loss otherwise induced by a large crossing
angle. Any rf phase noise of these crab cavities will
result in a transverse collision offset. In this article the
dependence of the noise tolerance on the beam-beam
parameter was evaluated by weak-strong and strong-strong
model with colliding beam fluctuations. The result is
described by a simple formula [Eq. (40)]. As more detailed
strong-strong simulations are being performed with
increasing computer power, an even better understanding
of the noise behavior may be achieved in the not-too-distant
future.
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APPENDIX A: HAMILTONIAN COEFFICIENTS

A code named SAD+ [38] based on differential algebra
[39] calculates the one-turn transfer map x ¼ f ðx0Þ con-
taining the beam-beam interaction of Eq. (4) and linear
transformation including crossing angle are expanded into
a 12th order Taylor series. In the code, H, which generates
the nonlinear transfer map, is obtained by a polynomial
integration,

H ¼ 1 −
Z

SijR−1fjðxÞdxi; ðA1Þ

where R is the linear map of f , and Sij the symplectic
metric.
In the following we consider one LHC interaction point

with horizontal crossing.
The variables (x) in H are converted to the action

variables (Jx, ϕx, Jy, ϕy). H is represented by Fourier
components for the betatron phase ϕ in Eq. (14). H00,
which is independent of ϕ, then gives the amplitude-
dependent tune shift. Considering H and J with the
dimension of meter the expansion in action variables
read
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H00ðJx; JyÞ ¼ 2.01 × 1042J6x þ 1.21 × 1043J5xJy − 4.82 × 1033J5x þ 2.80 × 1043J4xJ2y − 2.27 × 1034J4xJy

þ 1.14 × 1025J4x þ 1.30 × 1044J3xJ3y − 7.27 × 1034J3xJ2y þ 4.64 × 1025J3xJy − 2.71 × 1016J3x

þ 1.67 × 1044J2xJ4y − 1.49 × 1035J2xJ3y þ 1.19 × 1026J2xJ2y − 8.66 × 1016J2xJy þ 6.10 × 107J2x

þ 1.79 × 1044JxJ5y − 1.72 × 1035JxJ4y þ 1.69 × 1026JxJ3y − 1.58 × 1017JxJ2y þ 1.36 × 108JxJy

þ 1.07 × 1044J6y − 1.21 × 1035J5y þ 1.40 × 1026J4y − 1.60 × 1017J3y þ 1.74 × 108J2y: ðA2Þ

For simplicity we have dropped the explicit appearance of
units. Coefficients which are multiplied by the nth power of
action variables should have the unit m−nþ1.
At certain amplitudes a resonance condition is satisfied,

as is shown in Eq. (15). This paper focuses on seventh-
order resonances. Four lines corresponding to the reso-
nances, ðmx;myÞ ¼ ð7; 0Þ,(5,2),(3,4), and (1,6) are excited
by a horizontal crossing. Fourier components of odd order
for my do not appear due to the �y symmetry of the
horizontal crossing. [A vertical crossing would drive other
seventh-order resonances, namely ðmx;myÞ ¼ ð6; 1Þ,(4,3),
(2,5), and (0,7).] The Fourier components related to the
seventh-order resonances are given by the terms G70, G52,
G34, and G16 with similar polynomials.
Using Eq. (A2), lines in amplitude space satisfying the

resonance conditions of Eq. (15) can be calculated. The
resonance width is evaluated using Eq. (16) by substituting
the amplitudes Jx ¼ Jx;R and Jy ¼ Jy;R in Gmxmy

.

APPENDIX B: EMITTANCE GROWTH DUE
TO COLLISION OFFSET NOISE IN THE

WEAK-STRONG MODEL

This appendix is based on [34,37]. The beam-beam force
(potential) with the bunch population (Np) and the trans-
verse size (σr) is expressed by

UðxÞ ¼ Nprp
γp

Z
∞

0

1 − e−x
2=ð2σ2rþqÞ

2σ2r þ q
dq ðB1Þ

where rp and γp are the classical radius of the proton and
the relativistic factor of the (weak) beam, respectively. The
betatron variables are represented by the normalized action
variable (a) and phase (ψ) as follows:

x ¼
ffiffiffiffiffiffiffiffiffiffi
2β�J

p
cosψ ¼ 2σr

ffiffiffi
a

p
cosψ ;

β�p ¼ −
ffiffiffiffiffiffiffiffiffiffi
2β�J

p
sinψ ¼ −2σr

ffiffiffi
a

p
sinψ ; ðB2Þ

where

a ¼ J
2ε

¼ β�J
2σ2r

¼ x2 þ β�2p2

4σ2r
: ðB3Þ

The potential is expanded by Fourier series of the
betatron phase as follows:

UðxÞ ¼ NprP
γp

X∞
k¼0

UkðaÞ cos 2kψ : ðB4Þ

The Fourier component is expressed by

UkðaÞ ¼
Z

a

0

½δ0k − ð2 − δ0kÞð−1Þke−wIkðwÞ�
dw
w

; ðB5Þ

where Ik is the modified Bessel function. The change of J
per one revolution is given by the derivative of the beam-
beam potential for ψ as follows:

ΔJ ¼ −
∂U
∂ψ ¼ Nrp

γ

X∞
k¼0

2kUk sin 2kψ : ðB6Þ

This change, which indicates a stable sinusoidal modula-
tion of the betatron amplitude, does not induce emittance
growth.
We consider the case in which the strong beam has a

small offset (Δx), The beam-beam potential with the offset
is expanded for Δx,

Uðxþ ΔxÞ ¼ UðxÞ þ U0ðxÞΔx: ðB7Þ

Δx is a random variable fluctuated by Eq. (24) or (28).
Derivative of the beam-beam potential for the offset (Δx)

is represented by ða;ψÞ,

U0ða;ψÞ ¼ ∂U
∂a

∂a
∂x þ

∂U
∂ψ

∂ψ
∂x : ðB8Þ

Using the relations

∂a
∂x ¼

ffiffiffi
a

p
σr

cosψ ;

and

∂ψ
∂x ¼ −

1

2σr
ffiffiffi
a

p sinψ ; ðB9Þ

each term of Eq. (B8) is expressed as
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∂U
∂a

∂a
∂x ¼ Nprp

γσr

X∞
k¼0

ffiffiffi
a

p
U0

k cos 2kψ cosψ

¼ Nprp
2γσr

X∞
k¼0

ffiffiffi
a

p ðU0
kþ1 þU0

kÞ cosð2kþ 1Þψ ; ðB10Þ

and

∂U
∂ψ

∂ψ
∂x ¼ Nprp

2γσr
ffiffiffi
a

p
X∞
k¼0

2kUk sin 2kψ sinψ

¼ Nprp
2γσr

ffiffiffi
a

p
X∞
k¼0

½ðkþ 1ÞUkþ1 − kUk� cosð2kþ 1Þψ :

ðB11Þ

The Fourier expansion of the potential with respect to the
offset now becomes

U0ðJ;ψÞ ¼ Nprp
2γσr

X∞
k¼0

GkðaÞ cosð2kþ 1Þψ ; ðB12Þ

where

GkðaÞ ¼
ffiffiffi
a

p ½U0
kþ1 þU0

k� þ
1ffiffiffi
a

p ½ðkþ 1ÞUkþ1 − kUk�;

ðB13Þ

and U0
k is the derivative evaluated at a ¼ J=ð2εÞ.

The diffusion rate hΔJ2ðNÞi=N is estimated as

hΔJ2ðNÞi ¼
XN
l¼1

XN−l

n¼−lþ1

∂U0ðlÞ
∂ψ

∂U0ðlþ nÞ
∂ψ hΔxlΔxlþni

¼ N2
pr2pσ2r
4γ2

XN
l¼1

XN−l

n¼−l

X∞
k¼0

X∞
j¼0

ð2kþ 1Þð2jþ 1ÞGkGj sin½ð2kþ 1Þψl� sin½ð2jþ 1Þψlþn�hΔxlΔxlþni

¼ N2
pr2p

8γ2σ2r

XN
l¼1

XN−l

n¼−l

X∞
k¼0

X∞
j¼0

ð2kþ 1Þð2jþ 1ÞGkGjfcos½ð2k − 2jÞψl − ð2jþ 1Þ2πnμ�

− cos½ð2kþ 2jþ 2Þψl þ ð2jþ 1Þ2πnν�ghΔxlΔxlþni;

≈
N2

pr2p
8γ2σ2r

N
X∞
n¼−∞

X∞
k¼0

ð2kþ 1Þ2G2
k cos½2πð2kþ 1Þnν�Δx2e−jnj=τ;

¼ N2
pr2p
8γ2

Δx2

σ2r
N
X∞
k¼0

ð2kþ 1Þ2GkðaÞ2 sinh 1=τ
cosh 1=τ − cosð2kþ 1Þμo

; ðB14Þ

where ψlþn ¼ ψl þ 2πν and, in the last step, we have used
the formula

X∞
n¼−∞

cos½2πð2kþ 1Þnν�e−jnj=τ ¼ sinh1=τ
cosh1=τ− cosð2kþ 1Þμo

:

ðB15Þ

Only the OðNÞ term for k ¼ j has been kept in the second
to last line of Eq. (B14). Dividing Eq. (B14) by N yields
Eq. (31).
For the second type of noise, Eq. (32) is obtained by

replacing Eq. (26) with Eq. (29) in Eq. (B14).
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