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Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two
beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the
bunch charge, the number of long-range beam-beam interactions, of β� and type of optics (flat or round),
and possible compensation or additive effects between several low-β insertions in the ring depending on the
orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing
wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk,
CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the
crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing
the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on
the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation
dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the
compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of
achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire
position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC
project), and compare it to alternative scenarios, or so-called “configurations,” where modifications are
applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring.
For all these configurations, the beneficial impact of beam-beam compensation devices is then
demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the
nonlinear beam dynamics as the main figures of merit.
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I. INTRODUCTION AND MOTIVATIONS

Considering a low-β insertion (IR) where bunch trains
are colliding at the center of the detector, a nonzero
crossing angle Θc shall be imposed at the interaction point
(IP) in order to separate the two beams after the collision.
When β� is reduced to push the performance of the collider,
this angle shall be increased in order to guarantee a
sufficiently large normalized beam-beam separation.
For round optics and assuming two low-β insertions

with horizontal and vertical alternated crossing angle,
this separation shall be typically of the order of 10σ for
the existing layout and collision optics of the Large
Hadron Collider (LHC) [1]. For the high-luminosity
LHC (HL-LHC) [2], the beam-beam separation will

probably need to be increased up to 12.5σ [3], due to
the larger bunch charge, and longer triplets resulting
in the lengthening of the region where the two beams
share the same vacuum beam pipe and continue to
interact with each other:

Θc ¼ Θnorm
c ×

ffiffiffiffiffi
ϵ

β�

r
¼ Θnorm

c σ�

β�
; ð1Þ

where ϵ and σ� ¼ ffiffiffiffiffiffiffi
ϵβ�

p
denote the 1σ physical beam

emittance and the rms spot size at the IP, respectively,
and Θnorm

c ¼ 10 − 12.5 refers to the crossing angle
normalized by the natural beam divergence at the IP.
Increasing the crossing angle, however, affects directly
the so-called Piwinski angle ϕw, which characterizes the
overlap of the two colliding beam distributions, and
therefore the luminosity in the presence of a nonzero
crossing angle:

ϕw ≡ Θcσz
2σ�

¼ β�w
β�

; ð2Þ
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where σz is the rms bunch length and β�w is a character-
istic β� defined by

β�w ≡ Θnorm
c σz
2

: ð3Þ

The potential gain of luminosity with 1=β� saturates
rapidly below this characteristic β�, of the order of β�w ∼
40–50 cm for typical LHC or HL-LHC parameters:

Lðβ�Þ ∝ 1

β�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ2

w

p ¼ 1

β�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðβ�w=β�Þ2

p ⟶
β�≪β�w 1

β�w
: ð4Þ

A potential mitigation measure is offered by the use of
flat optics, with a β� as small as possible in the parallel
separation plane, down to β�∥ ∼ σz, and of the order of
β�X ∼ β�w in the crossing plane [4]. Indeed, this strategy still
leads to an increase of the luminosity with 1=

ffiffiffiffiffi
β�∥

p
, until it

saturates again due to the hourglass effect when β�∥ becomes
comparable to the rms bunch length. For flat optics,
however, even an alternated horizontal and vertical crossing
angle in the two low-β insertions of the ring does no longer
warrant the full self-compensation of the tune shift and, in
general, of the 4nþ 2-pole like tune spread induced by the
long-range (LR) beam-beam interactions (see Sec. II B for
an analytical treatment). As a result, the normalized cross-
ing angle shall be increased beyond the canonical values
mentioned above for round optics, and substantially for
large β� aspect ratio. The typical rule of thumb for the (HL-)
LHC is that a flat optics with a β� aspect ratio of r� ¼
β�X=β

�
∥ ∼ 4 requires almost the same crossing angle in μrad

(and the same magnet aperture) as a round optics with an
equivalent β� of β�round ≡

ffiffiffiffiffiffiffiffiffiffi
β�Xβ

�
∥

p
[3,5]:

Θc;flat ∼ Θc;round when β�X ¼ 2β�round
and β�∥ ¼ β�round=2: ð5Þ

This corresponds to an increase of the normalized
crossing angle by about

ffiffiffi
2

p
in the case of flat optics with

a β� aspect ratio of 4, compared to a round optics of
equivalent β�:

Θnorm
c;flat ≡ Θc;flat

� ffiffiffiffiffiffi
ϵ

β�X

r
∼ Θc;round

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ

2β�round

r

¼
ffiffiffi
2

p
× Θnorm

c;round: ð6Þ

Therefore the Piwinsky angle is only reduced by a factorffiffiffi
2

p
with respect to an equivalent round optics, instead of by

a factor of 2 if the normalized crossing angle could be kept
at around 10–12.5σ for flat optics as well. Consequently,
finding means to keep the normalized crossing angle as low
as possible when flattening the optics, for example through
the use of electromagnetic wires proposed in [6], or
similarly electron lenses [7,8] [see sketch in Fig. 1(b)],
would offer a very interesting path toward a powerful
performance upgrade. This possibility, the so-called
HL-LHC Plan B, was effectively introduced in the project
[9] and fully simulated very recently [10].
The baseline scenario (Plan A) relies on a different

“head-on collision device,” the so-called crab cavities. Crab
cavities are deflecting rf dipoles [11,12] which aim at
maximizing the overlap of the two beam distributions
despite of the crossing angle [see Fig. 1(a)], in order to
fully restore the luminosity gain with 1=β�. The HL-LHC
project has chosen this second option as a baseline, despite
a challenging hardware implementation, since it offers in
principle better luminosity performance. Nevertheless,
even in this case, a reduction of the crossing angle would
still be beneficial for (i) the crab-cavity voltage needed and
the strength of the orbit corrector magnets which are
involved in the crossing bumps, (ii) the mechanical aperture
needed by the beam, and/or (iii) the heat load and integrated
radiation dose coming from the debris produced at the IP
and deposited in the final focus quadrupoles.

FIG. 1. Possible “head-on collision tools” to maximize the overlap of the two beam distributions at the interaction point, and therefore
maximize the machine performance in the presence of a nonzero crossing angle: bunch rotation induced by crab-cavities at constant
crossing angle (left picture, courtesy of F. Zimmerman), current bearing wires (or electron lens) to compensate for the long-range (LR)
beam-beam effects and reduce the crossing angle itself (right picture [6], courtesy of J. P. Koutchouk), or any combination of the two.
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As already mentioned, the idea of using a current
bearing wire to compensate for the LR beam-beam
interactions was introduced in [6]. Then several beam
experiments were carried out installing and testing this
device in different machines [13–16], with in particular
very clear beneficial effects observed on the beam life-
time for the eþe− DAΦNE collider. On the other hand, to
the best knowledge of the authors, the azimuthal position-
ing of this device in the collider (and the corresponding
aspect ratio of the β functions) and its settings (in terms
of integrated current and transverse distance with respect
to the circulating beam) have always been optimized
iteratively (see e.g., [17]) and more or less empirically.
This is where a more systematic and deterministic
approach would be appropriate in view of the huge
potential of this device.
Using the weak-strong beam-beam approximation, the

next section develops a semianalytical method for the
compensation of the LR beam-beam interactions assuming
two current wires acting on the weak beam and located
symmetrically on either side of the IP [see Fig. 1(b)]. In the
particular case of the (HL-)LHC, it will be shown that a
very clean correction can be achieved provided these two
wires are located at a position where the β aspect ratio
r≡ βx=βy is close to either 2 or 1=2, i.e., right after the
separation dipole D1 or in between Q4 and Q5 for typical
antisymmetric (HL-)LHC collision optics. Using the beam-
beam tune footprint, the dynamic aperture and/or the
frequency map analysis as figures of merit, Sec. III will
then illustrate the potential benefit of this device in many
different machine configurations, i.e., not only for the
HL-LHC baseline with round optics and a vertical and
horizontal (HV) alternated crossing angle of about
600 μrad in IR1 and IR5, but also for alternative scenarios
with a substantially smaller crossing angle in round or flat
optics mode, or assuming an HH or VV orientation of the
crossing planes in the two high luminosity insertions of
the ring.

II. CORRECTION ALGORITHM

A. Multipole expansion of the long-range
beam-beam interaction

Let us consider two slices of charged particles traveling
at the speed of light in opposite (nearly) parallel directions,
and interacting with each other at time t ¼ 0 and abscissa
s ¼ s0. Let us note Q0 the total charge of the first slice
(“strong” beam), r0 the radius characterizing its finite
transverse extension, and z0 ≡ z1 − z2 ≡ x0 þ iy0 (in com-
plex notations) the transverse position of the centroid of the
first slice with respect to that of the second slice (“weak”
beam). A test particle of the weak beam, at a transverse
position z≡ xþ iy with respect to its centroid, has a
transverse position z − z0 relative to the centroid of the
strong beam. Taking the centroid of the strong beam as the

origin of the transverse plane, orienting the longitudinal s
coordinate along the trajectory tðsÞ ¼ ðs − s0Þ=c of the test
particle, and assuming jz − z0j ≫ r0, the electric and
magnetic fields seen by this particle are purely radial
and azimuthal, respectively, and given by the well-known
expressions:

Er ¼ −cBθ

¼ Q0

2πϵ0jz − z0j
× δðs − s0 þ ctÞ

¼ Q0

4πϵ0jz − z0j
× δðs − s0Þ; ð7Þ

where ϵ0 is the permittivity of free space, the time t has
been substituted by t ¼ ðs − s0Þ=c, and the relation
δð2sÞ≡ δðsÞ=2 has been used for the Dirac function.
The integrated Lorentz force seen by the test particle is
therefore radial, corresponding to an effective integrated
magnetic field which, written in complex notation, is
given by

Z
ds½By þ iBx�eq ≡ 2e−iθ

Z
dsBθ

¼ −
Q0

2πϵ0c
×
cosðθÞ − i sinðθÞ

jz − z0j
; ð8Þ

with θ being the argument of ðz − z0Þ. Multiplying the
numerator and denominator by jz − z0j, and simplifying by
the complex conjugate of ðz − z0Þ occurring in the numer-
ator, one finally gets

Z
ds½By þ iBx�eq ¼ −

μ0ðILÞeq
2π

×
1

z − z0
with ðILÞeq ≡Q0c; ð9Þ

where μ0 ¼ 1=ϵ0=c2 denotes the permeability in free space.
One therefore easily recognizes the integrated magnetic
field induced by a wire of length L and carrying a current I
with I × L≡Q0c. Whether the strong beam is an infinitely
thin slice or a bunch of charged particles will not change the
above result, under the condition that the distance jz − z0j
does not vary along the finite length of the interaction,
which is a very good approximation in the case of the (HL-)
LHC. Assuming jz=z0j < 1 in the above relation (which
means that the transverse distribution of the two beams
does not overlap at the parasitic encounters), the equivalent
integrated magnetic field seen by the test particle can be
easily expanded in multipole harmonics:

Z
ds½By þ iBx�eq ¼

X∞
k¼1

½Bk þ iAk�zk−1

with Bk þ iAk ≡ μ0ðILÞeq
2π

×
1

zk0
: ð10Þ
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B. Analogy with standard multipole magnets,
and effect of multiple interaction regions

Equation (10) contains a number of important aspects.
First of all, for horizontal crossing, i.e., assuming z0 ¼ x0 to
be real in (10), the LR beam-beam interaction only contains
normal multipole components (Ak ¼ 0 for all k’s). For
vertical crossing, i.e., assuming z0 ¼ iy0 to be purely
imaginary, the odd harmonics are skewed (B2kþ1 ¼ 0),
while the even harmonics are normal (A2k ¼ 0).
Furthermore, assuming two insertions with strictly equiv-
alent optics and the same normalized crossing angle, but the
crossing plane rotated by�π=2 when passing from the first
IP to the second one, i.e., z0IP2 ≡�iz0IP1 , then the tune shift
and tune spread induced by the 4nþ 2 harmonics (B2 for
the tune shift, and B6; B10;… for the tune spread) self-
compensate between the two insertions, while the 4n-pole
like detuning terms add up. The possible utilization of cross-
talks between crossing angle orientation and tune shift and
tune spread induced by the LR beam-beam interactions
emerged in the early design phase of the Superconducting
Super Collider (SSC) [18,19]. This led to the proposal of an
alternated HV crossing scheme in the two experiments of
the SSCmachine, which was proposed a decade later for the
two high luminosity insertions of the LHC (see e.g., [20]).
However, an important consequence of this choice is that the
tune spread generated by the LR beam-beam interactions is
very close to that induced by a pure octupole, since the next
nonzero first order contribution to the tune spread isB8-like.
As a result this tune spread can be compensated very cleanly
by an inappropriate choice of the Landau octupole polarity.
This was effectively the case until the very end of the LHC
Run I when this effect was realized, and the polarity of the
LHC Landau octupole was changed from negative to
positive, and now kept for Run II in order to ensure coherent
beam stability through the Landau damping at the end of the
squeeze [21] (see also [22] for a further analysis of the same
effect in terms of Landau stability diagram). Finally,
targeting a full self-compensation to first order of all the
detuning terms induced by the LR beam-beam interactions,
(i.e., not only from the componentsB2; B6;…, but also from
B4; B8;…), one possible configuration would be a ring
equipped with four low-β insertions strictly identical in
terms of optics (β functions), layout, and normalized beam-
beam separation, but with a crossing plane rotated by π=4
when passing from one insertion to the next one, i.e.,
z0IPk ≡�eiðk−1Þπ=4z0IP1 , k ¼ 1;…; 4.

C. Correction method applied to the HL-LHC

1. Features of the (HL-)LHC optics

Let us consider a typical left/right antisymmetric HL-LHC
collision optics with the same β� in the two transverse planes
[round optics as shown in Fig. 2(b)], and two wires installed
symmetrically on either side of the IP [see Fig. 1(b)] at an
aspect ratio rw of the β functions defined by

(a)

(b)

(c)

FIG. 2. Sketch of the layout for the new high luminosity
insertions of the HL-LHC (a), typical HL-LHC collision optics
with β� ¼ 15 cm (b), and zoom on the β functions and corre-
sponding aspect ratio (c) from the exit of the separation dipole D1
to an intermediate position in between the Q4 and Q5 matching
quadrupoles.
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rw ≡ βw:Rx

βw:Ry
¼ βw:Ly

βw:Lx
; ð11Þ

where the second equality is true only for round optics. This
aspect ratio is shown in Fig. 2(c) as a function of the distance
from the IP for a typical HL-LHC collision optics and the
clockwise rotating beam (Beam1), assuming β� ¼ 15 cm in
both transverse planes. It is of the order of rw ∼ 2 right after
the separation dipole D1, rw ∼ 1 close to the recombination
dipole D2 and tertiary collimator (TCT), and an aspect ratio
of rw ∼ 0.5 is reached in between the first and second
matching quadrupoles Q4 and Q5. However, provided
additional constraints are imposed on the inner triplet layout
and/or inserted into the optics matching procedure, the
longitudinal position where the two β functions are the
same, i.e., (rw ≡ 1), can be shifted well in between D1 and
D2, and a β aspect ratio of 1=2 can be established much
closer to the TCT.
Let us consider 2 × NLR parasitic beam-beam encounters

occurring every 3.75 m on either side of the IP (for a bunch
spacing of 25 ns) until the beam enters the D1 separation
dipole. In the remainder of this paper this number will be set
to NLR ¼ 18, corresponding to the intermediate layout
version SLHCV3.1b [23] of the new HL-LHC insertions
with a 150 T=m triplet (140 mm aperture), compared to
NLR ¼ 15 for the existing LHC triplet and very likely
NLR ¼ 21 for the final HL-LHC triplet layout [24] with
an operational gradient of 130–132 T=m (150 mm aperture).
For β� ¼ 15 cm with an horizontal crossing angle normal-
ized to 12.5σ (i.e., 590 μrad at 7 TeV for a normalized
emittance of γϵ ¼ 2.5 μrad), the beam-beam separation is
shown in Fig. 3, given in mm in Fig. 3(a) and normalized by
the horizontal beam size of Beam1 in Fig. 3(b). The
non-normalized beam-beam separation dbb is quasisymmet-
ric between the left and the right sides of the IP and given by

dbbðsÞ ∼ dbbð−sÞ ≈ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsÞβ�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βyðsÞβ�

q
�Θc=2; ð12Þ

both in horizontal and vertical crossing. These symmetries
are related to the following features of the LHC optics:
first the antisymmetry of the optics for a given beam
between the left and right sides of the IP (i.e., βLx ¼ βRy and
βRx ¼ βLy ), but also the antisymmetry of the optics between
the two beams on a given side of the IP (i.e., βb2x ¼ βb1y and
βb1x ¼ βb2y ), and finally from the fact that most of the
crossing angle is generated by orbit correctors located on
the non-ip side of the triplet, with a phase advance from
the IP to the parasitic encounters, which is quasiconstant
and very close to �π=2 (see Fig. 4).
When normalized by the beam size in the crossing plane

[see Fig. 3(b)], these symmetries are broken and the
normalized beam-beam separation is given by

dnormbb ðsÞ ≈ ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βy;xðsÞ=βx;yðsÞ

q
�Θnorm

c =2; ð13Þ

for horizontal and vertical crossing, respectively, and where
the normalized crossing angle Θnorm

c has been introduced in
Eq. (1). In the drift space between the IP and the first final
focus quadrupole, the normalized beam-beam separation is
therefore constant (βxðsÞ ¼ βyðsÞ ¼ β� þ s2=β�), but is
varying significantly in the inner triplet quadrupoles where
the aspect ratio of the β functions is no longer constant. As
a result, the quality of the correction of the LR beam-beam
interactions is expected to be strongly dependent on the
aspect ratio rw of the β functions at the wire position. Also,
in a configuration with only two wires (or e-lenses) per
beam and per IP (i.e., only two independent knobs within a
multiplicative constant given by the wire current which
shall naturally scale with the beam intensity), only two

(a) (b)

FIG. 3. Beam-beam separation for a horizontal crossing angle of 590 μrad. The separation is shown in mm in (a), and normalized by
the horizontal beam size of the clockwise rotating beam in (b) (assuming β� ¼ 15 cm, a beam energy of 7 TeV and a normalized
emittance of γϵ ¼ 2.5 μrad). The markers indicate the positions of the LR beam-beam encounters, except at the IP where the head-on
collision is modeled by five beam-beam slices [as clearly visible, assuming no crab-cavity, in (b)].
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resonance driving terms (RDTs) or two detuning terms can
a priori be compensated simultaneously. Later, one will see
however that (i) RDTs and detuning terms of the same
order are very close to each other, (ii) due to the anti-
symmetry of the (HL-)LHC optics not 2 but actually 4
RDTs can be zeroed out simultaneously (provided the left
and right wires are positioned symmetrically with respect to
the IP), and (iii) all RDTs in fact can be strongly minimized
provided an appropriate choice of the aspect ratio of the
β-function at the wire location.

2. Correction algorithm for round optics

When the HL-LHC optics is squeezed, the betatron
phases jump by π in both planes from the left to the right
side of the IP. Then, these phases stay quasiconstant, within
a few degrees, from the first parasitic encounter, at
�3.75 m with respect to the IP, until the zone Q4/Q5
located at about �200 m from the IP (see Fig. 4). The
detuning terms are therefore included in the list of RDTs
induced by the LR beam-beam interactions. For instance,
the horizontal anharmonicity ∂Qx=∂Jx is simply propor-
tional to the modulus of the (4,0) RDT, since the betatron
phase advances are vanishing or close to π between the
different LR beam-beam encounters of a given interaction
region. From the multipole expansion obtained in (10), and
restricting our discussion to purely horizontal or vertical
crossing, the RDTs to be corrected are then proportional to
the following quantities:

cLRpq ≡
X
k∈LR

βp=2x ðskÞβq=2y ðskÞ
dpþq
bb ðskÞ

; p ≥ 0; q ≥ 0; ð14Þ

where the summation is taken over 2 × NLR parasitic beam-
beam encounters taking place on either side of the IP, p and
q are integers, q is always an even number in the case of H
crossing (leading to normal resonances), and idem for p in
the case of V crossing (leading to normal or skew
resonances when pþ q is an even or an odd integer,
respectively). It is worth noting that the phasor term
ð−1Þpþq related to the π phase jump between the left
and the right side of the IP is apparently missing in the
above relation: it is in fact absorbed in the convention
chosen for the beam-beam separation dbbðskÞ, taken
positive on both sides of the IP. Finally due to the optics
antisymmetry, and the s-parity of the function dbbðsÞ, the
driving terms cpq and cqp are clearly the same (when both
are excited, i.e., when both p and q are even integers).
Similar quantities can then be defined for the two wires

(or e-lenses) installed on the left (L) and right (R) sides of
the IP:

8<
:

cw:Lpq ≡ Nw:L ×
ðβw:Lx Þp=2ðβw:Ly Þq=2

ðdw:LÞpþq

cw:Rpq ≡ Nw:R × ðβw:Rx Þp=2ðβw:Ry Þq=2
ðdw:RÞpþq ;

ð15Þ

with Nw:L=R describing the integrated current of the left and
right wires, expressed in terms of equivalent number of
parasitic beam-beam encounters [see Eq. (9) for the
correspondence], and where the quantities dw:L=R are
positive and denote the transverse positions of the left
and right wires with respect to the weak beam to be
corrected [with the wires always located in between the
strong and weak beam as shown in Fig. 1(b)]. For round
optics, the RDTs induced by the left and right wires can
also be written as

(a) (b)

FIG. 4. Evolution of the betatron phase advances over a distance of �200 m on either side of the IP (a), then zoomed on the right side
taking the origin at the first parasitic encounter located at 3.75 m with respect to the IP. When the optics is squeezed (β� ¼ 15 cm in this
case), the betatron phases jump by π across the IP. These phases then stabilize at a value very close to �π=2 within a few degrees over a
relatively long distance of about 200 m.
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8>><
>>:

cw:Lpq ¼ Nw:L ×
r
p−q
4

w

ðdw:L=
ffiffiffiffiffi
βweq

p
Þpþq

cw:Rpq ¼ Nw:R × r
q−p
4

w

ðdw:R=
ffiffiffiffiffi
βweq

p
Þpþq ;

ð16Þ

with βweq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βw:Rx βw:Ry

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βw:Lx βw:Ly

q
: ð17Þ

In this case, and avoiding the degenerated cases defined by

r
q−p
4
w ≡ 1, where the action of the left and right wires are the
same on one specific RDT (when p≡ q) or on all RDTs
simultaneously (when rw ≡ 1), requiring that the wires are
adjusted to compensate two given RDTs, namely cLRp1q1 and
cLRp2q2 with p1 ≠ q1 and p2 ≠ q2, and that their global action
features the above mentioned symmetries when exchanging
p into q, i.e., cw:Lpq þcw:Rpq ≡cw:Lqp þcw:Rqp ≡cLRpq¼cLRqp , one gets:

8>>>>>><
>>>>>>:

dw:L ¼ dw:R ¼ dw ≡ ffiffiffiffiffiffi
βweq

p
×
�
cLRp1q1
cLRp2q2

r
p2−q2

4
w þr

q2−p2
4

w

r
p1−q1

4
w þr

q1−p1
4

w

� 1
p2þq2−p1−q1

Nw:L ¼ Nw:R ¼ Nw ≡
2
64ðcLRp1q1 Þp2þq2

ðcLRp2q2 Þp1þq1

�
r
p2−q2

4
w þr

q2−p2
4

w

�
p1þq1

�
r
p1−q1

4
w þr

q1−p1
4

w

�
p2þq2

3
75

1
p2þq2−p1−q1

:

ð18Þ

3. Wire setting variations with β� and crossing angle,
and generalization to flat optics

The low-β� collision optics of the HL-LHC relies on the
deployment of the so-called achromatic telescopic squeez-
ing (ATS) scheme [25], in which case the settings of the
triplet and matching quadrupoles are strictly constant below
a certain β� (of typically 40–50 cm), both for round and flat
optics. As a result, and due to the quasiconstant betatron
phase advances, close to �π=2 between the IP and any
location at a few meters up to ∼� 200 m upstream or
downstream, the β functions at the parasitic encounters,
namely βx;yðskÞ, but also at the wires, βw:L;w:Rx;y , scale with
the inverse of β�x;y. On the other hand, the (non-normalized)
beam-beam separation dbbðskÞ is simply proportional to
the crossing angle Θc. Consequently, the RDTs induced by
the LR beam-beam interactions and the wires possess the
following scaling laws:

8>>><
>>>:

cLRpq ∝ 1
ðΘcÞpþq × r�

q−p
4

β�
pþq
2

eq

cwpq ∝ r�
q−p
4

β�
pþq
2

eq

;

ð19Þ

where r� ≡ β�x=β�y is the aspect ratio of the β functions at the
IP, and β�eq ≡ ffiffiffiffiffiffiffiffiffi

β�xβ�y
p

. Since the scaling with β�x;y is the same
for the coefficients cLRpq and cwpq, adjusting the wires in
strength and position following (18) for two selected RDTs,
for a given round optics, and a given crossing angle,
automatically warrants the cancellation of the same RDTs
for any other collision optics of sufficiently small β�, round
or flat, keeping constant the (non-normalized) crossing

angle. In this case, of course, the residual of the non-
corrected driving terms cannot be kept constant when
changing β�x;y. On the other hand, if one assumes the
existence of an optimal aspect ratio rw at the wire position
for which all the RDTs could be minimized simultaneously
for a given round optics, then the corresponding positioning
of the wires in the layout, their strength and transverse
position will also be very close to optimal for any other
collision optics, round (for which rw will be kept
unchanged) or flat (in which case rw will scale with
1=r�). Surprisingly, such optimal positions exist for the
(HL-)LHC optics, as we will see later on. Finally, when
changing the crossing angle, the transverse position of the
left and right wires shall be modified in proportion, but their
current kept constant:

dw ∝ Θc and Nw ¼ Cst: ð20Þ

Similarly to the present LHC, the optics squeeze in the
HL-LHC is foreseen to be performed at constant physical
(non-normalized) crossing angle, without any further
change during the luminosity leveling process, in particular
for the HL-LHC baseline scenario relying on luminosity
levelling with β�. Therefore, (i) ramping up the wire current
toward the end of the ramp, (ii) fixing their transverse
positions at flat top energy as a function of the crossing
angle established just before the squeeze (when the
normalized crossing angle is still very large and therefore
both the effects the LR interactions and of the wires are
marginal), (iii) keeping these positions strictly constant
later on, and (iv) reducing the wire current following the
smooth evolution of the beam intensity during the physics
coast, offer a very simple and optimal usage of this new
device in operation.
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4. Aspect ratio optimization for the β functions
at the wire position

For the HL-LHC baseline collision optics with β�x;y ¼
15 cm and a full crossing angle of Θc ¼ 590 μrad
(Θnorm

c ¼ 12.5σ), the above correction method has been
applied in three different cases, namely: compensating for
(i) the cLRpq coefficients (4,0) and (6,0) [and therefore also
(0,4) and (0,6) by symmetry], (ii) (4,0) and (8,2) [and
therefore also (0,4) and (2,8)], and finally (iii) (2,2) and
(5,5). In the three cases, a common goal is to cancel out
some fourth order RDTs, in fact the direct anharmonicity
coefficients ∂Qx=∂Jx ≡ ∂Qy=∂Jy in cases (i) and (ii) and
the cross-anharmonicity term ∂Qx=∂Jy ≡ ∂Qy=∂Jx in case
(iii). These quantities are indeed the first nonzero detuning
terms driven by the LR beam-beam interactions, with no
intrinsic self-compensation for the (HL-)LHC baseline
configuration (see Sec. II B). While for the first two cases,
the priority is clearly to shape the tune footprint on the
antidiagonal (see later the “wings” of typical tune footprints
before correction, which concern particles oscillating in the
horizontal or vertical planes, with Jy ∼ 0 or Jx ∼ 0, respec-
tively), case (iii) is concentrated onto the correction of the
nonlinear dynamics at 45 degrees in the betatron phase
space, i.e., for particles with Jx ≡ Jy. Then while the focus
is put on RDTs of higher order (tenth order terms) in the
last two cases, the sixth order terms have been chosen in
case (i), although in the three cases the corresponding
detuning terms are self-compensated in the alternated
crossing scheme (and round optics). Finally it is worth
noting that the (5,5) RDT selected in case (iii) is not
physically excited by the LR beam-beam interactions in the
case of purely horizontal or vertical crossing. Nevertheless,
as for any other “physical” RDTs, it constitutes a well-
defined quantity, or “mathematical” norm, which can
a priori be used for the correction. In all cases, one will
show later that for specific aspect ratio of the β-functions at
the wire location, the wire settings (current and transverse
positions) do no longer depend on the correction type, more
precisely on the selection of the two or four “mathematical”
RDTs which are considered in the correction algorithm.

Wire current.—For a maximum beam intensity of N0 ¼
2.2 × 1011 protons per bunch [2], each LR beam-beam
interaction corresponds to an equivalent integrated current
of ðILÞeq ¼ 10.56 Am [see Eq. (9)]. This would lead to an
integrated current of about 190 A m for each of the two
wires if the assumed NLR ¼ 18 LR interactions per IP side
could be combined in a strictly additive way, for instance if
these interactions would take place at the same normalized
separation and at constant β aspect ratio, which is not the
case as previously discussed. In order to study in detail the
real situation, the integrated current needed in the two wires
[Nw:L ¼ Nw:R ¼ Nw in Eq. (18)] is plotted in Fig. 5 as a
function of the position of the wire with respect to the IP,

and therefore implicitly as a function of the β function
aspect ratio rw at the wire location. This current is constant,
and close to the expected value of 190 A m only in the third
case (iii), as expected from Eq. (18) when p1 ¼ q1 and
p2 ¼ q2. The situation is very different in the other two
cases where the current needed in the wires can substan-
tially vary with the aspect ratio rw. For an aspect ratio of
rw ∼ 1 for instance, the current needed is further pushed in
case (ii) while it is substantially decreased in case (i). In any
case we will see later that an aspect ratio of one at the wire
location always correspond to the worst case in terms of the
quality of the correction, i.e., for the driving terms which
have not been selected in the correction process. A
remarkable feature is however that for an aspect ratio close
to two or one half, the current needed is almost the same in
the three cases.

Transverse position dw.—Figure 6 shows the transverse
distance of the left and right wires with respect to the weak
beam [dw:L ¼ dw:R ¼ dw in Eq. (18)] as a function of the
wire position with respect to the IP. These distances are given
in mm in Fig. 6(a), in which case they are the same for the
left and right wires and do not depend on the orientation of
the crossing plane. When normalized by the size of the weak
beam in the crossing plane, as in Fig. 6(b), these quantities
are no longer the same for the left and right wires (except for
an aspect ratio rw ¼ 1), but still fulfill a certain symmetry of
exchange when passing from an horizontal to a vertical
crossing angle. Finally, it is worth noting that the same
feature as above is reproduced, where an aspect ratio of rw ∼
1=2 or rw ∼ 2 at the wire location leads to the same setting
for the three correction types under consideration.
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FIG. 5. Integrated current needed in the left and right wires as a
function of the wire position with respect to the IP, assuming
NLR ¼ 18 LR beam-beam interactions on either side of the IP and
a beam intensity of 2.2 × 1011 protons per bunch. Three different
types of correction have been considered as described in the text.

STÉPHANE FARTOUKH et al. Phys. Rev. ST Accel. Beams 18, 121001 (2015)

121001-8



It becomes then legitimate to conjecture the existence of
an optimal aspect ratio(s) for the β functions at the wire
location, for which the correction of only two (or four)
resonance driving terms would automatically minimize all
the others. This remarkable property becomes obvious
when looking at the residual coefficients cLRpq þ cw:Lpq þ
cw:Rpq after correction, as reported in Fig. 7, directly as a
function of the aspect ratio rw and for the three correction
types envisaged above. While for each correction type and
regardless of the aspect ratio rw the wires can in principle be
adjusted in current and transverse position in order to
exactly compensate two (or four) coefficients, the other
coefficients are in general very poorly controlled, with very
large excursion and a worst case, which is systematically
reached around rw ∼ 1. On the other hand all these terms
can be strongly and simultaneously diminished, regardless
of the correction type, when the aspect ratio approaches the
two optimal values of rw ∼ 2 (right after D1) and rw ∼ 1=2
(in the zone D2/Q4 or even beyond depending on the triplet
layout and optics matching). First of all the fact that the
product of these two optimal aspect ratios is equal to unity
is not a hazard. This property results from the optics
antisymmetry of the (HL-)LHC. More precisely the sum
occurring in Eq. (14) is invariant by exchanging x into y,
which correspond to an exchange of rw into 1=rw at the
wire on the right, and conversely for the wire on the left of
the IP, for the same result in terms of RDT residuals after
correction. On the other hand the nontrivial result is that
this sum can be accurately approximated by only two
nonlinear kicks, and this for a large selection of ðp; qÞ
coefficients, at least up to the order pþ q ¼ 10 as showed

in Fig. 7. The authors have presently no analytical proof of
this numerical evidence. In order to invalidate the possibil-
ity that this property could be specific to the layout of the
HL-LHC triplet, the correction method has also been tested
on the existing LHC triplet which is shorter, with only
NLR ¼ 15 LR beam-beam interactions per IP side, 6 of
them taking place in the drift space between the IP and the
first quadrupole Q1, i.e., at constant normalized separation
and β aspect ratio. Also in this case the above property has
been reproduced with the only difference that the optimal
aspect ratios have been found to be slightly shifted, equal to
rw ∼ 0.6 and rw ∼ 1.7.
Another important conclusion from Fig. 7 is that,

for a nonoptimal positioning of the wires, a correction
algorithm involving high order RDTs (as in cases (ii) and
(iii)) seems to give better results for the residuals of
the nonselected RDTs after correction [e.g., compare
Figs. 7(ii) and 7(i) at an aspect ratio rw ∼ 1]. This con-
clusion has also been confirmed by dedicated dynamic
aperture studies performed on the HL-LHC alternative
scenario with flat optics (see Sec. III C) and wires installed
at rw ∼ 1. Nevertheless, since the position corresponding to
an aspect ratio of rw ∼ 0.5 is much more suitable for
integration in the (HL-)LHC, the worst case corresponding
to rw ∼ 1 will no longer be considered in the rest of the
paper.
Before closing this chapter, it remains important to

analyze a posteriori the behavior of the exact driving
terms after correction by taking into account the phase
shifts, although small, between the wire location and the
LR beam-beam encounters, namely:
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FIG. 6. Transverse distance of the left and right wires with respect to the weak beam assuming an horizontal or vertical crossing angle
of 590 μrad. These distances are given as a function of the wire location with respect to the IP, reported in mm in (a) and normalized in
(b) by the size of the weak beam in the crossing plane (using the intermediate optics and layout version SLHCV3.1b of the HL-LHC [23]
with β�x;y ¼ 15 cm, and assuming a normalized emittance of γϵ ¼ 2.5 μm).
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~cLRpq ≡ X
k∈LR

βjpj=2x ðskÞβjqj=2y ðskÞ
djpjþjqj
bb ðskÞ

ei½pμxðskÞþqμyðskÞ�; ð21Þ

with similar definitions for the RDTs ~cw:L=Rpq induced by the
left and right wires. As described in Sec. II B, for horizontal
(resp. vertical) crossing, only the RDTs ~cLRpq with q even

(respectively p even) are excited. In this case it is also
relevant to distinguish between the coefficients ðp; qÞ and
ðp;−qÞ with p ≥ 0 and q ≥ 0. Finally for the LHC optics
antisymmetry, it is easy to see that when a coefficient ðp; qÞ
is excited in horizontal crossing, the modulus of the ðq; pÞ
coefficient is the same in vertical crossing. This being said,
even for β� as small as 15 cm, the betatron phase shift can

FIG. 7. Residual coefficients cLRpq þ cw:Lpq þ cw:Rpq after correction reported in percent of their value before correction [see Eqs. (14)
and (15)], given up to 10th order (pþ q ≤ 10, p ≥ 0, q ≥ 0), and shown as a function of the aspect ratio rw at the wire position. Three
possible correction algorithms are envisaged as described in the text.
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possibly reach up to 4 degrees between the LR beam-beam
interactions and a position at �200 m from the IP [see
Fig. 4(b)]. As a result and as shown in Fig. 8, while the
property of simultaneous minimization of all RDTs is well

preserved at the first optimal aspect ratio of rw ∼ 2 taking
place right after D1, some net degradations can be
observed, in particular for the high order driving terms,
at the second optimal aspect ratio of rw ∼ 0.5 (situated at

FIG. 8. Residual driving terms ~cLRpq þ ~cw:Lpq þ ~cw:Rpq after correction reported in percent of their value before correction [see Eq. (21)],
given up to the 10th order (pþ jqj ≤ 10, p ≥ 0), and shown as a function of the aspect ratio rw of the β functions at the wire position.
Three possible correction algorithms are envisaged as described in the text. The notation (p,q)-V [respectively (q,p)-H] stands for the
ðp; qÞ driving term excited in the presence of a vertical (respectively horizontal) crossing angle of 590 μrad. Despite β� is 15 cm in both
planes, the small but nonzero phase shifts between the wires and the LR encounters clearly impact on the quality of the correction at the
second optimal aspect ratio of rw ∼ 0.5.
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∼� 200 m from the IP). Nevertheless, this second optimal
position still remains interesting for the detuning terms,
even for the exact RDTs with respect to the situation which
would be obtained at rw ∼ 1, but also for integration in the
case of the (HL-)LHC.

III. ILLUSTRATIONS

This section describes several possible HL-LHC var-
iants, each of them presenting a series of advantages, but all
assuming the implementation of current bearing wires (or
e-lenses) for the compensation of the long-range beam-
beam interactions. The pros and cons of each variant will
only be briefly mentioned. We will rather analyze in great
detail the beneficial effects of the LR beam-beam compen-
sation, in terms of the tune footprint and/or frequency map
analysis (FMA) [26,27] calculated with the code LIFETRAC
[28], and/or long term (1,000,000 turns) dynamical aperture
(DA), i.e., the largest region of the transverse physical space
where a particle is stable after a given number of turns, as
calculated with the code SIXTRACK [29].
Table I summarizes the main parameters and key

quantities to assess the HL-LHC performance in each of
these configurations, together with the wire settings which
have been used in each case.
We will start with the HL-LHC baseline as the reference

case, in particular with a normalized crossing angle of

Θnorm
c ¼ 12.5σ (590 μrad) and an horizontal and vertical

(HV) alternated crossing angle in the two high luminosity
insertions of the ring, IR1 and IR5, respectively. In the
second case the only change is a reduction of the crossing
angle down to Θnorm

c ¼ 9.5σ (450 μrad). In this configu-
ration the performance of the machine is strictly preserved
but a 25% reduction of the nominal rf deflecting field in the
crab-cavities becomes possible. The line density of events
per bunch crossing (pile up) is also slightly improved, the
radiation dose deposited in the inner triplet is generally
mitigated at lower crossing angle, and the strength
requested for the IR correctors is obviously reduced for
crossing bumps of smaller magnitude. These form a series
of beneficial effects to be kept in mind when reducing the
crossing angle.
The third and fourth cases refer to possible variants of the

HL-LHC baseline with an HH or VV crossing scheme in
IR1 and IR5 (and the crab-cavity deflecting field re-
oriented accordingly). Here the concern is related to
collimation aspects of the machine section with respect
to the outgoing beam and/or to the lifetime of the inner
triplet quadrupoles. First of all, a vertical crossing angle in
both low-β insertions (VV scheme) would have the advan-
tage to simplify the design of several beam absorbers in the
matching section, which aims at protecting its magnets
from the debris coming from the IP, and neutral debris in

TABLE I. Baseline parameters of the HL-LHC (25 ns bunch spacing version [30]) and comparison with other possible variants and an
alternative with flat optics and no crab-cavities. The corresponding wire settings are indicated in each case (calculated for the
SLHCV3.1b optics and layout version of the HL-LHC). The Performance related quantities, such as virtual luminosity, leveling time, or
line pile-up density have been calculated following Ref. [31].

Parameters and Layout Baseline
Baseline with
smaller Θc

Baseline with
HH scheme

Baseline with
VV scheme

Alternative with
flat optics

Crab-cavity Yes Yes Yes Yes No
Crab-cavity voltage [MV] / beam /IP side 12 9 12 12 -
Crossing orientation in IR1=5 V=H V=H H=H V=V V=H
Optics type Round Round Round Round Flat
Energy [TeV] 7 7 7 7 7
Bunch spacing [ns] 25 25 25 25 25
Number of bunches colliding at IP1 and IP5 2736 2736 2736 2736 2736
Bunch charge [1011] 2.2 2.2 2.2 2.2 2.2
Bunch length [cm] 7.50 7.50 7.50 7.50 10.0
Normalized emittance [μm] 2.5 2.5 2.5 2.5 2.5
β�X=β

�
∥ [cm] 15=15 15=15 15=15 15=15 40=10

Full crossing angle [μrad] 590 450 590 590 300
Beam separation [σ] 12.5 9.5 12.5 12.5 10.4
Wire current [A] for 18 LR’s (Left and Right) 192 192 192 192 192
Wire position [mm] w.r.t. the beam (L and R) 7.6 5.8 7.6 7.6 3.9
β [m] at the wire in the crossing-plane (L=R or R=L) 1540=750 1540=750 1540=750 1540=750 575=280
Normalized wire position [σ](L/R or R/L) 10.6=15.2 8.1=11.6 10.6=15.2 10.6=15.2 8.8=12.6
Max. head-on beam-beam tune shift (3 IPs) 0.032 0.032 0.032 0.032 0.025
Virtual luminosity [1035 cm−2 s−1] 19.6 20.2 19.6 19.6 10.1
Pile up events per bunch crossing at 5 × 1034 cm−2 s−1 138 138 138 138 138
Peak line pile up density [mm−1] at 5 × 1034 cm−2 s−1 1.25 1.21 1.25 1.25 1.38
Leveling time [h] at 5 × 1034 cm−2 s−1 8.3 8.4 8.3 8.3 4.9
Integrated luminosity [fb−1] after 10 h 1.75 1.75 1.75 1.75 1.54
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particular. In the case of horizontal crossing, the trajectories
of the neutral debris are indeed relatively close to that of the
circulating beam at the level of the D2 recombination
dipole, which makes their collimation very challenging. On
another perspective, an horizontal crossing scheme in both
low-β insertions (HH scheme) would reduce the integrated
radiation dose taken by the inner triplet, and therefore
would increase its lifetime due to the fact that the first inner
triplet quadrupole Q1 is always focusing for the outgoing
beam in the case of both IR1 and IR5 in the LHC. On the
other hand, combining the VV scheme with a regular
change of the crossing angle polarity (which is not possible
in H crossing due to constraints imposed by the ring
geometry) would also substantially improve the lifetime
of the inner triplet [32], which certainly makes the VV
configuration very attractive for the (HL-)LHC.
Finally, an alternative HL-LHC will be analyzed, as a

backupplan in caseof unavailability of the crab-cavities. This
fifth and last case relies on flat optics with a strongly reduced
crossing angle in the plane of larger β� (Θnorm

c ¼ 300 μrad) in
order to preserve the machine performance.
For each of these cases, the correction algorithm will

target the compensation of the (4,0), (0,4), (8,2) and (2,8)
driving terms. Thewireswill be assumed to be installed at a β
function aspect ratio of rw ¼ 0.5 in between Q4 and Q5 (see
Fig. 2),whichmakes the integration certainly easier,with the
two beams already occupying two different beam pipes at
this location, and generally less severe space constraints in
this area. All the simulations have been based on the
intermediate version SLHCV3.1b of the HL-LHC optics
and layout [23], with in particular a maximum possible
number of 18 LR beam-beam interactions (for a bunch
spacing by 25 ns) on either side of the IP1 and IP5 until the
D1 separation dipole. All simulations have been performed
at maximum bunch intensity (Nb ¼ 2.2 × 1011 protons/
bunch) and minimum collision β�, with head-on collision
at zero or moderate Piwinsky angle in three experimental
insertions, i.e., taking into account the LHCb insertion in
IR8. Indeed, the LHCb experiment is supposed to run in the
HL-LHC era [33], although atmoderate luminosity (large β�
of a few meters) but still contributing to the head-on beam-
beam tune shift as any of the two high luminosity insertions.
Finally, the linear chromaticity was matched to 2 units with
the arc sextupoles, the Landau octupoles were switched off
in the arcs, and the field imperfections of the superconduct-
ing (HL-)LHC magnets were not taken into account
(although a reduction of the crossing angle would also be
beneficial in this respect).

A. HL-LHC baseline with nominal
or reduced crossing angle

1. Nominal bunches with maximal number
of LR beam-beam interactions

The baseline crossing angle has been chosen to 590 μrad
in the new high luminosity insertions of the HL-LHC, in

order to warrant a dynamic aperture (DA) of 6σ, even in the
extreme case of full beam current (2.2 × 1011=bunch) and
minimum β� (15 cm), corresponding to the full virtual
luminosity of ∼2 × 1035 cm−2 s−1. With the wires switched
on, the DA rises up to 8σ for the nominal bunches
undergoing the maximal number of LR interactions in
IR1 and IR5 (see later in Sec. III A 2 the discussion on
Pacman bunches). The wires therefore clearly open up the
possibility to further reduce the crossing angle, even down
to 450 μrad [see Fig. 9(b)], owing to the mitigation of some
LR beam-beam driven resonances in the horizontal plane
(see Figs. 10 and 11).

2. Pacman bunches

The nominal (HL-)LHC filling scheme is made of
several trains of 72 bunches spaced by 25 ns, each train
being spaced by a certain multiplier of 25 ns (gaps) which is
determined by the rise times of the various injection and
extraction kickers and by the circumference of the inter-
mediate machines (PS, SPS) along the LHC injector chain
(see e.g., [30]). In addition, an abort gap with a duration of
about 3 μs is left free of bunches in the filling pattern of the
LHC beam in order to accommodate for the rise time of the
LHC extraction kicker. As a result not all the bunches
experience the same number of LR beam-beam inter-
actions, in particular in the high luminosity insertions
IR1 and IR5, leading to the so-called “Pacman effect”
with different bunches showing slightly different LR beam-
beam induced closed orbit, tune shift, or tune spread. While
the number of LR beam-beam interactions is maximal for
the nominal bunches located well inside the trains, it is
reduced for the bunches at the head or in the tail of the
trains, with a number of interactions which is reduced on
the left and on the right, respectively, of the interaction
points. This effect is obviously the most pronounced for the
first bunch of the first train right after the abort gap. For
Beam1, this bunch indeed misses all the LR interactions on
the left side of IP1 and IP5, and conversely for the last
bunch of the last train before the abort gap (and conversely
for Beam2). These two extreme bunches will be called the
PacmanL and PacmanR bunches in the following. Due to
the HV alternated crossing configuration in IR1 and IR5,
and the symmetric positioning of these two insertions in the
LHC ring, the PacmanL and PacmanR bunches and, in
general, all the Pacman bunches which undergo a non-
maximal number of LR beam-beam interactions are how-
ever not shifted in betatron tune with respect to the nominal
bunches. Therefore, not only the contribution of the LR
interactions to the tune spread should be smaller for the
Pacman bunches, but also the dynamic aperture should be
larger for the particles belonging to these specific bunches.
In order to preserve this situation, an overcompensation of
the LR beam-beam interactions seen by the Pacman
bunches should a priori be avoided. This means that the
current in the wires (or e-lenses) should be modulated in
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FIG. 10. Nominal bunches and HL-LHC baseline configuration at nominal [top (a) and (c) with Θc ¼ 590 μrad] or reduced [bottom
(b) and (d) withΘc ¼ 450 μrad] crossing angle, corresponding to the first and second column of Table I: tune footprint for particles up to
6σ betatron amplitude in collision with LR compensation [right (c) and (d)] or without [left (a) and (b)].
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FIG. 9. Nominal bunches and HL-LHC baseline configuration at nominal [(a) with Θc ¼ 590 μrad] or reduced [(b) with
Θc ¼ 450 μrad] crossing angle, corresponding to the first and second column of Table I: 1,000,000 turns dynamic aperture in
collision, as a function of the phase space angle, with or without LR compensation, expressed in terms of beam sigma. Each particle is
tracked with an initial momentum offset of 2.7 × 10−4 corresponding to two thirds of the LHC rf bucket half-height at 7 TeV.
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proportion with the number of LR interactions seen by each
individual bunches (e.g., a reduction of current by a factor
of 2 for the extreme PacmanL and PacmanR bunches),
keeping constant the transverse position dw of the wires, as
calculated for the nominal bunches with maximal and a left/
right symmetric number of LR beam-beam interactions. On
the other hand, given the large difference in complexity
between a dc and a pulsed system, this condition will need
to be reassessed in detail depending on the machine
configuration which will be decided and achievable in
the end, but which also means that this option needs to stay
open. The latter is certainly less needed for the baseline HV
configuration at large crossing angle and nominal crab-
cavity voltage, but more and more at reduced crossing
angle (and deficient crab-cavity voltage), and is certainly
mandatory to avoid up to �5 × 10−3 bunch to bunch tune
shift in the case of the HH or VV crossing scheme that will
be discussed later on. Assuming the reduced crossing angle
of 450 μrad and pulsed wires, the dynamic aperture of the
PacmanL and PacmanR bunches is reported accordingly in
Fig. 12, before and after compensation with the wires (at
half of the current). As expected before correction, the DA

is already better for these Pacman bunches than for the
nominal bunches [compare Figs. 9(b) and 12(a)–(b)], but
the 6σ target is definitely met only after correction. A rapid
inspection of the tune footprints for the PacmanL and
PacmanR bunches confirms the benefit of the correction
(see Fig. 13).

B. HL-LHC variants with HH
or VV crossing scheme

As discussed in Sec. II B, the alternated HV crossing
scheme of the (HL-)LHC has the advantage to establish
the conditions for a self-compensation of the (4nþ 2)-pole
detuning terms induced by the LR beam-beam interactions
in IR1 and IR5, and in particular the tune shift, assuming
that the two low-β insertions are running with the same
round (β�x ≡ β�y) collision optics. Furthermore, this self-
compensation is not only granted for the nominal bunches
but also for the Pacman bunches, due to the fact that the
topology of the LR interactions is exactly the same in IR1
and IR5 for a given arbitrary bunch. As a result, the other
two possible crossing configurations, namely the HH and

FIG. 11. Nominal bunches and HL-LHC baseline configuration at nominal [top (a) and (c) with Θc ¼ 590 μrad] or reduced [bottom
(b) and (d) with Θc ¼ 450 μrad] crossing angle, corresponding to the first and second column of Table I: frequency diffusion maps for
on-momentum particles up to 8σ betatron amplitude in collision with [right (c) and (d)] or without [left (a) and (b)] LR compensation.
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FIG. 12. PacmanL (a) and PacmanR (b) bunches, HL-LHC baseline configuration at reduced crossing angle (Θc ¼ 450 μrad),
corresponding to the second column of Table I: 1,000,000 turns dynamic aperture in collision, as a function of the phase space angle,
with or without LR compensation, expressed in terms of beam sigma. Each particle is tracked with an initial momentum offset of
2.7 × 10−4 corresponding to two thirds of the LHC rf bucket half-height at 7 TeV.

FIG. 13. PacmanL [top (a) and (c)] and PacmanR [bottom (b) and (d)] bunches, HL-LHC baseline configuration at reduced crossing
angle (Θc ¼ 450 μrad), corresponding to the second column of Table I: tune footprint for particles up to 6σ betatron amplitude in
collision with [right (c) and (d)] or without [left (a) and (b)] LR compensation.
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VV scheme, generally require a substantially larger cross-
ing angle in order to mitigate the LR contribution to the b6-
like tune spread but also to the bunch to bunch tune
variations. In order to run these two schemes at constant (or
even further reduced) crossing angle, the LR compensation
needs to be activated, assuming as above that the wires
operate at a fixed distance with respect to the beam (as
calculated for the nominal bunches), but with a modulated
current taking into account the Pacman effect. The foot-
prints corresponding to the nominal, PacmanL, and
PacmanR bunches, before and after correction, are reported

in Figs. 14 and 15 for the HH and VV configurations,
respectively. Before correction, a tune shift of about
ΔQLR ≡ ΔQx;LR ¼ −ΔQy;LR ∼�0.01 along the antidiag-
onal is clearly visible for the nominal bunches, which is
positive in the HH configuration, and negative in the VV
configuration [see Figs. 14(b) and 15(b), respectively], in
particular pushing the particles toward the third order
resonance 3Qy ¼ 1 in the case of the VV configuration,
and placing the entire footprint below the diagonal in the
case of the HH scheme. This tune shift is reduced by a
factor of 2 for the PacmanL and PacmanR bunches, which,

FIG. 14. PacmanL [(a) and (d)], nominal [(b) and (e)] and PacmanR [(c) and (f)] bunches, HH crossing scheme at nominal crossing
angle (Θc ¼ 590 μrad), corresponding to the third column of Table I: tune footprint for particles up to 6σ betatron amplitude in collision
with [right (d), (e) and (f)] or without [left (a), (b) and (c)] LR compensation.
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for the HH configuration, places the footprint exactly onto
the Montague resonance 2Qx − 2Qy ¼ 0, [see Figs. 14(a)
and 14(c)], while improving the situation with respect to
the third order resonance in the VV configuration [see
Figs. 15(a) and 15(c)]. This variety of cases and subsequent
high complexity is then greatly simplified after correction
where the footprints are quasi-identical for Pacman and
nominal bunches and the distinction between the HH
and VV configurations becomes also rather difficult.

Furthermore, tracking studies not reported here in detail,
have shown a dynamic aperture larger than or equal to 8σ in
each of these cases after wire correction, therefore enabling
a reduction of the crossing angle below 590 μrad as it was
the case for the HV crossing configuration discussed in
Sec. III A. These results clearly open up the possibility of
an HH or VV crossing scheme for the HL-LHC, with all
the advantages that such a configuration may yield as
discussed above.

FIG. 15. PacmanL [(a) and (d)], nominal [(b) and (e)] and PacmanR [(c) and (f)] bunches, VV crossing scheme at nominal crossing
angle (Θc ¼ 590 μrad), corresponding to the fourth column of Table I: tune footprint for particles up to 6σ betatron amplitude in
collision with [right (d), (e) and (f)] or without [left (a), (b) and (c)] LR compensation.
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C. HL-LHC alternative with flat optics
and no crab-cavities

The last configuration we will discuss is an alternative to
the HL-LHC baseline. Without using crab-cavities, this
option is very competitive in terms of performance. The
configuration relies on flat optics with a substantially
smaller crossing angle in the plane of the largest β�
(Θc ¼ 300 μrad, which corresponds to about 10.5σ for
β� ¼ 40 cm in the crossing plane, see fifth column in
Table I). The crossing scheme is alternated similarly to the
baseline configuration, vertical in IR1 and horizontal in
IR5, with β�x=β�y ≡ 10=40 cm at IP1, and conversely at IP5.
On the other hand, despite this alternated crossing con-
figuration, the self-compensation of the (4nþ 2)-pole
detuning terms between the two low-β insertions is rather
limited for flat optics: the overall LR tune shift still
corresponds to 75% of the contribution of one single
insertion (assuming a β� aspect ratio of 4 and 1=4 in
IR1 and IR5 in the present case), and the detuning terms in
a given transverse plane (from b4, b6, and higher order
harmonics) are fully dominated by the contribution of the
insertion with the smallest β� in the plane considered,
without any possibility of compensation by the contribution

FIG. 16. Nominal bunches andHL-LHC alternativewith flat optics and small crossing angle (Θc ¼ 300 μrad), corresponding to the fifth
column of Table I: tune footprint for particles up to 6σ betatron amplitude [(a) and (c)], and frequency diffusion map for on-momentum
particles up to 8σ betatron amplitude [(b) and (d)], shown in collision with [(c) and (d)] or without [(a) and (b)] LR compensation.
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FIG. 17. Nominal bunches and HL-LHC alternative with flat
optics and small crossing angle (Θc ¼ 300 μrad), corresponding
to the fifth column of Table I: 1,000,000 turns dynamic aperture in
collision, as a function of the phase space angle, with or without
LR compensation, expressed in terms of beam sigma. Each particle
is tracked with an initial momentum offset of 2.7 × 10−4 corre-
sponding to two thirds of the LHC RF bucket half-height at 7 TeV.
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of the other IR. Running the machine under these con-
ditions clearly requires the implementation of a robust LR
compensation scheme. As shown in Fig. 16(a), the tune
footprint is indeed not only shifted along the diagonal
without wire correction (ΔQx;LR ¼ ΔQy;LR ∼ −0.015 for
nominal bunches at full intensity), but the LR beam-beam
induced tune spread makes it very fat and elongated in the
direction of the antidiagonal. The frequency map analysis
also clearly shows the excitation of strong resonances at
very low amplitude [see Fig. 16(b)] and the DA is even
below 2.5σ for some directions of the physical space
without wire correction [see Fig. 17]. Even under these
extreme conditions, however, a sound performance is
almost fully recovered after correction with a dynamic
aperture of about 5.5σ for the nominal bunches at full
intensity, an almost head-on like tune footprint can be
shaped [see Fig. 16(c)], and most if not all the resonance at
low betatron amplitudes have essentially disappeared [see
Fig. 16(d)].

IV. SUMMARY AND OUTLOOK

A generic algorithm has been devised for the compen-
sation of the long-range beam-beam interactions with the
use of current bearing wires (or e-lenses) carefully posi-
tioned in the layout, where the relevant optimization
parameter is the aspect ratio of the β functions at the wire
position. This analysis revealed in particular an optimal
area located in between the matching quadrupoles Q4 and
Q5 of the (HL-)LHC where the integration constraints for
new equipments are relatively relaxed.
Such a device opens up new possibilities for the

HL-LHC in terms of crossing scheme orientations in the
two new high-luminosity insertions (HV, HH, VV scheme),
in terms of crossing angle reduction, but also in terms of
possible HL-LHC overall concept without crab-cavities.
All these configurations have been studied in detail with
respect to single-particle dynamics related aspects, and
the beneficial impact of the correction has been clearly
established.
The list of intrinsic advantages or specific features of

each of these options has however only been briefly
discussed, but it remains extremely relevant. This list
indeed contains various aspects which are of very different
nature, going from the possibility of optimizing the
luminosity lifetime of the new inner triplets via careful
crossing angle gymnastics, to a novel HL-LHC concept
without crab-cavities but nearly preserved performance
(within 10%), both in terms of data quantity (integrated
luminosity) and data quality (line pile-up density). Such a
constellation of possibilities gives a very high score to long-
range beam-beam compensation devices for the LHC
luminosity upgrade, although detailed design and integra-
tion studies, and the interface of this device with various
accelerator systems, such as the collimation and machine
protection systems, remain to be done.
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