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The paper is devoted to the study of volume reflection and volume capture of high energy particles
moving in planar fields of bent single crystals. The influence of volume capture on the process of volume
reflection was considered analytically. Relations describing various distributions of particles involved in
the process, the probability of volume capture and the behavior of channeling and dechanneling fractions of
a beam were obtained. Results of the study will be useful in the realization of multicrystal devices for
collimation and extraction of beams on modern and future accelerators.
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I. INTRODUCTION

Volume reflection of charged particles in single crystals
represents the coherent scattering of these particles by
planar or axial electric fields of bent crystallographic
structures. For the first time, this effect was predicted in
Ref. [1] on the basis of Monte Carlo calculations. Recently
in Ref. [2] an analytical description of volume reflection of
ultrarelativistic particles was considered. After this, other
models of the process were published [3–6]. Besides, this
process was observed and investigated in a number of
experiments [7–9].
Results of the study of volume reflection are of interest to

a series of important applications for accelerator technics
(such as beam collimation, extraction and others). For the
working out of these applications it is assumed the use of a
volume reflection process repeated many times (in special
crystal structures). One can expect that, due to the high
efficiency of the process, the total efficiency of crystal
devices will be also high enough.
The main process which influences the efficiency of

volume reflection is volume capture [10,11]: when moving
in bent single crystals, particles may (due to multiple
scattering on atoms) be captured in a channeling regime.
The analytical description of volume reflection (see [2]) gives
good predictions for many characteristics of the process, but
volume capture was not considered in this theory.
This paper is devoted to the complete analytical con-

sideration of volume reflection, including the influence of
volume capture on the process. Main results of Ref. [2]
remain valid but their updating is required. No doubt that

Monte Carlo simulations give detailed information about
the process at some specific initial conditions. However, an
analytical description allows one to make the observation
of the problem as a whole.
The calculations performed in accordance with relations

of Ref. [2] show that the accuracy of the analytical
calculations of parameters such as the mean and mean
square angles at volume reflection is in the same agreement
with the experiment as the results of Monte Carlo simu-
lations [12,13].
Besides, in Ref. [2] it is shown how to use generalized

parameters for the description of the process. Because of
this, one can obtain a set of results from one calculated
result. It is important for the emulation of the process, when
the experimental results are known at some conditions (for
example, for one energy of the beam) and these results
should be used at different conditions (e.g., for another
energy).
The main electrodynamic processes (such as the brems-

strahlung of electrons and positrons or the photoproduction
of e�-pairs) in bent single crystals have peculiarities and
were considered in particular, in the paper [14]
The paper is organized as follows. First, we give the

mathematical description of the unperturbed characteristics
of the volume reflection process and make a comparison
with measurements. After that we describe our method for
the study of diffusion processes in bent single crystals.
Then, based on this method, we find the probability of
volume capture and energy distribution underbarrier par-
ticles. After that we investigate the behavior of the
channeling fraction at its propagation in a single crystal.
As a result we get the analytical relations for distribution
functions of particles.
In the last part of the paper we illustrate the obtained

relations by numerical calculations and then we discuss and
summarize the results presented in the paper.
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II. UNPERTURBED CHARACTERISTICS OF
VOLUME REFLECTION

A. Main relations for the volume
reflection description

Volume reflection of charged particles in single crystals
represents the coherent scattering of these particles by
planar or axial fields of bent crystallographic structures.
Here we will consider only the planar case.
Our analytical description of the volume reflection is

based on well-known equations for the particle motion in
bent planar fields of single crystals. In particular the
following equation is valid for such a motion:

E0β
2v2x=ð2c2Þ þ UðxÞ þ E0β

2x=R ¼ E; ð1Þ

where E0; E, and β are the total and transverse energies of
the particle and its velocity divided by the velocity of light
c, UðxÞ is the periodic planar potential in the straight single
crystal as a function of the coordinate, R is the radius of
bending, x is the transverse coordinate.
Really Eq. (1) describes the one-dimensional particle

motion in the effective potential UeðxÞ¼UðxÞþE0β
2x=R.

Figure 1 illustrates the particle motion in this potential.
One can see that the particle moving in the direction of
increasing of the effective potential undergoes reflection.
The trajectory 2 illustrates the volume capture process.
On the first step of our approach an unperturbed (by

multiple scattering on atoms) motion of charged particles is
considered. On the second step we introduce multiple
scattering and get the complete characteristics of the
process.
In accordance with [2] the angle of volume reflection is

equal to:

αðEÞ ¼ 2c
R

Z
xc

x0

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2

E0β
2 ½E −UðxÞ − E0β

2x=R�
q

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2

E0β
2 ½E −UðxcÞ − E0β

2x=R�
q #

dx; ð2Þ

where the critical point xc is the solution of the equation
E − UðxcÞ − E0β

2xc=R ¼ 0; x0 is the initial coordinate of a
particle and satisfies the equation E0β

2θ2=2þ Uðx0Þ þ
E0β

2x0=R ¼ E (θ is the entrance angle in a single crystal).
Equation (2) is written for the symmetric case of particle
passage through a single crystal. In this case jx0 − xcj≈
jxe − x0j ≈ l20=ð8RÞ, where l0 is the thickness of a single
crystal and xe is the exit coordinate (in the common case
one integral 2

R
xc
x0

in Eq. (2) should be changed on sumR
xc
x0
þ R

xe
xc
). Equation (2) was obtained under the assumption

that multiple scattering is turned off but it is valid also for
the case when multiple scattering takes place (see below).
One can see that Eq. (2) describes the volume reflection

angle as a function of the parameter E. It is easy to

understand [due to the periodicity ofUðxÞ] that the function
αðEÞ is a periodic function with the period δE ¼ E0β

2d=R.
One can find the following expression for the distribution
function of scattered particles over the volume reflection
angle �

dN
dα

ðαÞ
�

¼ 1

δE

X
j

���� dαdE
����
−1

ð3Þ

where the sum over j means that the sum should be taken
over every domain of the function single-valuedness and
the derivative dα=dE should be calculated for values Ej
which satisfy the equation αðEjÞ ¼ α̂ in which α̂ is the
current value of the volume reflection angle.
In Ref. [2] it is shown that the mean and mean square

angles of volume reflection can be found from the equations

hαvri ¼
1

δE

Z
EþδE

E
αðEÞdE; ð4Þ

σ2vr ¼
1

δE

Z
EþδE

E
ðαðEÞ − hαiÞ2dE ð5Þ

FIG. 1. Scheme of volume reflection and volume capture
processes: (a) the effective potential of bent crystallographic
planes, x is the transverse coordinate. EM and Em are the
transverse energies corresponding to neighboring local maxima
of the potential; Ech is one of the transverse energies correspond-
ing to a local minimum of potential; x1; x2; x3 are the transverse
coordinates of the local maxima; the curves 1,2,3 reflect the
different possibilities for moving particles. xc is the critical
coordinate for volume reflected particles; (b) geometric relations
of the process. For additional information, see the text.
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Here we used the result obtained in the paper [2]:
hdNdE ðEÞi ¼ 1=δE, where N is the number of charged
particles (normalized on unit) per period of the transverse
energy. Equations (2)–(5) were written for the unperturbed
(by multiple scattering) case. The exit distribution of
particles (from a single crystal) which takes into account
multiple scattering reads

�
dN
dα

ðαÞ
�

exit
¼

Z
∞

−∞
ρmsðφ; σmsÞ

�
dN
dα

ðα − φÞ
�
dφ; ð6Þ

where ρmsðφ; σmsÞ is the normal distribution describing
multiple scattering and the mean square angle σms corre-
sponds to the thickness of a crystal. It is easy to generalize
Eq. (6) for the case of a beam with a valuable angle
divergence [with the distribution ρbðαÞÞ].
For the mean angle of volume reflection of the resulting

distribution ρRðαÞ we get

hαRi ¼ hαbi þ hαmsi þ hαvri; ð7Þ

where hαRi; hαbi; hαmsi, and hαvri are the mean values of
ρR; ρb; ρms, and hdNdα ðαÞi distributions, correspondingly.
They are calculated in the coordinate system where the
zero angle coincides with the entrance angle θ. Note that
hαmsi ¼ 0 for a normal distribution. For the dispersion of
the resulting distribution we get the relation:

σ2R ¼ σ2b þ σ2ms þ σ2vr; ð8Þ

where σ2 ¼ R
∞
−∞ðα − hαiÞ2ρðαÞdα.

The characteristics (hαvri and σvr) obtained here can be
considered as unperturbed ones. In our case it means that
we do not consider such a process as volume capture when
moving particles lose their transverse energy and are
captured in the channeling regime. Below we consider in
detail the volume capture and its influence on volume
reflection.

B. Comparison of the theory with experimental data

In late years the study of the volume reflection process
was performed both experimentally and theoretically. We
think that it is useful to compare the theoretical consid-
eration presented above with measurements. Most of the
measurements were carried out with the (110) and (111)
planes of the silicon single crystals. In these experiments
such important characteristics as the mean angle of the
volume reflection and its mean square were obtained. The
method of finding these characteristics from results of
measurements was described in [15]. It is easy to see that
long tails of experimental distributions were ignored in the
analysis. It means that the obtained quantities of the above
pointed characteristics correspond to their unperturbed
values. As it follows from Eq. (2) the mean volume
reflection angle is a function of the bending radius and

there is only one experiment which measured this function.
Other experiments gave one or two measurements of
characteristics. However, we include these results for the
mean angle of volume reflection in our analysis, but we
cannot do this for the mean square angle due to the absence
of such data in measurements. However, the paper [12]
demonstrates a good enough agreement in between for
theoretical and measured values of the mean square angle.
Figure 2(a) and Table I show the results of measurements

of the mean angle of volume reflection for the (110) silicon
plane, which were obtained in different experiments and for
different conditions such as the energy of the beam, the
bending radius of the crystal and others. In the paper [2] it
was predicted that the value Ξ ¼ hαi=θc is a function of the
variable R=R0 where θc is the critical angle of channeling
and R0 ¼ β2E0d=U0 is some characteristic radius of the
process. Some theoretical curves for Ξ are also presented
here. The curves 1,2,3 are calculated in agreement with
Eq. (2) for the (110) plane at the following conditions: the
curve 1 is calculated for a thick enough silicon crystal when
the integral in Eq. (2) is practically equal to its asymptotic
value. The curve 2 is calculated for a tungsten thick crystal.
One can expect that all crystals placed in the periodical
table between silicon and tungsten are located between
curves 1 and 2. The curve 3 is a calculation for 2 mm of
length of the silicon crystal which was taken from Ref. [12].
The curve 4 is a simple approximation of the equation for
volume reflection which was studied in Ref. [4]. This
approximation as a function of the R=R0-variable may be
represented as

hαiðR=R0Þ
θc

¼ π

2

�
1 − 2

Rc

R0

R0

R

�
ð9Þ

where Rc ¼ E0=Emax is the critical radius and Emax is the
maximal value of the electric planar field [60.0 eV per
angstrom for a (110) silicon plane]. We see that the curve 3
is in a good agreement with the experimental data. The
curve 1 practically coincides with the curve 2 at small
values (≤ 2) of the parameter R=R0. The approximated
curve 4 practically coincides with the curve 1. In the whole
the curves 1 and 4 give a worse description of experimental
data than the curve 3. Nevertheless, the curves 1 and 4
demonstrate a satisfactory enough agreement with mea-
surements. Equation (9) (which corresponds to curve 4) is
interesting due to its simplicity. This equation was obtained
under the assumption that R ≫ Rc (see [4]) and it shows
that for thick enough crystals (and at R ≫ Rc) the ratio
α=θc is a simple function of R=R0.
As it follows from Table I the measurement and the

calculation at 13 GeV differ by a sizeable quantity of about
10 μrad, for an estimate of the error of the experiment
approximately equal to �4.7 μrad [17]. Besides, in this
case the parameter r0 ≈ 24 and as it follows from Ref. [17]
the scattered beam is the sum of two parts: the volume
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reflected particles and volume captured one. Thus, the
influence of volume capture may be strong enough and
distort the comparison.
It should be noted that all our calculations for silicon were

made with the use of the atomic potential obtained from x-
ray experiments [20,21]. The mean volume reflection angle
calculated by Eq. (2) with the assumption of the Moliere
potential yield for it a larger absolute value, in comparison
with results presented here. So, for example, the calculations
based onMoliere model for silicon and for 400 GeV protons
exceed by ≈0.75 μrad the analogous calculations with the
help of the potential from X-ray measurements. This differ-
ence may be fixed experimentally. For elements with atomic
numbers larger than the silicon atomic number the usage of
Moliere potential is reasonable. It should be noted that
several experimental points in Fig. 2 have very small error
bars. This is due to the fact that we cannot find the systematic
errors for these points.

In Table II and in Fig. 2(b) the results of calculations and
measurements for volume reflection angle in the (111)
silicon plane are presented. It is easy to see that there is a
good enough agreement in these results. In our opinion the
large difference for the angle at R ¼ 10.72 m is connected
with reasons such as the lack of perfection in the crystal and
the like.
It should be noted that we present in Tables I and II and

in Fig. 2 the new results which were recently obtained in the
special experiment [16]. Most of these data show a very
good agreement with theoretical calculations.
Recently, the experimental study of coherent processes

in germanium single crystal were performed [23,24]. In
Table III we carried out the comparison of experimental
and calculated values of the planar mean angle of volume
reflection for two strong planes in germanium at beam
energy equal to 400 GeV. We have performed calculations
for two different atomic potentials. The first one is the

FIG. 2. Comparison between experimental and calculated mean angles of the volume reflection in the (110) (a) and (111) (b) planes of
the bent silicon crystal. The red points correspond to recent measurements in Ref. [16]. For additional information, see the text.
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Moliere potential [20,21] and the second one is taken from
quantum mechanical calculations of the electron density
based on the Hartree-Fock method [25].
For calculations we take the Debye temperature for the

germanium crystal equal to ≈360 °K [26]. This temperature

corresponds to mean square thermal atomic vibrations
equal to 0.068 angstrom. From Table III we see a relatively
good agreement between experimental values of the mean
volume reflection angle and those calculated on the base of
the Hartree-Fock approximation. In the case of the Moliere
potential the difference between predicted and measured
quantities is sizeable enough. The details of calculations of
the volume reflection process for germanium will be
presented elsewhere. For the Moliere potential we have
U0 ¼ 41.02; 41.96 eV and for the Hartree-Fock approxi-
mation U0 ¼ 34.82; 33.75 eV for (110) and (111) planes,
correspondingly.
In Table IV the comparison of the measurements of the

mean volume reflection angle for negative particles with
calculations is presented. We see a good enough agreement.
However it is desirable to obtain more experimental data for
the comparison.
One can find the computer program for calculations

at [27].

III. VOLUME CAPTURE

Below we will demonstrate that for not so large values
of bending radii the probability of volume capture is
determined mainly by the motion (or behavior) of the
particle on a relatively short distance (of the order of the
interplanar distance in the transverse direction). Due to
multiple scattering on atoms (at some conditions) the
moving particle can lose transverse energy and make a
transition from overbarrier motion into underbarrier motion
(volume capture). Before studying the process of volume
capture we propose a universal enough method for con-
sideration of stochastic processes of a particle moving in
crystals on short distances.

A. One-trajectory approximation of a
diffusion process

Obviously, Eq. (1) reflects the conservation of the
transverse energy. The introduction of multiple scattering
violates this condition. Let us suppose that moving in the
bent crystal one separate particle is scattered on the angle
Δθ (by multiple scattering process). Then substituting this
angle in Eq. (1) we get

TABLE I. Experimental data for mean volume reflection angle
for (110) plane in bent silicon crystals. Here hαic and hαi are the
calculated and measured values of the volume reflection angle.

E0,
GeV l0; mm R;m hαic; μrad hαi; μrad r0 Ξ Ref.

400 2 2.41 6.63 5.43 0.671 0.525 [12]
400 2 3.75 9.64 8.68 1.044 0.840 [12]
400 2 4.47 10.68 9.89 1.244 0.957 [12]
400 2 8.64 13.20 12.48 2.422 1.207 [12]
400 2 20.85 14.29 13.90 5.804 1.344 [12]
400 2 35.96 14.03 14.08 10.107 1.362 [12]
400 1.94 10.65 13.65 13.13 2.965 1.286 [17]
400 3 18.52 14.54 13.91 5.156 1.345 [15]
400 4 11.43 14.03 13.35 3.182 1.291 [18]
120 1.94 10.72 26.99 26.9 6.10 1.425 [17]
13 0.77 2.81 78.57 69.4 24.07 1.21 [19]
400 1.89 8.95 13.30 13.10 2.491 1.267 [16]
400 2.0 13.91 14.05 14.03 3.872 1.357 [16]
400 2.0 13.93 14.06 14.15 3.877 1.369 [16]
400 0.8 3.24 8.70 9.14 0.903 0.884 [16]
400 2.0 14.33 14.09 13.57 3.989 1.313 [16]
400 3.0 87.2 13.33 14.41 24.3 1.394 [16]

TABLE II. Experimental data for the mean volume reflection
angle for (111) plane in bent silicon crystals. Here hαic and hαi
are the calculated and measured values of the volume reflection
angle at E0 ¼ 400 GeV.

E0,
GeV l0; mm R;m hαic; μrad hαi; μrad r0 Ξ Ref.

400 1.85 8.66 11.74 11.1 1.557 1.045 [15]
400 3 10.78 12.42 10.45 1.939 0.984 [15]
400 0.93 11.91 11.99 11.7 2.142 1.102 [22]
400 0.84 12.25 11.99 11.9 2.203 1.12 [22]
400 1.77 16.37 12.81 12.85 2.944 1.210 [16]
400 6.0 176.7 12.44 13.82 31.78 1.301 [16]
400 0.96 5.62 10.02 11.21 1.01 1.056 [16]

TABLE III. Experimental data for the mean volume reflection
angle in bent germanium crystals. Here hα�ic; hαic and hαi are the
calculated (for Moliere and Hartree-Fock approximations, cor-
respondingly) and measured values of the volume reflection angle
at E0 ¼ 400 GeV.r0 ¼ R=R0 and Ξ ¼ hαi=θc, where θc corre-
sponds to Hartree-Fock calculations.

Plane R;m hα�ic; μrad hαic; μrad hαi; μrad r0 Ξ Ref.

(111) 15.0 18.50 17.2 15.9 6.33 1.224 [23]
(110) 2.3 14.78 12.85 11.4 1.00 0.864 [24]
(110) 8.2 20.05 18.67 17.3 3.57 1.311 [24]

TABLE IV. Experimental data for the mean volume reflection
angle for negatively charged particles in bent silicon crystals.
Here hαic and hαi are the calculated and measured values of
the volume reflection angle at E0 ¼ 400 GeV.r0 ¼ R=R0 and
Ξ ¼ hαi=θc.

Plane
E0,
GeV R;m l0; mm

hαic;
μrad

hαi;
μrad r0 Ξ Ref.

(111) 150 12.92 0.84 14.28 14.64 10.12 0.84 [13]
(110) 150 22.79 0.98 11.81 11.53 16.92 0.68 [13]
(110) 120 2.71 2.0 11.13 11.4 2.64 0.60 [28]
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ΔE ¼ E0β
2θmΔθ þ

1

2
E0ðΔθÞ2: ð10Þ

Here θm ≈ _x=c is the angle of the particle due to the regular
motion in accordance with Eq. (1). Averaging over different
values of Δθ we obtain the following equations:

ΔE ¼ 1

2
E0ðΔθÞ2; ð11Þ

ðE0 − E − ĒÞ2 ¼ E2
0β

4θ2mðΔθÞ2
¼ 4½E −UðxÞ − β2E0x=R�ΔE ð12Þ

where E0 is the transverse energy after multiple scattering
and Ē is the mean energy losses of the transverse energy.
After averaging over different angles for different par-

ticles we get the distribution function over the changing
transverse energy (from the distribution function over the
plane scattered angle):

FðE0; lÞ ¼ 1ffiffiffiffiffiffi
2π

p
σE

exp−½ðE0 − E − ĒÞ2=ð2σ2EÞ�; ð13Þ

where Ē and σE are expressed through the mean square
angle of multiple scattering θ̄2 (depending on the current
depth l):

Ē ¼ 1

2
E0θ̄

2; ð14Þ

σ2E ¼ E2
0β

4θ2mθ̄
2: ð15Þ

Note that the function F satisfies the following equation:

∂F
∂l ¼ −

dĒ
dl

∂F
∂E0 þ

1

2

dσ2E
dl

∂2F
∂E02 : ð16Þ

Thus we got a simple distribution function for one
trajectory. This function depends on two parameters only:
Ē and σE. These parameters are independent of the current
transverse energy E0. It is clear that the approximation
obtained here is valid on a short distance, when parameters
Ē and σE are small enough in comparison with the
characteristic value δE.
A more traditional consideration of a similar problem is

based on the diffusion equation with the diffusion coef-
ficients depending on the transverse energy. This fact
strongly complicates the possibility for finding a solution.

B. Volume capture probability

Figure 1 illustrates the behavior of the effective potential
UeðxÞ ¼ UðxÞ þ β2E0x=R as a function of the transverse
coordinate x. The main problem of our consideration is the
determination of an inefficiency of volume reflection of

charged particles in bent single crystals. The mechanism of
the inefficiency is connected with the volume capture
process in these structures. Really, the moving particle
has some probability to lose (because of multiple scatter-
ing) its transverse energy and to continue its motion in the
channeling regime. However, the captured particle has
some probability (due to dechanneling) to quickly return
to overbarrier motion and to be similar to the usual particle
at volume reflection. This fact requires the detailed
description of the behavior of volume captured particles.
In this section we find the probability of volume capture.

Figure 1 illustrates this process. Obviously the volume
capture takes place mainly in the vicinity of the critical
point. In Fig. 1 this region corresponds to x1 ≤ x ≤ xc for
transverse energies of the particle Em ≤ E ≤ EM. In
Ref. [2] it was shown that particles of the beam with a
small angle divergence in absence of multiple scattering are
equiprobably distributed over transverse energies. Multiple
scattering changes the initial particle distribution over
transverse energies. However, the particle distribution in
every energy period δE keeps approximately equiprobable.
The evidence is similar to the case considered in Ref. [2].
We consider multiple scattering as in an amorphous

medium, but instead of a constant nuclear density we use a
variable one, in accordance with a current particle position.
For this one can give different theoretical likelihood
explanations, but a more evident argument is the fact that
Monte Carlo calculations with the above mentioned
assumptions give a good agreement with experiments.
Taking into account stated assumptions we define the

probability of volume capture as an normalized number of
particles (with the initial energy range from Em till
EM ¼ Em þ δE) which obtain (due to multiple scattering)
the transverse energy corresponding to the finite planar
motion (channeling).
As illustrated in Fig. 1 for every particle with the

transverse energy Em ≤ E ≤ EM and coming to coordinate
x1 there are three different possibilities (see numbers near
curves in Fig. 1): (i) to undergo reflection; (ii) to lose the
transverse energy and to become a particle captured in the
channeling regime; (iii) to increase the transverse energy,
so that E > EM. In the case of number (iii) theoretically
the similar three possibilities are conserved but for small
enough bending radii the third variant is practically
impossible. At the condition of smallness of the bending
radius the probability for a particle (with Em ≤ E ≤ EM) to
lose significantly the transverse energy before the coor-
dinate x1 is very small. Thus, we see that the volume
capture probability can be represented as a sum of the
two terms ε1 ¼ ε1a þ ε1b, where ε1a is the probability of
volume capture in the coordinate range from x1 till x2
and ε1b is the probability in the coordinate range from x2
till x3.
Let us calculate the first term ε1a. Our consideration will

be based on the one-trajectory approximation. Equation (5)
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gives the distribution for one trajectory of the particle with
the transverse energy E. The summary distribution function
is a result of the integration over the whole range of
transverse energies (from Em till EM). Taking this into
account we get the probability to change the transverse
energy E of a particle below the critical energy Ec in the
following form:

ε1a ¼
1

2
−
1

2

Z
1

0

erf

�
ξþ ξmffiffiffi

2
p

Σ

�
dξ; ð17Þ

where ξmðξÞ ¼ Ē=δE and ΣðξÞ ¼ σE=δE, Ē; σE are the
mean and square mean losses of transverse energy [see
Eqs. (14) and (15)], ξ ¼ ðE − EmÞ=δE, δE ¼ E0β

2d=R,
erfðxÞ ¼ 2=

ffiffiffi
π

p R
x
0 expð−t2Þdt. One can write the following

equations for the mean and mean square energy losses:

Ē ¼ 2A2ðL0=X0Þ=E2
0; ð18Þ

σE ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL1=X0Þ

p
=E0: ð19Þ

Here A ≈ 10–14 MeV is the constant value, X0 is the
radiation length of a single crystal and L0 and L1 functions
are

L0 ¼
E0c
2ρ0

Z
t2

t1

fρa½xðtÞ� þ ρe½xðtÞ�=Z2gdt; ð20Þ

L1 ¼
2E0c
ρ0

Z
t2

t1

fρa½xðtÞ� þ ρe½xðtÞ�=Z2g

× fE −U½xðtÞ� − E0β
2xðtÞ=Rgdt; ð21Þ

where ρaðxÞ; ρeðxÞ are the planar atomic and electron
densities for a selected plane of single crystal, Z is the
atomic number, ρ0 ≈ N0=V0 is the mean atomic density (N0

is number atoms in a fundamental cell of volume V0). Here
t1 is the time which corresponds to finding of particle in the
nearest local maximum of U(x) before critical point xc (for
this particle). The time t2 corresponds to the location of
the particle in a critical point. The coefficient 2 in Eqs. (18)
and (19) is due to the symmetry of the particle motion
before and after a critical point.
Taking into account the relation:

dt ¼ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2

E0β
2 ½E −UðxÞ − E0β

2x=R�
q ; ð22Þ

we can represent Eqs. (11) and (12) in the following form:

Ē ¼ A2ffiffiffiffiffiffiffiffi
2E0

p
ρ0X0

Z
xc

x1

½ρaðxÞ þ ρeðxÞ=Z2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − UðxÞ − E0β

2x=R
p dx; ð23Þ

σE ¼ 2
3
4A

E
1
4

0ðρ0X0Þ12

�Z
xc

x1

½ρaðxÞ þ ρeðxÞ=Z2�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − UðxÞ − E0β

2x=R
q

dx

	1
2

: ð24Þ

It is convenient to rewrite Eqs. (23) and (24) in the
following more general form:

Ē ¼ A2dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0U0

p
ρ0X0

Z
yc

y1

½ρaðyÞ þ ρeðyÞ=Z2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=κ −UðyÞ=U0 − y=κ

p dy

¼ A2dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0U0

p
X0

f1ðν; κÞ; ð25Þ

σE ¼ 2
3
4AU

1
4

0d
1
2

E
1
4

0ðρ0X0Þ12

�Z
yc

y1

½ρaðyÞ þ ρeðyÞ=Z2�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=κ −UðyÞ=U0 − y=κ

p
dy

	1
2

¼ 2
3
4AU

1
4

0d
1
2

E
1
4

0X
1
2

0

f2ðν; κÞ; ð26Þ

where y ¼ x=d, U0 is the potential barrier of plane for a
straight single crystal and the parameter κ ¼ U0R=ðE0β

2dÞ.
This dimensionless parameter can be represented also as
κ ¼ R=R0, where R0 ¼ β2E0d=U0 is the characteristic
radius of volume reflection [2]. Another dimensionless
parameter is ν ¼ E=δE. The parameter ν is coupled with
the ξ-parameter [see Eq. (17)] by the relation: ξ ¼
ν − νm ¼ ðE − EmÞ=δE, where Em is the nearest local
maximum of the transverse energy before the critical point
xc ðνm ¼ Em=δEÞ. Note that the functions ĒðξÞ and σEðξÞ
are periodic functions of the ξ-variable with the period
equal to 1.
The distribution of scattered particles over the relative

transverse energy ξ0 ¼ ðE0 − EmÞ=δE follows from inte-
gration of Eq. (13):

F aðξ0Þ ¼
dNðξ0Þ
dξ0

¼ 1ffiffiffiffiffiffi
2π

p
Z

1

0

dξ
Σ
exp−

ðξ0 − ξ − ξmÞ2
2Σ2

:

ð27Þ

This function describes all scattered particles at −∞ <
ξ0 < ∞. The case ξ0 < 0 corresponds to particles with E0 <
Em and the case ξ0 > 1 corresponds to particles with
E0 > EM. It is significant to note that here and below (in
similar equations) the values ξm and Σ are functions of the
integration variable. Integration of Eq. (27) at the condition
ξ0 < 0 gives Eq. (17) for the total number particles, and at
the condition ξ0 > 1 it gives the corresponding total number
of particles with E > EM:
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ε0 ¼
1

2
−
1

2

Z
1

0

erf

�
1 − ξ − ξmffiffiffi

2
p

Σ

�
dξ: ð28Þ

The distribution of captured particles (due to the additional
process, see the trajectory 3 in Fig. 1) reads

F bðξ00Þ ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

1

F aðξ0Þ
exp½−ðξ00 − ξ0 − ξmÞ2=ð2Σ2Þ�

Σ
dξ0:

ð29Þ

Here ξ00 < 1, ξ0 ¼ ðE0 − EmÞ=δE, ξ00 ¼ ðE00 − EmÞ=δE,
where E0 and E00 are the corresponding transverse energies
(see Fig. 1). Thus, the total number of captured particles,
normalized on unit, in this approximation is ε1 ¼ ε1a þ ε1b,
where ε1b ¼

R
1
−∞ F bdξ00. Note that our consideration of

volume capture is valid for small enough bending radii of
single crystals. The range of applicability of the present
description will be studied below.

C. Channeling of the captured particles

For some time the captured particles move in a planar
channel, but due to multiple scattering (in the channeling
regime) these particles obtain transverse energies which
exceed the potential barrier, and hence a part of them return
in overbarrier motion. In this section we consider this
process on the basis of the one-trajectory diffusion
approximation.
For calculations we need to know the losses of transverse

energy of a channeled particle. For this aim we can use
Eqs. (25) and (26). However, we should put the transverse
energy Em −UR < E < Em at the location of particles in
the range x1 < x < xc (UR ¼ Em − Ech, see Fig. 1). At this
condition a particle will be in the channeling regime. At
first, we find the mean and mean square losses of the
transverse energy per one period of motion lc (lc is a
function of a transverse energy). Then we can get approx-
imately that these losses depend on the factor l=lc [see
Eqs. (18)–(21)], where l is the length of a single crystal. We
think that, for l=lc > 1, this approximation is good enough.
Now we find the distribution function of the channeling

fraction:

F cðξ00; lÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

0

≈−UR=δE
½F aðξ0Þ

þ F bðξ0Þ�
exp½−ðξ00 − ξ0 − ξmcÞ2=ð2Σ2

cÞ�
Σc

dξ0

ð30Þ

where ξmc ¼ ðl=lcÞĒ=δE and Σc ¼
ffiffiffiffiffiffiffiffi
l=lc

p
σE=δE and the

variables ξ0 and ξ00 are similar to the analogous ones in
Eq. (29). Note that, due to the periodicity of the process, we
wrote ξ0-value as the argument of F b-function (instead of
ξ0 þ 1). Obviously this equation is valid for small enough

l-values while the captured particles have transverse
energies larger than Em −UR.
Integration of F cðξ00Þ-function over ξ00 (from

≈ −UR=δE till 0) gives the normalized number of chan-
neling particles ε2ðlÞ.

IV. ANGLE DISTRIBUTION OF SCATTERED
PARTICLES

Relations describing the angle distributions of scattered
particles in the process of volume reflection were obtained
in Ref. [2]. However, these relations do not take into
account the volume capture. If we want to take into
account this factor we should divide all particles in two
sorts. The first sort is the particles which were not
captured and the second one is the captured particles.
The number of particles of the first sort is 1 − ε1 and
the number of particles of the second sort is ε1.
The summary angle distribution of particles may be repre-
sented as dNTðαÞ=dα ¼ dNvrðαÞ=dαþ dNvcðαÞ=dα,
where dNvr=dα is the angle distribution of pure volume
reflected particles (see the detailed description in Ref. [2])
and dNvc=dα is the angle distribution of volume captured
particles.
Let us consider a bent single crystal of the finite

thickness l0. Then the volume captured particles can be
represented as a sum of two fractions: the first fraction Nch
is the particles which enter from a single crystal in the
channeling regime (underbarrier motion) and the second
one Nde is the particles which are transmitted from
channeling in overbarrier motion (due to the dechanneling
mechanism). Let us suppose that the normalized number
particles of the first fraction is ε2, then the normalized
number of particles in the second fraction is equal
to ε1 − ε2.
In Ref. [2] the term “physically narrow angle distri-

bution of entering particles” was introduced. This term
means that the characteristic size of the angle distribution
of the entering particles exceeds the angle period δθ ¼
d=ðRθÞ (here θ is the initial angle of the particle) and
particles are uniformly distributed within this period. Up
to this point we considered the multiple scattering only in
a narrow range of transverse coordinate ½< d, see
Eqs. (25) and (26)]. In this approximation we can write

dNdeðαÞ
dα

¼ dε2ðϕÞ
dφ

ϑðφmax − φÞϑðφÞ: ð31Þ

Here ϕ ¼ −αm=2þ φ and αm is the mean angle of
volume reflection, and angle φ ¼ ðl − l0=2Þ=R, where
φmax ¼ l0=ð2RÞ, and ϑðxÞ ¼ 1 or 0 at x > 0 and x < 0),
respectively. The function ε2ðlÞ is determined after
Eq. (30). The presented equation is valid for the
symmetric case of orientation of a single crystal. Note
that the case of nonsymmetric orientation is considered
analogously.
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Figure 1(b) illustrates the geometry for Eq. (31). Here the
broken line COD represents the motion of a particle due to
volume reflection. The lines CE and OD are the directions
of the particle motion before and after the process. The
angle DOE is the mean angle of volume reflection. AB is a
tangent line in the critical point. We define the direction
along the CE-line as the zero angle (the initial direction of
the particle motion). It means that the angle between the
OD- line (the direction of volume reflection) and the
current direction of the channeling flux is approximately
equal to α ¼ −αm=2þ φ [see Eq. (31)].
For the final result we should take into account multiple

scattering in the body of a single crystal. In accordance with
Ref. [2] we get

�
dNde

dα
ðαÞ

�
¼

Z
∞

−∞
ρðφ; σmsÞ

dNde

dα
ðα − φÞdφ ð32Þ

where ρðφ; σmsÞ is the distribution function of multiple
scattering with σms corresponding to the thickness l0=2−
ðl − l0=2Þϑðl − l0=2Þ, l ¼ φR − l0=2 (l − l0=2 is the part of
particle path in the body of the single crystal which
corresponds to the motion in the channeling regime).
In our model the process of volume capture takes place

in the transverse space from x1 up to x3 (see Fig. 1). It
corresponds to the δ-function distribution of the captured
particles. In reality, multiple scattering distributed this
process in some transverse area and hence in some
longitudinal space. One can describe the evolution of the
distribution of volume captured particles with the help of
the function [2]:

dNca

dl
¼ ε1ffiffiffiffiffiffi

2π
p

σcaR
exp−

ðl0=2 − lÞ2
2σ2caR2

ð33Þ

where σca is the mean squared angle of multiple scattering
corresponding to approximately half of the single crystal
thickness.
The density of dechanneling particles as a function of the

length l (or the angle φ) is described by a relation like
Eqs. (31) and (32) (at the condition αm ¼ 0) but for σms
should be taken for a length equal to l0=2. It means that we
consider particles in the vicinity of the local variable l and
do not take into account further motion in the body of a
single crystal. Let us denote this function as dNde0=dl
(or dNde0=dφ ¼ RdNde0=dl).
Now we can describe the behavior of the channeling

fraction as a function of the length (or the angle φ) by the
following equation:

ε2ðlÞ ¼ NchðlÞ ¼
Z

l

0



dNca

dl
ðzÞ − dNde0

dl
ðzÞ

�
dz ð34Þ

Next, we can find the angle distribution of the channeling
fraction. It is easy to get the velocity [vðtÞ ¼ _xðtÞ]

distribution function (normalized to 1) of channeled par-
ticles for a fixed transverse energy E:

dN
dv

ðvÞ ¼ E0

τc2jβ2E0=R − E½xðtÞ�j ð35Þ

where τ is one half of the period of the motion for the
channeled particle and E is the intensity of the planar
electric field. Taking into account that θ ≈ v=c, we can
recalculate this distribution in angle. Knowing the distri-
bution function over the transverse energy of channeled
particles [see Eq. (30)] we can find the resulting distribution
of these particles at the exit from a crystal.

V. EXAMPLES OF CALCULATIONS

A. Introduction remarks

In this section, in accordance with obtained equations, we
present calculations of the volume reflection process, which
take into account the processes of volume capture and
channeling in bent single crystals. For illustration we
selected some energies of proton beams which approxi-
mately correspond to energies of well-known accelerators.
The main and detailed calculations were carried out for
silicon single crystals, but some results were obtained for
some different kind of single crystals. For the calculation of
the potential, electric field, electron and atomic densities in
silicon we use values of atomic form factors from x-ray
experiments. The method of calculations can be found in
Refs. [20,21]. Note that recent experimental data [18] show
that the potential from x-ray diffraction gives a more precise
description of measured characteristics of volume reflection
for a silicon single crystal than the Moliere potential.
Formally, our consideration of volume capture may be

also applied for negatively charged beams. However, due to
the importance of possible applications of volume reflec-
tion, we concentrate our specific calculations only for
positively charged particles.

B. Energy losses for over and underbarrier particles

For the determination of different distribution functions
we should know the mean and mean squared energy losses
of particles [see Eqs. (25) and (26)]. Figure 3 illustrates
these quantities for over and underbarrier motion of
400 GeV=c protons. For these calculations we use A ¼
11 MeV [see Eqs. (18) and (19)]. This choice was based on
the equation for the mean square angle of multiple
scattering [29] θms¼ 13.6 ½MeV�=βcp ffiffiffiffiffiffiffiffiffiffi

l=X0

p ½1þ0.038 ln
ðl=X0Þ�, where p is the particle momentum. For a small
thickness l l=X0 ≈ 10−3 and the more natural law θms ¼
A=E0

ffiffiffiffiffiffiffiffiffiffi
l=X0

p
the best agreement is at A ¼ 11 MeV.

It is easy to recalculate the results of Fig. 3 for any
energy of particles [see Eqs. (25) and (26)]. The numerical
values of universal functions f1 and f2 can be also found
from Fig. 3.
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C. Simulations of volume capture

The volume capture probability represents the sum of two
terms ε1 ¼ ε1a þ ε1b. Initially we consider the behavior of
the first term ε1a. Figure 4 illustrates the calculations of this
value for different proton energies. One can see that at small
values R=Rc ε1 is approximated well enough by a linear
function. It is useful to find the form of this linear function.

The probability ε1a can be presented as the sum of the
two first terms of the Taylor series in the vicinity of κoo:

ε1aðκÞ ¼ ε1aðκooÞ þ
dε1a
dκ

ðκooÞκc
�
κ

κc
−
κoo
κc

�
; ð36Þ

where κc ¼ U0Rc=ðE0β
2dÞ and Rc ¼ E0=Emax is the criti-

cal radius of channeling (Emax is the maximal value of
the interplanar electrical field). Thus, κc ¼ U0=ðEmaxdÞ and
κ=κc − κoo=κc ¼ R=Rc − Roo=Rc (radius Roo ≥ Rc corre-
sponds to κ0-value). The presentation of a bending radius in
units of critical radius is convenient for the consideration of
the process at different particle energies.
From Eq. (17) one can get

dε1a
dκ

¼ −
1ffiffiffiffiffiffi
2π

p
Z

1

0

ξm
Σ



f01
f1

−
f02
f2

−
ξ

ξm

�
1

κ
þ f02
f2

��

× exp½−ðξþ ξmÞ2=ð2Σ2Þ�dξ; ð37Þ
where f01; f

0
2 are the corresponding derivatives (of the

f1; f2 -functions) over the κ-parameter.
Taking into account Eqs. (25) and (26) one can represent

Eq. (37) in the following form:

dε1a
dκ

ðκooÞκc ¼
AU

1
4

0

2
7
4

ffiffiffi
π

p
E

1
4

0Emaxd
1
2X

1
2

0

JðκooÞ; ð38Þ

where

JðκooÞ ¼ −
Z

1

0

f1
f2



f01
f1

−
f02
f2

−
ξ

ξm

�
1

κoo
þ f02
f2

��

× exp½−ðξþ ξmÞ2=ð2Σ2Þ�dξ: ð39Þ

FIG. 3. Losses of transverse energies Ē and σE [in the (110)
silicon plane] for volume reflection (a) and for channeling regime
(b) as functions of variables ðE − EmÞ=δE and ðE − EchÞ=UR,
correspondingly. The numbers 1–5 near curves are equal to the
value of the κ-parameter and correspond to Ē-quantities. Analo-
gously the numbers 10–50 are equal to the value of the κ-parameter
and correspond to σE-quantities. The values Ē in (b) are enlarged
by three times for good visibility. The particle energy is equal to
400 GeV.

FIG. 4. The partial probability of volume capture ε1a [see
Eq. (17) for the (110) silicon plane as a function of the relation
R=Rc for different energies 50 GeV (1), 400 GeV (2), 1000 GeV
(3), 7000 GeV (4). The straight lines near curves are linear
approximations (see Eq. (36)].
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From Eq. (38) we see that the value κcdε1a=dκ is defined
by the JðκooÞ-integral. Figure 5 illustrates the calculated
J-value as a function of κoo ¼ Roo=Rc. We see a long
enough plateau beginning from κoo slightly larger than κc. It
is convenient to select a κoo such that ε1aðκ1Þ ¼ 0, where we
denote this special value of κoo- set as κ1. It is easy to see that

κ1 ¼ κoo þ
ε1aðκooÞ
dε1a
dκ ðκooÞ

; ð40Þ

where κ0 is any value of κ in the range of linearity of the ε1a
function. According to our calculation for the silicon (110)
plane κ1 ≈ 0.13. Now we can write the following relation:

ε̄1a ¼
AU

1
4

0Jp

2
7
4

ffiffiffi
π

p
E

1
4

0Emaxd
1
2X

1
2

0

�
κ

κc
−
κ1
κc

�
ð41Þ

Here we denote the linear approximation of ε1a [see
Eq. (17)] as ε̄1a and the plateau value of J as Jp.
We calculated also the value ε1b [see Eq. (29)] for

different crystals. According to these calculations the
relation ε1b=ε1a is approximately equal to 0.41- 0.37 at
R=Rc ¼ 1.5–30, correspondingly. We think that we can
decide this relation to be approximately constant in this
region of radii and equal to 0.39. Then we can write the
final equation for the probability ε1:

ε̄1 ≈
1.39AU

1
4

0Jp

2
7
4

ffiffiffi
π

p
E

1
4

0Emaxd
1
2X

1
2

0

�
κ

κc
−
κ1
κc

�
ð42Þ

Analogously, here ε̄1 denotes the linear approximation
of ε1.

Figure 6 illustrates the behavior of the relations ε1=ε̄1
and ε1a=ε̄1a as functions of the variable X ¼ ðκ − κ1Þ=κc.
One can see that in the region from X ¼ 0.2 till ≈2.5 these
relations are constant with a good enough accuracy. Thus,
Eq. (42) allows one to describe in a universal way the
probability of volume capture in the area of interest to us.
Table I contains the parameters of some single crystals for
the calculation of the ε1-value.
Figure 7 illustrates the differential over energy distribu-

tions of captured protons calculated with the help of
Eqs. (27) and (29). We see that these distributions become
more wide with the increasing of the bending radius.

D. Channeling of captured particles

We illustrate the channeling of captured particles for
proton energy 400 GeV and 10 m bending radius for the

FIG. 5. J-value [see Eq. (38)] as a function of the relation R=Rc
for different conditions. Curves 1,2,3,4 are for a silicon single
crystal and proton energies 50, 400, 1000, and 7000 GeV,
respectively. Curves 5,6,7 are for diamond, germanium, and
tungsten single crystals and proton energy equal to 400 GeV.

FIG. 6. The relations ε1a= ¯ε1a (the partial probability of volume
capture to its linear approximation) (a) and ε1=ε̄1 (the total
probability of volume capture to its linear approximation) (b) as
functions of the x-value, where X ¼ ðR=Rc − κ1Þ=κc and κ1; κc-
values are taken from Table V (see text). Numbers near curves are
the same as in Fig. 5.
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(110) plane of a silicon single crystal. Similar simulations
based on Monte Carlo calculations for these parameters
were presented in Ref. [6]. Hence, we can compare results
which were carried out by different methods. Equation (34)
allows one to calculate the flux of particles which were
captured in the channeling regime. Figure 8 shows the
behavior of the flux as a function of the thickness of a
crystal. The curves 1 and 2 [see Fig. 8(b)] present the speed
of dechanneling as a function of the variable bending angle
for cases without and with consideration of multiple
scattering in a silicon crystal (more exactly, for curve 1
multiple scattering takes place in a narrow region of
coordinate x [x1 ≤ x ≤ x2, see Fig. 1)] In this figure the
curve 3 presents the distribution function of dechanneling
particles at the exit of a single crystal. The total number of
captured particles is ≈0.057. The same number is ≈0.064
according to Ref. [6].

E. Total scattering curve

Thus, the total scattering curve (with taking account of the
volume capture process) represents the sum of three curves:

(i) the pure volume reflection curve;
(ii) the curve of the dechanneling fraction;
(iii) the curve of the channeling fraction.
The resulting curve [for 400 GeV protons and 10 m

bending radius of (110) plane silicon single crystal] is
shown in Figs. 9 and 10 in linear and logarithmic scales,
correspondingly. The curve of the channeling fraction
was calculated in accordance with Eq. (39). The semi-
period in Eq. (39) was chosen under the condition that at
the moment of time t1 the transverse velocity is maximal

FIG. 8. Intensity of channeling fraction (a) and differential
particles losses due to dechanneling (b) as functions of the angle
φ. Curves 1 and 2 correspond to considerations without and with
multiple scattering. Curve 3 corresponds to the angle distribution
(over α-angle) dechanneling fraction on the entrance of a single
crystal.

TABLE V. Parameters of single crystals for the calculation of the volume capture probability [see Eq. (42)].
Potentials for diamond and silicon are taken from x-ray measurements [20,21] and for germanium and tungsten the
Moliere potential was used.

Crystal Z X0, cm d; A U0, eV Emax, eV/A κc κ1 Jp

C(diamond) 6 12.14 1.26 23.52 79.70 0.234 0.198 1.71
Si 14 9.38 1.92 21.38 60.0 0.186 0.13 1.49
Ge 32 2.28 2.00 41.02 111.46 0.183 0.123 1.44
W 74 0.383 2.23 138.34 490.3 0.126 0.0085 1.29

FIG. 7. The total and partial distributions F 0;F a;F b as
functions of the ξ-parameter for bending radii equal to 5, 10,
15 m (curves 1,2,3, respectively). Here ξ-parameter represents
mean energy losses Ē of particle at volume reflection in units of the
transverse energy period δE. F 0 ¼ F a þ F b. The curves labeled
as 0 and 00 correspond toF a;F b -distributions and the thick curves
to the F 0 one. The energy of a proton beam is equal to 400 GeV.
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and at the moment of time t2 ¼ t1 þ τ this velocity is
minimal.
One can see that, in accordance with the distribution

function, most particles of the channeling fraction are
grouped near the critical channeling angle. This fact is
due to the fact that first, a large number of particles have a
high transverse energy and second, the time of stay in a
state with small transverse velocity is considerably larger
than the time of stay in a state with a large velocity. It
should be noted that the experimental observation of two
peaks of the channeling curve is practically impossible
because of multiple scattering in detectors.
The important characteristics of volume reflection of a

beam is the efficiency of the process which is defined as a
partition of the beam which is contained in �3σvr around
the mean angle of reflection αm, where σvr is the mean
square of the angle distribution of the scattered beam. For
the conditions calculated as in Figs. 9 and 10 the efficiency
is close to 0.98. This is in agreement with the experimental
data [15]. From this result it follows that, for the above
mentioned definition of the efficiency ε, the total ineffi-
ciency (1 − ε) should be significantly less than the prob-
ability of volume capture ε1, due to a valuable fraction of
particles, which quickly return from channeling to over-
barrier motion (see Fig. 8).
It is useful and interesting to compare our calculation of

the total angle curve with the corresponding experimental
data. Such data can be found in a number of papers.
However, in many cases these data are presented in a linear
scale and are statistical insignificant for a comparison for

large scattering angles. Nevertheless we could find the article
which satisfies our requirements (see Ref. [15]). In the article
results are presented for measurements of the total angle
curve for 400 GeV protons and silicon plane (110) for
≈18.5 m bending radius and length of crystal along beam
equal to 3 mm. These results of measurements are inserted in
Fig. 10 as grey lines [the curves 4 and 5, whereas the curve 3
is the Gaussian approximation of the beam divergence and
the curve 5 is the measured intensity of protons after the
passage through the crystal (in both cases)].
Besides, we think that the correct method of comparison

should be based on the comparison normalized on 1
distributions of scattering angles. Also it is desirable to
make the comparison for identical parameters of the proton
beam. The curve 1 in Fig. 10 presents the result of a
calculation for a beam practically without angle divergence.
At some likelihood suggestions and knowing the normal-
ized angle distribution ρbðαÞ we can write for the angle
distribution function for scattering of the beam:

ρTðαÞ ¼
Z

∞

−∞
ρbðα1Þρcðα1 − αÞdα1: ð43Þ

In accordance with Ref. [15] we will consider the angle
distribution function of the beam as ρbðαÞ ¼ 1=
ð ffiffiffiffiffiffi

2π
p

σbÞ exp−α2=ð2σ2bÞ. For calculations we put σb ¼
8.57 μrad ([15]). It is interesting that at angles α ≫ σ

FIG. 9. The resulting distribution of scattered particles at
volume reflection taking into account the influence of volume
capture. The energy of protons is equal to 400 GeV, the bending
radius of a 2-mm silicon single crystal is equal to 10 m.

FIG. 10. The distributions (in logarithmic y-scale) of scattered
particle at volume reflection of 400 GeV protons in (110) planes
of silicon single crystal. The curve 1 is calculated for parallel
beam without consideration of diffusion process (the transverse
energy is conserved); the curve 2 is a calculation in which the
influence of volume capture on a process taken into account; the
curve 3 is a calculation in which the influence of volume capture
and divergence of proton beam on a process taken into account;
the curve 4 is the Gaussian approximation of experimental
scattering curve; the curve 5 is the full experimental scattering
curve. For additional information, see the text.
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we get ρTðαÞ ¼ ρcðαÞ. It means that the level of scattering
particles depends weakly on the normalized beam angle
distribution for large distances.
As was shown in [9,15] the width of the angle orientation

range of volume reflection is equal to l0=R (to a bending
angle). The beginning of volume reflection is shifted on the
graph of angle scan on value equal to l0R from the center of
the channeling region (see Fig. 6 in [15], for example). The
curves 2 and 3 are calculated for the symmetric case when
(in other words) the angle of orientation is shifted on
l0=ð2RÞ. The curves 4 and 5 correspond to an orientation
angle which is shifted on ≈l0=ð3RÞ from the channeling
region. We give this information for the explanation of the
location of channeling peaks in Fig. 10.
In Fig. 10 we see that in the area of scattering angles

(0.03—0.07) mrad the experimental intensity of protons
(the curve number 4) exceeds the results of our calculations
(the curves 2 and 3) approximately by 2 times. However for
a correct comparison we should take into account the
difference of bending radii (10 m and 18.5 m for calcu-
lations and measurement, correspondingly). In our model
we can calculate the total normalized number of captured
protons ε1. This calculations with the help of Eq. (42) give
ε1 ¼ 0.057 and 0.105 or the ratio of these values is equal to
1.85. The scattered angle distribution of particles is
described with the help of Eqs. (30) and (32). A simple
estimation shows that the value dNdeðαÞ

dα
1
ϵ1

is practically
independent of the bending radius (at its variations from
5 to 20 m) for crystals with a length about 2–3 mm. Thus
we demonstrate that our analytical calculations are in
reasonable agreement with the experiment [15] and also
with Monte Carlo computations presented in [6].

VI. DISCUSSION

As mentioned above our consideration is valid for small
enough bending radii of single crystals. It is clear that for
large bending radii the energy gap δE becomes very small.
Because of this, the particle energy losses can significantly
exceed the value δE, and, consequently, the possibility of
volume capture will be realized for a long enough part of
the trajectory of particles, instead of the short distance
between x1 and x3 (see Fig. 1).
Let us estimate the area of application of our analytical

description. Taking into account that the distribution of
energy losses is described by the normal one, we can write
the following condition for the validity of equations
obtained in the paper:

σE;max < δE=4 ð44Þ
where σE;max is the maximal value of σE at fixed κ-parameter.
For the (110) silicon plane and proton energy equal to
400 GeV δE=4½eV� ≈ 20=R½m� and σE;max ∼ 1 eV and we
got that our consideration is valid up to R ∼ 20 m (or for
R=Rc ∼ 30). The area of validity is extended with the
increasing of the particle energy. It is important to note that

the range R=Rc ≈ 10–20 is preferable for the utilization of
the volume reflection process on accelerators. Really, at these
values of radii the mean angle αm of the process is close to the
maximal one [2] and the volume capture process is sup-
pressed in comparison with the case of larger bending radii.
In this paper, for small enough bending radii we got a

simple relation for the probability of volume capture ε1 in
different single crystals. According to this relation ε1 is

proportional to E
−1
4

0 ðR=Rc − R1=RcÞ. It means that ε1 is a
weakly dropping function of the particle energy at fixed
R=Rc. For testing this dependence, we carried out
Monte Carlo calculations of ε1 at different radii and
energies. The results of these calculations are described
by a function which is proportional to E−0.2

0 ðR=Rc − 0.7Þ.
This dependence is close to that obtained in this paper.
The process of volume capture was investigated also in

Ref. [11]. Here the probability of volume capture is
ε1 ¼ Rθch=Ld, where Ld is the dechanneling length, which
is proportional to the particle energy. It means that ε1 is

proportional to E
−1
2

0 R=Rc. The paper [6] contains the
criticism of this relation. The authors [6] give the con-
clusion about the incorrectness of the relation and try to
correct it by introducing a nuclear dechanneling length.
This correction allows one to get values of probability close
to Monte Carlo calculations (for energy 400 GeV) but
preserves the previous energy dependence.
In the future we plan to apply our mathematical con-

sideration of volume capture for negative charged particles.

VII. CONCLUSION

The main results of our investigation of volume reflec-
tion of relativistic particles are

(i) the analysis of experimental data and the compari-
son with theoretical calculations of the mean
volume reflection angle demonstrate a good mutual
agreement;

(ii) simple analytical relations for the probability of
volume capture are obtained;

(iii) the propagation of the volume captured fraction
inside a single crystal is considered;

(iv) analytical methods for the calculation of the angle
scattered distribution of particles, taking into ac-
count different processes are developed;

(v) equations presented here allow one to find the
efficiency of the volume reflection process but a
full analysis of this problem is beyond the scope of
this paper.
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