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A coaxial Ka-band backward wave oscillator with a two-dimensional Bragg structure located at the
output of the interaction space has been studied. This structure has a double-period corrugation and
provides azimuthal electromagnetic energy fluxes, which act on the synchronized radiation of an oversized
tubular electron beam. Proof-of-principle experiments were conducted based on the Saturn thermionic
accelerator (300 keV=200 A=2 μs). In accordance with simulations, narrow-band generation was obtained
at a frequency of 30 GHz and a power level of 1.5–2 MW. As a result, the possibility of using a two-
dimensional distributed feedback mechanism in oscillators of the Cherenkov type has been demonstrated.
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I. INTRODUCTION

By now, a radiation power of the gigawatt level was
achieved in the x-band oscillators based on high-current
relativistic electron beams (REBs), such as relativistic
backward wave oscillators (BWOs) and traveling wave
tubes (TWTs) of different types [1–8]. The operating
principle of these devices is based on the interaction of
a rectilinear electron beam with rf field, which is slowed
down by a metal structure with a periodic corrugation
(slow-wave structure), and they are usually called
Cherenkov devices or Smith-Purcell devices (see, e.g.,
[7]). The further increase in the radiated power of such
oscillators would require an increase in the transverse size
of the interaction space. Obviously, the use of oversized
microwave systems is also needed for advancement of
high-power Cherenkov devices into the millimeter and
submillimeter wavelength bands to reduce Ohmic losses, as
well as for transportation of intense REBs. One of the main
problems of this way is provision of transverse mode
selection in a strongly oversized system, which is necessary
for the spatial coherence of radiation.
To solve this problem in free-electron masers (FEMs)

driven by spatially extended REBs of sheet and tubular
geometry, the use of two-dimensional (2D) distributed
feedback was proposed [9,10]. Such a feedback can be
realized on the basis of planar and coaxial 2D Bragg
resonators having double-period corrugations. Experi-
mental studies of the FEMs exploiting a novel feedback
mechanism were performed in the W band (planar geom-
etry) at the Budker Institute of Nuclear Physics
(Novosibirsk, Russia) [11,12] and in the Ka band (coaxial

geometry) at the University of Strathclyde (Glasgow, UK)
[12–14] in collaboration with the Institute of Applied
Physics RAS and FZK (Karlsruhe, Germany).
Successful FEM experiments encourage the implemen-

tation of a 2D distributed feedback mechanism in high-
power relativistic oscillators of other types, including
Cherenkov devices [15–18]. FEMs are based on stimulated
emission of wiggling relativistic electrons and exploit the
Doppler frequency up-shift. As a result, such devices are
driven usually by relativistic beams having a fairly high
energy (0.5–1 MeV), which are generated by high voltage
and rather bulky accelerators. Cherenkov masers are
driven by rectilinear electron beams, which significantly
simplify the electron-optical system and make it possible to
employ more intensive REBs in comparison with FEMs.
Cherenkov devices are less sensitive to the initial spread of
beam parameters and can effectively operate in short mm
and sub-mm bands, being driven by moderately relativistic
(about 300 keV) electron beams. Thus, Cherenkov masers
can be more compact, which is important for potential
applications.
The present paper is devoted to theoretical and exper-

imental studies of a Cherenkov backward wave oscillator
driven by a large-size tubular REB. Coaxial geometry of
the oscillator makes it possible to increase the total beam
current and the output rf power while keeping the current
and radiation densities constant. The use of an external 2D
Bragg structure is proposed to realize 2D distributed
feedback and to provide the spatial coherence of radiation
in a strongly oversized microwave system [15].

II. OPERATION PRINCIPLES AND SIMULATIONS
OF A CHERENKOV BWO WITH EXTERNAL 2D

BRAGG SYNCHRONIZER

Schematic drawing of the coaxial BWO with an external
2D Bragg synchronizer is shown in Fig. 1(a). We assume
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that the coaxial waveguide has a small curvature of the
surface, i.e., that the mean radius r0 greatly exceeds the
distance between the conductors a0 and the radiation
wavelength λ:

r0 ≫ a0; r0 ≫ λ: ð1Þ

In this assumption, we can adopt a planar model [19,20]
and introduce the transverse coordinates y ¼ r and x ¼ r0φ
(r and φ are the radial and azimuthal coordinates, respec-
tively). We present the radiation field inside the waveguide
in the form of two partial quasi-optical wave beams

~E ¼ Ref~E0
AðyÞ½Aþðz; x; tÞe−ihzz þA−ðz; x; tÞeihzz�eiωtg

ð2Þ

of frequency ω and longitudinal wave numbers �hz
propagating in the forward (Aþ) and backward (A−)
directions with respect to the electron beam, where
A�ðx; z; tÞ are slow functions of the x and z coordinates

and time, and the function ~E0
AðyÞ describes the radial

distributions of the fundamental harmonic. Under condition
(1), this structure coincides with the TM polarized mode
of a planar waveguide and can be represented as

~E0
AðyÞ ¼ g20Ψ~z0 − ihz

∂Ψ
∂y ~y0;

whereΨðy; zÞ ¼ g−10 sinðg0yÞ, g0 ¼ nπ=a0 is the transverse
wave number of the fundamental harmonic, and the mode
index n is transverse over y (radial).
The electron beam focused by the guide magnetic field

moves in the þz direction with the axial velocity v∥ ¼ β∥c.
The interaction space is formed by a coaxial waveguide
where both the inner and outer conductors have an
antiphase azimuthally symmetric corrugation,

r ¼ rsw cosðhswzÞ: ð3Þ

Here, hsw ¼ 2π=dsw, where dsw is the period of the slow-
wave structure [section 3 in Fig. 1(a) with the corrugation
shown at the inner conductor]. Under the synchronism
condition

ω ≈ ðhsw − hzÞv∥ ð4Þ

(which can be considered as a counterpart of the Cherenkov
synchronism in a dielectric structure), the rectilinear
electron beam effectively interacts with the longitudinal
field of the (−1) spatial harmonic

Ez ¼ Re½A−ðz; x; tÞEð−1Þ
z ðyÞeiωtþiðhz−hswÞz�;

where

FIG. 1. (a) Scheme of the coaxial BWO with (1) external 2D Bragg synchronizer, (2) regular waveguide section, (3) slow-wave
structure, (4) cutoff narrowing, (5) tubular electron beam and (b) the diagram illustrating scattering of the partial waves by a 2D Bragg

structure (~̄h� ¼ h̄z~z0 � h̄x~x0 are the gratings vectors).
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Eð−1Þ
z ðyÞ ¼ rswðg20 þ hzhswÞfsh½g−1ðy − a0Þ�

þ shðg−1yÞg=2shðg−1a0Þ;

h−1 ¼ hz − hsw and g−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2−1 − k2

p
are the longitudinal

and transverse wave numbers of this harmonic, respec-
tively, and k ¼ ω=c. In the quasioptical approximation,
taking into account wave diffraction in the transverse
(azimuthal) direction, this interaction can be described
by the following equations:

iC
2

∂2A−
∂X2

þ
� ∂
∂τ −

∂
∂Z

�
A− ¼ 1

π

Z2π

0

e−iθdθ0; ð5aÞ

�
1

β∥

∂
∂τ þ

∂
∂Z

�
2

θ ¼ ReðA−eiθÞ ð5bÞ

with the initial conditions

A−jτ¼0 ¼ A0ðX; ZÞ; θjZ¼0 ¼ θ0 ∈ ½0; 2πÞ;�
1

β∥

∂
∂τ þ

∂
∂Z

�
θ

����
Z¼0

¼ Δ: ð6Þ

In Eqs. (5) and (6), we used the following normalized
variables and parameters: τ ¼ Cω̄t, X ¼ Ckx, Z ¼ Ckz,
A− ¼ μeA−=mcω̄γ20C

2, C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μeI0Π=mc2γ0

3
p

is the Pierce
parameter, I0 is the linear current density, μ ¼ 1=γ20β

3
0 is

the bunching parameter of electrons, γ is their relativistic
mass factor (the index “0” corresponds to the unperturbed
values at the entrance to the interaction space), Π ¼
8πjE−1

z ðybeamÞj2=a0ω̄hzðhz − hswÞ2 is the electron–wave
coupling coefficient (impedance), θ ¼ ω̄tþ ðhz − hswÞz
is the electron phase with respect to the synchronous
harmonic of the wave, and Δ ¼ ðω̄þ hzv∥ − hswv∥Þ=ω̄C
is the mismatch of synchronism at the carrier frequency. We
consider the Bragg frequency ω̄ [see Eq. (12) below] as
such a frequency, ω ¼ ω̄. We also note that in the electron
motion equation (5b) we assume small changes in the
electron energies. One more important remark is that
the azimuthal diffraction of the wave beam described by
the first term on the left-hand side of Eq. (5a) is an
important factor that provides partial synchronization of
radiation in the absence of the external 2D Bragg structure
for the limited Fresnel parameter F ¼ l2x=λlz ≤ 1.
The up-stream cutoff narrowing [section 4 in Fig. 1(a)]

reflects the backward propagating partial wave A− into the
forward wave Aþ:

AþjZ¼0 ¼ RA−ðX; τÞ; ð7Þ

which freely propagates in the þz direction without
interaction with the electrons over the interaction space.

In the normalization given above, the spatiotemporal
evolution of this wave can be described as

iC
2

∂2Aþ
∂X2

þ
� ∂
∂τ þ

∂
∂Z

�
Aþ ¼ 0: ð8Þ

The 2D Bragg structure [section 1 in Fig. 1(a)] in the
form of a coaxial waveguide section with double-period 2D
corrugation,

r ¼ r1
4
½cosðh̄zz − h̄xxÞ þ cosðh̄zzþ h̄xxÞ�; ð9Þ

is located on the collector side of the device (we assume
that only one conductor is corrugated). Here, r1 is the
corrugation depth, h̄z ¼ 2π=dz, where dz is the corrugation
period over the longitudinal z coordinate, and h̄x ¼ m̄=r0,
where m̄ is the number of corrugation turns over the
azimuth. Under the Bragg resonance condition

hx ¼ h̄x; hz ¼ h̄z ð10Þ

(hx ¼ M=r0, whereM is the azimuthal mode number), this
structure provides coupling and mutual scattering of the
four partial waves [Fig. 1(b)], namely, two axially propa-
gating waves (2) (i.e., the forward wave Aþ and the
backward wave A−) and two transversely propagating
waves B� of TE polarization (in the classification of
eigenwaves of a coaxial waveguide)

~E ¼ Ref~E0
BðyÞ½Bþðz; x; tÞe−ihxx þB−ðz; x; tÞeihxx�eiω̄tg:

ð11Þ

Here and above,

ω̄ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̄z2 þ g02

q
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̄2x þ g02

q
ð12Þ

is the frequency of exact Bragg resonance. The azimuthal
electromagnetic (e.m.) fluxes B�, which appear on the
corrugation of such a type and are finally scattered into the
backward waveA−, synchronize radiation from a large-size
tubular electron beam. The process of mutual scattering of
the four partial waves in the quasioptical approximation
(with the diffraction effects taken into account) is described
by the following system of equations (cf. [9,10]):

iC
2

∂2A�
∂X2

þ
� ∂
∂τ �

∂
∂Z

�
A� þ iα

�
Bþ þ B−

�
¼ 0;

iC
2

∂2B�
∂Z2

þ
� ∂
∂τ �

∂
∂X

�
B� þ iα

�
Aþ þ A−

�
¼ 0; ð13Þ

where, as in Eqs. (5) and (6), normalizations are employed.
The wave coupling coefficient for the partial waves of
TM (A�) and ТЕ (B�) types (such a feedback loop is
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used in the experimental realization of the BWO described
below) is given by

α ≈
r1

ffiffiffiffiffiffiffiffiffi
hxhz

p
4a0kC

: ð14Þ

The slow wave structure and a 2D Bragg synchronizer are
separated by a regular waveguide section of length L0,
where the partial waves do not interact with the elec-
tron beam.
Due to the coaxial geometry of the cavity, the partial

waves should satisfy the cyclic boundary conditions

A�ðX þ Lx;Z; τÞ ¼ A�ðX;Z; τÞ;
B�ðX þ Lx;Z; τÞ ¼ B�ðX;Z; τÞ; ð15Þ

where Lx ¼ 2πkr0C is the normalized mean resonator
perimeter. Conditions (15) allow the solution of
Eqs. (5), (8), and (13) to be represented as a Fourier series:

A�ðX;Z; τÞ ¼
X∞

m¼−∞
Am
�ðZ; τÞeismX;

B�ðX;Z; τÞ ¼
X∞

m¼−∞
Bm
�ðZ; τÞeismX; ð16Þ

where s ¼ 2π=Lx. Each Fourier term in Eq. (16) can be
considered as an azimuthal mode. In this case, the azimu-
thal mode index for the wavesA� ism, while for the waves
B� it can be introduced as M �m.
Under the assumption that partial waves do not reflect

from the ends of the corrugated surface and e.m. fluxes
from the outside of the resonator are absent, the boundary
conditions for Eq. (13) take the form

A−jZ¼Lz
¼ 0; ð17aÞ

Bm
� −

ffiffiffiffiffiffiffiffi
C
2π i

r Zτ

0

e∓ismðτ−τ0Þffiffiffiffiffiffiffiffiffiffiffi
τ − τ0

p ∂Bm
�

∂Z dτ0 ¼ 0

����
Z¼LswþL0

Z¼Lz

; ð17bÞ

where Lz ¼ Lsw þ L0 þ LBr is the total normalized length
of the system [see Fig. 1(a)]. Note that boundary conditions
(17b) for the transversely propagating wavesB� are similar
to the nonreflected boundary conditions which are widely
used in gyrotron theory for quasicutoff modes. The
procedure of deriving such conditions is described in detail
in [21].
The simulations we carried out are aimed at studying the

evolution of different operating regimes in the coaxial
BWO when the transverse size of the interaction space is
increased. The simulation parameters were close to the
experimental realization described in Sec. III below. In the
regime of “free oscillations” (BWO without the 2D Bragg
structure), a single-mode operating regime is established
in a cavity of moderate perimeter lx=λ ≈ 3–5 (Fig. 2).
However, the operating azimuthal mode in the stationary
regime can be different and depends on initial conditions.
An increase in the cavity perimeter up to lx=λ ≥ 10 − 6
leads to multifrequency oscillations with the simultaneous
excitation of different azimuthal modes m ¼ 0;�1;�2…
(Fig. 3, left column). Installation of an external 2D Bragg
synchronizer into the cavity having such an oversize
parameter results in onset of single-frequency oscillations
at the azimuthally symmetric mode (Fig. 3, right column).
It should be noted that the planar model exploited in

the simulations is valid for a strongly oversized system.
Nevertheless, the 3D simulations based on the commercial
code CST STUDIO SUITE (which were carried out for the
perimeters lx=λ ≤ 10) demonstrated a similar scenario of
the evolution of operating regimes in a coaxial BWO when
the transverse size was increased.
For the BWO with an external 2D Bragg synchronizer,

the dependence of the oscillation frequency on the electron

FIG. 2. Simulations of the “freely-oscillating” Ka-band coaxial BWO (without the 2D Bragg synchronizer) of moderate transverse
size lx=λ ∼ 4 and beam current Ibeam ¼ 50 A. (a) Establishment of the stationary oscillation regime at different azimuthal harmonics
(which depends on the initial conditions): azimuthally symmetrical mode m ¼ 0 (black dotted line) and nonsymmetrical mode m ¼ 1
(gray solid line). (b) The corresponding radiation spectrum.
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energy involves several regions (Fig. 4). Oscillation fre-
quency in these regions belongs to the frequency of
different longitudinal modes located inside the Bragg
scattering zone of the 2D structure. Frequency shift
between these regions of “stabilization frequency” is about
150 MHz.
Figure 5 shows the zone on the plane (Lx; Lsw), where

the single-mode oscillation regime is established for the
BWO (a) without and (b) with a 2D Bragg synchronizer.
Obviously, the width of such a zone significantly increases
when a 2D Bragg synchronizer is installed. Nevertheless,
the enhancement of the beam current over the optimal value

leads to the realization of multifrequency regimes which are
characterized by the simultaneous excitation of different
azimuthal and longitudinal modes (Fig. 6).
It should be noted that the microsecond beam pulse

generated by the Saturn accelerator has a slight drift of the
mean electron energy. Simulations of the BWO with a 2D
Bragg synchronizer demonstrate that such a variation in the
beam energy results in broadening of the radiation spec-
trum [Fig. 7(a)]. Namely, the oscillation frequency shifted,
following the beam-energy variations in accordance with
Cherenkov synchronism condition (3). In the case of
multifrequency oscillations, the broadening of each azimu-
thal harmonic excited by the beam takes place [Fig. 7(b)].

III. EXPERIMENTAL SETUP AND RESULTS
OF THE EXPERIMENTS

Experimental study of the Ka-band coaxial BWO was
carried out based on the Saturn microsecond accelerator
(IAP RAS). A tubular electron beam was formed from a
thermionic cathode with a mean diameter of 5 and 0.2 cm
thick (oversize parameter lx=λ ≈ 16). The main advantage
of the electron beam generated from a thermionic cathode
(in comparison with the explosive-emitted beams, which
were used in the previous FEM experiments [11–14]), is
stability, a more homogeneous distribution of the current
over the beam cross section, and that the microsecond
pulse duration significantly exceeds the transient time of

FIG. 3. Simulations of the Ka-band coaxial BWO of large transverse size lx=λ ∼ 16 with (right column) and without (left column) the
2D Bragg synchronizer: time dependence of the amplitudes of different azimuthal harmonics (top) and radiation spectrum in stationary
oscillation regime (bottom) for a moderate beam current Ibeam ¼ 50 A.

FIG. 4. Dependence of the oscillation frequency on the axial
velocity of electrons v∥=c in the coaxial BWO with a 2D Bragg
synchronizer (simulations).
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oscillations. The electron energies were varied from 200 to
300 keV and the beam current from, 30 to 200 A.
The microwave system with an inner diameter of 4.6 cm

and an outer diameter of 5.5 cm (r0 ≈ 2.5 cm and

a0 ≈ 0.9 cm) was made of oxygen-free copper with
high-temperature annealing and exhaustion (Fig. 8), which
allows operation with the maximum electric field on the
surface, equal to about 250–300 kV=cm. The slow-wave

FIG. 5. The zone of establishment of the single-mode oscillation regime in the coaxial BWO (a) without and (b) with a 2D Bragg
synchronizer.

FIG. 6. The results of simulations of the coaxial BWO with a 2D Bragg synchronizer for a high beam current Ibeam ¼ 100 A.

FIG. 7. The results of simulation of the radiation spectrum in the stationary oscillation regime for the coaxial BWO having a small drift
of the electron energy on time: (а) with and (b) without a 2D Bragg synchronizer.
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structure (section 3 in Fig. 8) was made on the inner
conductor with a period of 5.2 mm and a depth of 1 mm, the
length of corrugation was 20 cm. This slow-wave structure
provides interaction of the beam with the TM0;1 wave of a
coaxial waveguide. To increase the electron-wave coupling
coefficient (impedance), the antiphase corrugation of the
same period and depth was also made on the outer
conductor at a length of 10 cm. The operating TM0;1 wave
was reflected from the cathode side of the structure by the
cutoff narrowing.
The 2D Bragg structure (section 1 in Fig. 8) 20 cm long

was located on the collector side of the interaction space
and separated by a regular waveguide section 2 cm long

(section 2 in Fig. 8) from the output of the slow-wave
structure. The 2D corrugation was machined on the surface
of the inner conductor with a period of 2.2 cm, a depth of
0.4 mm, and 16 azimuthal variations (turns). This corru-
gation provides a feedback loop for two counterpropagat-
ing waves of the TM0;1 type (A� waves) and two
azimuthally propagating waves of the TE16;0 type having
opposite rotations (B� waves). Note that simulations of the
cavity were conducted within the framework of the average
approach described above, as well as using 3D code CST
Microwave Studio. Good agreement between the results
confirmed the validity of this model.
The microwave parameters of a 2D Bragg structure were

examined using a scalar network analyzer. For excitation of
the Bragg structures, a wave beam in the form of a TM0;1
wave of a coaxial waveguide was formed at the structure
input using an additional transmission line which included
four mode converters. These convertors provided the
required mode transformation in the operating frequency
band: from the launched TE0;1 wave of a single-mode
rectangular waveguide to the TE1;1 wave of a circular
waveguide (slowly tapered converter No. 1), then to the
TM0;1 wave of a circular waveguide (nonadiabatic con-
verter No. 2) and to the TEM wave of a coaxial waveguide
(optimized cylindrical insert, converter No. 3), and finally
to the TM0;1 wave of a coaxial waveguide (Bragg converter
No. 4). An additional coaxial slowly up-tapered waveguide
horn ∼ 1m long was used to connect from the converters
to the oversized coaxial cavity. In accordance with the 3D
simulation, the reflection zone for the operating wave in the
vicinity of 30.2 GHz with a width of ∼0.7–0.8 GHz and a
power reflection coefficient of about 60%–70% was
measured in the “cold” tests (Fig. 9).

(3)

(2)

(1)

(a) (b)

(4)

FIG. 8. A photograph of the microwave system of a coaxial
Ka-band BWO: (a) inner and (b) outer conductors: (1) 2D Bragg
structure, (2) regular waveguide section, (3) slow-wave structure,
and (4) output horn.

FIG. 9. The results of (a) 3D simulations and (b) “cold” tests of
the reflection coefficient of a 2D Bragg structure in the frequency
band 29–32 GHz.
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The results of experimental studies of the coaxial BWO
with a 2D Bragg synchronizer are presented in Fig. 10 and
coincide well with the theoretical analysis described above.
The starting current of oscillation was estimated at the level
25–30 A. Stable narrow-band oscillation was observed with
a beam current of up to 70–80 A. In such regimes, output
pulses of microsecond duration and a spectrum width of
∼5–10 MHz were registered [Fig. 10(a)]. In accordance
with the simulations described above, some broadening of
the radiation spectrum is caused by a small drift of the beam
energy. In the designed region of parameters, the oscillation
frequency belongs to the reflection zone of a 2D Bragg
structure near 30.2 GHz. We note that several zones of
stabilization frequency, each shifted by about 140–
150 MHz, were observed. Following the simulations given
in Fig. 4, this corresponds to the excitation of different
longitudinal modes of a 2D Bragg structure. Calorimetric
measurement indicates the maximum radiation power at the
level 1.5–2 MW in the single-mode regime of oscillation,
which corresponds to an electron efficiency of 5%–10%.
Multifrequency oscillation regimes appear when the beam
current exceeds 90 A and are characterized by a drop of the
output power [Fig. 10(b)].

IV. CONCLUSIONS

Theoretical and experimental studies of a high-power
oversized Ka-band BWO of coaxial geometry were carried
out. In accordance with simulations, the use of a 2D Bragg
synchronizer permits the realization of stable single-mode
operation of the oscillator in a wide variation range of the
beam current. The oversize factor (perimeter-to-wavelength
ratio) amounts to 15–20. As a result, a high potential of the
2D distributed feedback mechanism in the Cherenkov
masers driven by spatially extended REBs has been
demonstrated.
For the proof-of-principle experiments described here,

we chose the scheme of a coaxial BWO where the slow-
wave structure and the 2D Bragg synchronizer were
separated. These experiments were performed based on
Saturn, a microsecond accelerator with a thermionic-
injection gun. As a result, the electron beam current and
the output power were less than in the previous FEM
experiments with 2D distributed feedback, in which explo-
sive-emission accelerators were used [11–14]. The advan-
tage of the oscillators based on thermionic REBs is the high
stability of a long-pulse (microsecond) oscillation regime.

FIG. 10. Typical oscilloscope traces of diode voltage Ub, rf-pulse Pout and heterodyne signal Pint (left column) and the corresponding
frequency spectrum Sp (right column) in Ka-band coaxial BWO with a 2D Bragg synchronizer driven by the Saturn accelerator:
(a) narrow-band oscillation regime with the beam parameters 260 keV=50 A; (b) multifrequency oscillation regime with the excitation
of different azimuthal and longitudinal modes with the beam parameters 200 keV=90 A.
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The further increase in the oversize parameter of
Cherenkov masers and, thus, radiated power could be
achieved by removing the inner conductor and utilizing
a hollow cylindrical waveguide with double-period corru-
gation [17,18]. In this scheme, the 2D Bragg structure
would be exploited as a slow-wave structure and a high-Q
resonator simultaneously. Both schemes have some advan-
tages and disadvantages. Obviously, a single unit scheme is
simple for realization from the technological point of view
(easy for manufacturing). At the same time, the considered
schemewith an external synchronizer ismore universal since
theCherenkovBWOcanbe replaced, for example, by agyro-
BWO or a gyro-TWT. Note that the experiments on
realization of a single unit scheme of Cherenkov maser in
the Ka band is currently in progress at StrathclydeUniversity
(Glasgow) with the oversize factor 2πr0=λ ≈ 6 − 7 [22].
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