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Particle-in-cell (PIC) is the most used algorithm to perform self-consistent tracking of intense charged
particle beams. It is based on depositing macroparticles on a grid, and subsequently solving on it the
Poisson equation. It is well known that PIC algorithms occupy intrinsic limitations as they introduce
numerical noise. Although not significant for short-term tracking, this becomes important in simulations for
circular machines over millions of turns as it may induce artificial diffusion of the beam. In this work, we
present a modeling of numerical noise induced by PIC algorithms, and discuss its influence on particle
dynamics. The combined effect of particle tracking and noise created by PIC algorithms leads to correlated
or decorrelated numerical noise. For decorrelated numerical noise we derive a scaling law for the simulation
parameters, allowing an estimate of artificial emittance growth. Lastly, the effect of correlated numerical
noise is discussed, and a mitigation strategy is proposed.
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I. INTRODUCTION

It is well known that in operational scenarios requiring
long-term storage, sources of noise in the machine can lead
to detrimental effects on the beam. Examples include RF
voltage noise, beam-beam interaction, ground motion, and
feedback noise, which all have been subject of studies to
mitigate or exploit their impact, as reported in Refs. [1–6].
Recently, a similar concern has been raised for numerical

noise in self-consistent simulation of high intensity beams.
In fact, the study of space charge effects via self-consistent
simulations has become important with the advent of new
projects, like the future SIS100 synchrotron of the FAIR
project [7], and the LIU project [8] for the CERN accel-
erator complex. In these projects some scenarios require the
storage of a high intensity bunched beam for seconds.
The simulation of these operational scenarios signifi-

cantly raises the computational challenges, provided that
they concern the prediction of beam loss, or emittance
growth. In order to avoid any artificial noise, the first
simulation studies were limited to frozen models, which
rely on noise-free tracking schemes [9,10]. There, the space
charge is computed assuming the beam remains frozen,
therefore allowing an analytic description of the
space charge force. This approach surely avoids artificial
emittance growth, but unfortunately at the expense of

self-consistency, which becomes relevant in certain scenar-
ios, e.g., large beam loss, or large beam core growth.
On the other hand, PIC simulations of high intensity

beams allow a self-consistent treatment, but require
an understanding of the origins and propagation of its
numerical noise. Hence, simulation parameters can be set
adequately in order to mitigate noise induced artifacts,
while keeping the computational load feasible.
The evaluation of PIC induced artifacts on particle

tracking has been studied by several authors from several
points of view, e.g., in the context of a Fokker-Planck
approach, as reported in Refs. [11–13].
Differently from previous approaches, we discuss the

effect of PIC induced noise by following the integration
method of a typical beam dynamics code. We start
with an analysis of the noise due to the PIC algorithm,
and discuss how it propagates via the beam dynamics
integration. Following this approach, the dependence of
rms-emittance growth on simulation parameters is derived.
It is also found that the particle’s rotation in phase space
creates correlations in numerical noise, which enhances
artificial emittance growth.
Our results are of interest for simulations of millions of

turns in circular machines, where the high intensity requires
a self-consistent modeling, hence the use of PIC algo-
rithms, while at the same time the control of artificial
emittance growth.
This paper is organized as follows. In Sec. II we study

the origins and properties of static PIC noise. Then, in
Sec. III, we model the effect of random PIC noise on the
dynamics of a single particle, while the effect on the whole
ensemble of particles is treated in Sec. IV. In Sec. V we
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introduce the concept of correlated and decorrelated
numerical noise. We conclude our studies with a summary
in Sec. VI. The effect of the particle’s rotation in phase
space on numerical noise is discussed in Appendix A,
whereas the consequences of the periodic random walk on
the diffusion of macro-particles is treated in Appendix B.
Finally, in Appendix C, we discuss the impact of the
strength of space charge forces on the excitation of
stochastic resonances.

II. SCALING LAW FOR ELECTRIC FIELD
FLUCTUATIONS

Before treating the propagation of numerical noise, we
study how the PIC scheme is causing numerical noise in a
static scenario. We start by considering a Gaussian beam,
i.e., the particle’s phase space positions are defined ran-
domly according to a Gaussian probability density function
(p.d.f.), given by

fðx; x0; y; y0Þ ¼ e
−1
2
ðx2
σ2x
þx02

σ02x
þy2

σ2y
þy02

σ02y
Þ

4π2σxσx0σyσy0
; ð1Þ

where σx, σx0 , σy, σy0 are the transverse standard deviations.
In the following discussion, we consider round Gaussian
beams with σ2r≔2σ2x ¼ 2σ2y the standard deviation for the
radial coordinate r2 ¼ x2 þ y2. The associated radial space
charge field at a longitudinal position sj is given by

Erðx; y; sjÞ ¼
EgðsjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ½1 − e
−x2þy2

σ2r ðsjÞ�; ð2Þ

where EgðsjÞ is proportional to the gradient of the electric
field at x ¼ y ¼ 0.
The transverse electric field of a coasting beam, that

determines the self-consistent space charge forces, is
computed in long-term simulations most efficiently
using a two-dimensional particle-in-cell (PIC) scheme.
To achieve a high computational efficiency, the Poisson
equation in the transverse plane is solved on a finite set of
NG × NG grid points and the particle distribution is
approximated by NM macroparticles. Since the number
of macroparticles NM is much smaller than the number of
physical particles Np, an artificial granularity of the
distribution is introduced, which is one source of numerical
noise.
To study the impact of the simulation parameters on

numerical noise, we adopt the random start technique
(opposite to the quiet start). In the random start approach
the positions of NM macroparticles are randomly initialized
according to a p.d.f, as given by Eq. (1) for Gaussian
beams. Therefore, the resulting electric field is not only
determined by the p.d.f. itself, but varies according to the
random initialization of macroparticles with an amplitude

δEx. This amplitude of fluctuations δEx is identified with
the standard deviation of the electric field for multiple
random initializations of macroparticles.
Previous studies, e.g., Refs. [14–18], have found that the

parameters of relevance for a noise analysis of a beam with
a fixed size are NG and NM, since they fix the number of
particles per cell. To find the scaling of δEx on these
parameters, we fix one of them and vary systematically the
remaining one. We find that the simulation data satisfies the
scaling

δExðx ¼ 0; y ¼ 0; s ¼ s0Þ ∝
gðNGÞffiffiffiffiffiffiffi
NM

p ; ð3Þ

where the dependence on the grid resolution, given by the
function gðNGÞ, is determined by the specific integration
method of Poisson’s equation. For the multiparticle
tracking library MICROMAP [19], that incorporates a
spectral method, we find that gðNGÞ≃ ffiffiffiffiffiffiffi

NG
4
p

for well
resolved beams, which is used throughout the article. In
particular, we find that the level of numerical noise can be
kept constant, if we choose our simulation parameters such
that

ffiffiffiffiffiffiffi
NG

p
NM

¼ const: ð4Þ

A dependence of the electric field fluctuation on x and y is
created for nonconstant particle distributions, as the num-
ber of macroparticles per cell varies spatially. For round
Gaussian beams this is given by the square root of the p.d.f.,
as we find

δExðx; y; sÞ ¼
δEx;0

ffiffiffiffiffiffiffi
NG

4
pffiffiffiffiffiffiffi
NM

p e
− x2þy2

2σ2r ðsjÞξðx; y; sÞ: ð5Þ

Here,

δEx;0 ¼ δExð0; 0; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NM;0ffiffiffiffiffiffiffiffiffi
NG;0

p
s

; ð6Þ

is a factor to quantify the standard deviation of the electric
field. It is obtained by calculating the standard deviation
in the center of the beam, δExð0; 0; sÞ, for multiple
random start initializations for NM;0 macroparticles and
NG;0 × NG;0 grid points. We normalize δExð0; 0; sÞ to NG;0

andNM;0, such that δEx;0 is independent of these simulation
parameters.
The factor ξðx; y; sÞ describes the effect due to the

bilinear interpolation of the electric field in between grid
points, which causes a grid texture. As an example, the
standard deviation for NG ¼ 16 and NM ¼ 2000 and a
round Gaussian beam is given in Fig. 1. The statistics is
done with 500 random start initializations.
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The scaling law, Eq. (5), is valid as long as the beam is
reasonably resolved, which is the case for NG ≥ 16 grid
points within ½−2σx; 2σx� (and resp. in ½−2σy; 2σy�) of the
Gaussian particle distribution. The effects of a low mesh
resolution were recently studied in Ref. [13], where it is
shown that due to grid heating the emittance growth is
artificially enhanced. In the studies presented in this paper,
we consider sufficiently resolved particle distributions, as
this is the preferential case in space charge simulations.
Using the scheme presented in this section, we can easily

obtain scaling laws for other particle distributions. In the
following, we study the Kapchinski-Vladimirski (K-V)
particle distribution [20], i.e., a spatially constant distribu-
tion of particles in the transverse plane, causing linear space
charge forces inside the beam. For this distribution we
find that the electric field fluctuations δExðx; y; s ¼ s0Þ
and δEyðx; y; s ¼ s0Þ inside the beam are constant, since
the uncertainty of a PIC solver depends on the number
of macroparticles per cell. Therefore, the electric field
fluctuations inside a K-V beam are given by

δExðx; y; sÞ ¼
δEx;0

ffiffiffiffiffiffiffi
NG

4
pffiffiffiffiffiffiffi
NM

p ξðx; y; sÞ: ð7Þ

In Fig. 2, we show the spatial dependence of the electric
field fluctuation δExðx; y; s ¼ s0Þ for a K-V distribution of
size X ¼ 2σx and a rms equivalent Gaussian beam [21,22]
of rms size σx. For this study we took 1000 samples of
electric fields (random start), while the beam was well
resolved with a fine grained mesh of NG × NG ¼ 512 ×
512 grid points.

As seen in Fig. 2, the maximum electric field fluctuations
for the Gaussian beam are by a factor

ffiffiffi
2

p
larger than for a

rms equivalent K-V beam. This is due to the fact, that in the
center of the Gaussian beam the density is the double with
respect to a rms equivalent K-V beam. The number of
physical particles in the center is therefore by a factor 2
larger for Gaussian beams, which enhances the electric
field fluctuations.
The results obtained in this section apply for the

numerical noise in coasting beam simulations. However,
the same method can also be used to find the dependence of
the fluctuations δExðx; y; sÞ for a bunched beam in the 2.5D
scheme, see Ref. [23].

III. NOISE AFFECTING THE SINGLE
PARTICLE DYNAMICS

In this section, we study the effect of a fluctuating force
field on the dynamics of a single particle by use of the
random walk theory. Later, these findings can be applied on
a large ensemble of particles, such that conclusions on
artificial diffusion of a full beam can be drawn.

A. Random walk model

A particle i at the longitudinal position s is described by
its transverse phase space coordinates xi, x0i, yi, y

0
i. Its

dynamics in a linear lattice is given by the Hill equations

x00i − kxxi ¼ 0; y00i − kyyi ¼ 0; ð8Þ

with kx, ky the restoring force terms. In the following, only
the x-plane is discussed, since the y-plane can be treated
equivalently.
A particle i with a charge q and mass m0 of a high

intensity beam is exposed to a force created by the electric
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FIG. 2. Electric field fluctuations δExðx; yÞ for a K-V distri-
bution of size X ¼ 2σx and a rms equivalent Gaussian beam.
Inside the beam, i.e., x ∈ ½−X;X�, the field fluctuations for the
K-V distributions are approximately constant.
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FIG. 1. Standard deviation of the transverse electric field, see
Eq. (5), for a round Gaussian beam. The exponential spatial
dependence of the field fluctuations is superimposed by a grid
texture caused by the mesh of the PIC solver. The simulation
parameters are given in the text.
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field Exðxi; yi; sÞ of the beam. The electric field is calcu-
lated in the rest frame of the beam, which is the standard
approach in beam dynamics with space charge [24], and is
used in this form throughout all discussions in this paper.
The effect of the electric self-field on particle dynamics

is modeled via space charge kicks [25], whose effect is to
change the particle coordinate x0:

x0iðsjÞ → x0iðsjÞ þ Δs
qExðxi; yi; sjÞ
m0c2β2γ3

; ð9Þ

with c the speed of light, and β and γ the relativistic factors.
For simplicity, the longitudinal distance between two
consecutive space charge kicks, given by Δs ¼ sjþ1 − sj,
is kept constant during the tracking.
By knowing position and charge state of all particles, the

resulting space charge field on a particle located at xi, yi, sj,
given by Ex;0ðxi; yi; sjÞ, is calculated as a superposition of
all Coulomb fields. We refer to this as the exact solution.
However, if approximations are used in order to reduce the
computational cost of the space charge field calculation,
imprecisions are generated. See, e.g., Refs. [14–18] for a
review.
In the following, the effect of electric field fluctuations is

studied in a simplified mathematical model, where the
standard deviation is subtracted or added randomly to the
exact solution, i.e.,

Exðxi; yi; sjÞ
¼ Ex;0ðxi; yi; sjÞ þ ~ZijδExðxi; yi; sjÞ: ð10Þ

Here, ~Zij ¼ 1 or ~Zij ¼ −1 is defined randomly with equal
probability for any particle index i and any longitudinal
position index j. This model yields an average of
Ex;0ðxi; yi; sjÞ and a standard deviation of δExðxi; yi; sjÞ
for a large number of electric field calculations.
The fluctuations ~ZijδExðxi; yi; sjÞ are assumed to be

statistically independent of each other, i.e., for every
longitudinal position sj, where a space charge kick is
applied, the fluctuation ~ZijδExðxi; yi; sjÞ does not depend
on the fluctuation at any other longitudinal position sjþk ¼
sj þ k · Δs for any k ∈ N. Throughout this article, we refer
to this kind of fluctuations as decorrelated numerical noise.
Equations (8), (9), and (10) are the model for the

evolution of a single particle affected by numerical noise
in a high intensity beam using the standard integration with
the one kick approximation. We propose that the combined
effect of numerical noise and transport can be modeled via
an effective map:

M

 xiðsjÞ
x0iðsjÞ þ Δs q½Ex;0ðxi;yi;sjÞþ ~ZijδExðxi;yi;sjÞ�

m0c2β2γ3

!

¼
�
x̂iðsjþ1Þ
x̂0iðsjþ1Þ

�
þM

�
0

~ZijΔx0ðxi; yi; sjÞ
�
; ð11Þ

with Δx0ðxi; yi; sjÞ the strength of the random kick, that is
defined by

Δx0ðxi; yi; sjÞ ¼ Δs
qδExðxi; yi; sjÞ

m0c2β2γ3
: ð12Þ

The left-hand side of Eq. (11) is the usual one step
integration, where M is the transport matrix of a particle
between two consecutive space charge kicks obtained from
Eq. (8). The coordinates x̂iðsjþ1Þ, x̂0iðsjþ1Þ are those of the
particle transported noise-free with space charge from sj to
sjþ1. The repeated application of Eq. (11) mixes the noise
~ZijΔx0ðxi; yi; sjÞ to both planes x and x0. Later, we model
this effect by introducing an integrated effective noise kick.
To model the effect of decorrelated numerical noise on

NM macroparticles at Nk space charge kick positions, we
define two sets of independent variables Zij, Z0

ij with
1 ≤ i ≤ NM, 1 ≤ j ≤ Nk, in which Zij ¼ −1 or Zij ¼ 1

(resp. Z0
ij ¼ −1 or Z0

ij ¼ 1) defined randomly with equal
probability for any index i, j. As suggested in Appendix A,
we describe the integrated effect of numerical noise on the
phase space coordinates by using an effective model:

M

�
0

~Z0
ijΔx0ðxi; yi; sjÞ

�

→

�ZijβxðsjÞ
Z0
ij

�
Δx0ðxi; yi; sjÞffiffiffi

2
p : ð13Þ

The additional random elements account for the independ-
ence of both planes x and x0, while the normalization factor
1=

ffiffiffi
2

p
stems directly from the mathematical model pre-

sented in Appendix A. The effect of Eq. (13) is to create a
randomwalk [26]: At each longitudinal position sj, where a
space charge kick is applied on single particles, a random
kick is added to both phase space coordinates.
We test this ansatz in the following numerical experi-

ment. A test-particle is initialized at x ¼ 0 and x0 ¼ 0,
while NM ¼ 1000 macroparticles are distributed according
to a matched Gaussian probability density function. The
beam is tracked for 1000 turns in a constant focusing
channel of length L ¼ 1 m with a tune set to
Qx ≃Qy ≃ 0.064, while the space charge induced tune
shift is set to ΔQx ≃ ΔQy ≃ −0.005. The two-dimensional
Poisson solver uses a mesh of NG × NG ¼ 64 × 64 grid
points. The integration applies one space charge kick per
turn, such thatΔs ¼ L. The tracking is repeated n ¼ 10000
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times for the same physical conditions, but with different
random initializations of the particle distribution. Due to
numerical noise the test particle is found at different final
positions. In Fig. 3, we plot the distribution of final
positions of the test particle after 1000 turns. The distri-
bution is normalized to the number of particles found in
the center of the beam, which is the maximum of the
distribution.
The results presented in Fig. 3 show that numerical noise

affects both phase space coordinates x and βxx0 in equal
measure for a sufficiently large number of space charge
kicks.

B. Application: Single particle emittance

In order to use the random walk model, we have to
specify the spacial dependence of the fluctuations
δExðxi; yi; sjÞ. As a simplified approach we consider

δExðxi; yi; sjÞ ¼ δExð0; 0Þe
−
x2
i
þy2

i
2σ2r ; ð14Þ

with δExð0; 0; sjÞ ¼ δExð0; 0Þ the electric field fluctuation
in the center of the beam, which are, only in this first
approach, assumed to be identical for any longitudinal
position sj. Equation (14) can be considered as a simplified
model for the electric field fluctuations of a Gaussian beam,
as derived previously, see Eq. (5).
We now apply the random walk model, as given by

Eq. (13), on a single particle i, that is initialized at the phase
space position xi;0, x0i;0 and tracked by using Eqs. (8) and
(9). Following the standard theory of random walks, the
most probable position of the particle after a series of p

random kicks, is given by the position for a noiseless
tracking. Figure 3 confirms this, as the maximum of the
distribution of final positions is in the center. After p
random kicks, the variances of the particle’s phase space
positions xi;p; x0i;p scale as

hx2i;pi − hxi;pi2 ∝ pδE2
xð0; 0Þ;

hx02i;pi − hx0i;pi2 ∝ pδE2
xð0; 0Þ: ð15Þ

Each particle can be associated with a single particle
emittance

εSP;xi ¼ γxx2i þ 2αxxix0i þ βxx02i ; ð16Þ

with Twiss parameters αx, βx, γx. Here, we discuss the
effect of decorrelated numerical noise on the initial single
particle emittance εSP;xi;0 in the context of the expectation
value of εSP;xi;p, i.e., the single particle emittance after p
random kicks. Assuming that numerical noise is the
dominant cause of emittance growth, we write the expect-
ation value of εSP;xi;p as a variation of the initial single
particle emittance:

hεSP;xi;pi≃ εSP;xi;0 þ ΔεSP;xi;p: ð17Þ

Using Eqs. (15) and (16), we find the scaling

ΔεSP;xi;p ∝ pδE2
xð0; 0Þ: ð18Þ

Thus, in average, the single particle emittance grows over
many realizations of space charge kicks due to decorrelated
random fluctuations in the space charge field.

IV. NOISE AFFECTING A DISTRIBUTION
OF PARTICLES

In this section, we apply the random walk model on
each particle of the beam. We then find a scaling on
simulation parameters for noise induced diffusion. As an
application, we predict the artificial emittance growth for a
self-consistent space charge simulation for the SIS100
synchrotron at FAIR [7].

A. Effect of numerical noise on the rms-emittance

The standard deviation of electric field fluctuations
δExðx; y; sÞ is given by Eq. (5) and respectively Eq. (7)
for any particle at position x, y, s. Since this result applies
to any particle, it enables us to study the effect of
decorrelated numerical noise on the full ensemble of
particles, and in particular on the rms-emittance.
In the following, we make use of the standard definition

of the rms-emittance in the x-plane
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FIG. 3. Distribution of final positions of a test particle initial-
ized at x ¼ 0, x0 ¼ 0 after tracking in a constant focusing channel
for n ¼ 10000 different random initializations of macroparticles.
The distribution is normalized to the number of particles found in
the center.
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ε2xðsÞ ¼ hx2ihx02i − hxx0i2

¼ 1

N2
M

�XNM

i¼1

x2i
XNM

i¼1

x02i −
�XNM

i¼1

xix0i

�2�
; ð19Þ

while the discussion for the y-plane is similar. The symbol
h·i denotes the average of the particle distribution. Let

εxðsjþ1Þ be the beam emittance resulting from the applica-
tion of a space charge kick at sj and transported by Δs
to sjþ1. By using the effective transport map Eq. (11), and
with the noise modeling of Eq. (13), we predict εxðsjþ1Þ
from the beam distribution at sj. In fact, from Eq. (19) it
follows

ε2xðsjþ1Þ ¼
1

N2
M

XNM

i¼1

�
x̂iðsjþ1Þ þ

ZijβxðsjÞΔx0ðxiðsjÞ; yiðsjÞ; sjÞffiffiffi
2

p
�
2XNM

i¼1

�
x̂0iðsjþ1Þ þ

Z0
ijΔx0ðxiðsjÞ; yiðsjÞ; sjÞffiffiffi

2
p

�
2

−
1

N2
M

�XNM

i¼1

�
x̂iðsjþ1Þ þ

ZijβxðsjÞΔx0ðxiðsjÞ; yiðsjÞ; sjÞffiffiffi
2

p
��

x̂0iðsjþ1Þ þ
Z0
ijΔx0ðxiðsjÞ; yiðsjÞ; sjÞffiffiffi

2
p

��2

; ð20Þ

where the coordinates x̂iðsjþ1Þ, x̂0iðsjþ1Þ are those of the
particle transported from sj to sjþ1 in the presence of space
charge, but without noise. In the following, we derive the
artificial emittance growth averaged over many applications
of space charge kicks. For this we find, that all terms
proportional to Zij, or Z0

ij have a minor contribution to the
emittance growth, since they are in average zero with a
variance proportional to the number of space charge kicks
applied. The same argument holds true for the product ofZij
and Z0

ij, since they are statistically independent. The terms
proportional to Z2

ij, and ðZ0
ijÞ2 do not average to zero as

ðZijÞ2 ¼ ðZ0
ijÞ2 ¼ 1 ∀ i; j, and thus they dominate the

contribution to the emittance growth. All terms proportional
to ðΔx0Þ4 are much smaller than any other term in Eq. (20),
and can thus be neglected. Finally, as we consider matched
beams, we use hx2i ¼ hβ2xx02i, and therefore we find

ε2xðsjþ1Þ≃ ε̂2xðsjþ1Þ
þ hx̂2ðsjþ1ÞihðΔx0ðxðsjÞ; yðsjÞ; sjÞÞ2i: ð21Þ

Here, ϵ̂2xðsjþ1Þ is the square of the emittance of the beam
propagated without numerical noise. The right-hand side of
this equation characterizes the averaged artificial emittance
growth in one integration step; its explicit expression is
given by

Δε2xðsjþ1Þ¼hx̂2ðsjþ1ÞihfΔx0½xðsjÞ;yðsjÞ;sj�g2i

¼
�

qΔs
m0c2β2γ3

�
2

hx̂ðsjþ1Þ2ihδE2
x½xðsjÞ;yðsjÞ;sj�i:

ð22Þ

In the following, δExðx; y; sÞ as given by Eq. (5) and Eq. (7),
is used with the simplifying condition that the fluctuations
due to the bilinear interpolation are set to zero, i.e.,
ξðx; y; sÞ ¼ 1. This ansatzwell describes a finegrainedmesh.
The average of δE2

xðx; y; sÞ over x and y can be evaluated
by an integration over the particle distribution function, if

the number of macroparticles NM is large enough to
approximate the p.d.f. Using the notation σr;j ¼ σrðsjÞ,
we find for a Gaussian beam

hδE2
xðx; y; sjÞi

¼
Z

dx
Z

dyfðx; yÞδE2
xðx; y; sjÞ

¼
ffiffiffiffiffiffiffi
NG

p
NM

δE2
x;0

2πσx;jσy;j

Z
dxe

−x2

σ2
x;j

Z
dye

−y2

σ2
y;j

¼ 1

2

�
δE2

x;0

ffiffiffiffiffiffiffi
NG

p

NM

�
: ð23Þ

For a K-V distribution we find, respectively,

hδE2
xðx; y; sjÞi ¼

δE2
x;0

ffiffiffiffiffiffiffi
NG

p

NM
: ð24Þ

Using Eqs. (22), (23), and (24), we find in general

Δε2xðsjÞ ¼ Λ
ffiffiffiffiffiffiffi
NG

p
NM

�
qδEx;0

m0c2β2γ3

�
2

σ̂2x;jþ1ðΔsÞ2; ð25Þ

with Λ a coefficient that incorporates the type of distribu-
tion, with Λ ¼ 1 for a KV, and Λ ¼ 1=2 for a Gaussian. We
thus find a dependence of the noise induced emittance
growth on the number of macroparticles NM, the number of
gridpoints NG, the integration length Δs and the variance
σ2x;jþ1 of the distribution.
The factor of Λ ¼ 1=2 for a Gaussian beam can be

understood in the following way: For a K-V particle
distribution, macroparticles are equally distributed, and
the number of particles in each cell is therefore constant.
In contrast to this, macroparticles are mostly located in the
center for Gaussian beams. Therefore, the relative fluctua-
tions of the electric field δEx=Ex are smaller, compared to a
rms equivalent K—V beam.
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In this paper we intend to discuss the effect of PIC
induced noise in a situation where the beam does not
already exhibit emittance growth. Therefore, in the context
of Eq. (21), we find that ε̂2xðsjþ1Þ, the squared emittance of
the beam propagated without noise, will be equal to ε2xðsjÞ.
In addition, the treatment of a constant focusing lattice
further simplifies the formulas, as we find
hx̂2ðsjþ1Þi ¼ σ̂2r;jþ1 ¼ σ2r;j. Therefore, if the beam has no
intrinsic emittance growth, Eq. (21) becomes

ε2xðsjþ1Þ≃ ε2xðsjÞ
þ hx̂2ðsjþ1ÞihfΔx0½xðsjÞ; yðsjÞ; sj�g2i; ð26Þ

and Eq. (25) effectively provides the emittance growth
Δεx=Δs due to PIC induced decorrelated noise:

Δεx
Δs

≃ Λ
ffiffiffiffiffiffiffi
NG

p
NM

σ2x;j
2εx

�
qδEx;0

m0c2β2γ3

�
2

Δs: ð27Þ

B. Effect on the tune shift

The artificial emittance growth may create another
disadvantage in terms of an artificial change of tune-shift.
In fact, space charge forces lead to a defocusing of the beam
and thus to a change of the betatron tune Qx. For the K-V
particle distribution (unbunched) the associated tune shift is
given by

ΔQxðtÞ ¼ −
r0Np

2πβ2γ3
1

εxðtÞ
∝

1

εxðtÞ
; ð28Þ

where r0 ¼ e2=ð4πϵ0m0c2Þ is the classical particle radius.
As the initial emittance εxðt ¼ 0Þ changes due to PIC
induced noise, while the number of physical particles Np

remains constant, the associated tune shift changes by

ΔQxðtÞ ¼ ΔQxðt ¼ 0Þ εxðt ¼ 0Þ
εxðtÞ

: ð29Þ

By using the expression ε2xðtÞ ¼ ε2xðt ¼ 0Þ þ Δε2x, with
ε2xðtÞ ≫ Δε2x, we find the approximation

ΔQxðtÞ≃ ΔQxðt ¼ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δε2x
ε2xðt ¼ 0Þ

s
; ð30Þ

with the PIC induced emittance growth rate Δε2x as derived
in the previous section. This derivation is valid for Gaussian
beams as well, and the same scaling is found. However, the
space charge induced tune shift is the double, see, e.g., [27].

C. Application to the SIS100

In this section we benchmark the emittance growth
predicted by Eq. (27) with simulations performed for the

SIS100 heavy ion synchrotron [7] (without nonlinear
elements).We use theMICROMAP library [19] for tracking
the particles. The PIC solver [16–18]makes use of amesh of
NG × NG ¼ 64 × 64 grid points in a box of size 6σx × 6σy.
For rms-emittances of εx ¼ εy ¼ 7.5 mm mrad the result-
ing space charge tune shift is ΔQx ≃ −0.1686 and
ΔQy ≃ −0.1693, at tune position Qx ≃ 18.87 and
Qy ≃ 18.72. The integration step Δs is set to 42 space
charge kicks per betatron-wavelength. The results are
presented in Fig. 4, where the red dots show the emittance
growth from the simulation, while the blue line is the
theoretical prediction from Eq. (27), i.e., the random walk
model applied to the full beam.
For the simulations we use a coasting K-V beam.

Therefore, we guarantee that space charge forces are linear
and thus PIC induced numerical noise is the dominant
cause of emittance growth.
As seen in Fig. 4, the theory developed in this section

recovers the artificial emittance growth found in the
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FIG. 4. Evolution of the emittance ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2x þ ε2y

q
due to

numerical noise for a simulation with NM ¼ 10000 macropar-
ticles (top) and NM ¼ 20000 macroparticles (bottom) for a K-V
beam tracked in the SIS100 lattice. The theory developed in this
paper (blue line) predicts the artificial emittance growth in the
simulation (red dots). The beam and simulation parameters are
given in the text.
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simulation of a complex machine. For decorrelated numeri-
cal noise the random walk model can thus be used in order
to (i) understand the effect of noise on single particles, and
(ii) make predictions on the evolution of the whole
ensemble of particles.
Equation (27) can be used to find reasonable simulation

parameters NG, NM and Δs. E.g. considering a simulation
with NM1

macroparticles, where an artificial emittance
growth of Δεx;NM1

is observed, we predict that for a

simulation with NM2
macroparticles

Δεx;NM2
¼ NM1

NM2

Δεx;NM1
: ð31Þ

The scaling law, Eq. (27), can also be used to find an
optimal number of macroparticles for a different number of
grid points NG. In fact, choosing the number of macro-
particles such that

ffiffiffiffiffiffiffi
NG

p
NM

¼ const; ð32Þ

then the PIC induced emittance growth will be the same for
all pairs NG, NM, hence one can choose the most efficient
setting.
Further, the agreement of theory and simulation allows to

extrapolate the results for the SIS100 to a storage time of
one second, corresponding to 2 × 105 turns. We find, that
for the simulation setup used above, we have to use NM ≃
2.5 × 105 macroparticles, in order to limit artificial emit-
tance growth to ∼1%. If the physics case requires a higher
resolution, such that we have to double the number of grid
points NG, we make use of Eq. (32). We then find, that to
limit artificial emittance growth to ∼1% for a storage time
of one second, we have to use NM ≃ 3.5 × 105 macro-
particles. A change of the integration lengthΔs changes the
slope of artificial emittance growth linearly. Thus, if we
double Δs, we have to use double the amount of macro-
particles to obtain the same amount of noise induced
emittance growth.
For the benchmarking, we considered space charge

induced tune shifts smaller than the actual design goal
for the SIS100. We remark that for stronger space charge
forces, the number of macroparticles has to be further
increased, since the fluctuations become stronger, see
Appendix C. A dedicated survey for the estimation of
simulation parameters for certain operational scenarios will
be part of future studies.
Until now, only decorrelated numerical noise has been

considered. However, the conjoint effect of the PIC
algorithm and the particle tracker may cause correlation
in the numerical noise. A study dedicated to this effect is
presented in the following section.

V. CORRELATED NUMERICAL NOISE

In the previous section we discussed the effect of
decorrelated numerical noise on single particles and the
full beam. In this section, we study the casewhere numerical
noise is correlated. If a coasting beam is tracked through a
circular lattice, depending on the integration length Δs and
the machine tunesQx andQy, the particle ensemble returns
(close) to its initial positions after a certain integer number
m� of space charge kicks. Afterwards, the same sequence of
space charge kicks is applied again, such as the electric field
fluctuations. Thus, fluctuations of the electric field occur
periodically and are no longer random. As the periodicity of
the noise may create resonant effects, we call this a
stochastic resonance [28]. These kind of correlations may
lead to an enhanced emittance growth that exceeds the
estimates of the random walk model.

A. Stochastic resonances

In mathematical terms, correlations in numerical noise
are created if

Xm�

j¼1

ΔΦj ¼ 2πn�; ð33Þ

whereΔΦj is the intrakick phase advance in between sj and
sjþ1 and n� is an integer. We define m� as the order of the
stochastic resonance.
For a constant focusing channel, where ΔΦj ¼ ΔΦ is

constant for any j, Eq. (33) can be simplified to

m�ΔΦ ¼ 2πn�; ð34Þ
with m�, and n� coprime numbers. When this equation is
nearly satisfied, the numerical noise on the first m� space
charge kicks is completely random. However, for the
following space charge kicks, the fluctuations of the
electric field occur periodically according to

δExðxi; yi; sjÞ≃ δExðxi; yi; sj þm�ΔsÞ; ð35Þ
where, for simplicity, we assume the motion in y to be
frozen.
The recurrence of fluctuations has an important property

ifm� is an even number: Afterm�=2 space charge kicks the
phase advance is πn�, meaning that a particle i with initial
coordinates xi, yi is mirrored (antisymmetry) on the phase
space axes to x̄i, yi. In this case the periodicity relation
Eq. (35) is modified, and reads

δExðxi; yi; sjÞ≃ −δEx

�
x̄i; yi; sj þ

m�

2
Δs
�
: ð36Þ

We observe that the recurrence of the electric field
fluctuations described by Eq. (35) and Eq. (36) is limited
to a maximum number of applications R of the m� space
charge kicks. Afterwards correlations are canceled by
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accumulated noise on the particle’s positions. The persist-
ence of correlations R depends onm� and on the granularity
of the distribution that is controlled by NG, NM and σr.
Therefore, a scaling law for artificial emittance growth in
the presence of a stochastic resonance, analogous to
Eq. (25) for decorrelated numerical noise, can only be
derived by a dedicated study on the damping of correla-
tions, which is beyond the scope of this paper.
The effect of the first m� kicks can be modeled by a

random walk process, as described in Sec. IVA. The order
of the stochastic resonance m� fixes the number of random
elements in Zij and Z0

ij. Thus, for a total of Nk space charge
kicks in a simulation, if m� ≥ Nk we retrieve the random
walk. If instead m� is a small natural number, correlations
in the numerical noise are created. Depending on the
number of kicks Nk, the persistence of the correlations
R, and the orderm�, correlated noise may enhance artificial
emittance growth. This issue is discussed in the context of a
periodic random walk in Appendix B.
In the following, we outline the procedure for the two

types of fluctuations described by Eq. (35), and Eq. (36).
We start by considering numerical noise with a correlation
as described by Eq. (35). We define two random variables
Zij, Z0

ij, for 1 ≤ i ≤ NM, 1 ≤ j ≤ m�, in which Zij ¼ �1,
and Z0

ij ¼ �1 with equal probability. To model the effect of
correlated numerical noise, the random elements Zij and
Z0
ij are applied periodically R-times on all particles.
Whenm� is even, to model the noise with the property of

Eq. (36), we define two random variables Zij, Z0
ij, for

1 ≤ i ≤ NM, 1 ≤ j ≤ m�=2, in which Zij ¼ �1, and Z0
ij ¼

�1 with equal probability. In order to model the antisym-
metric property of the fluctuations, the next m�=2 random
numbers are defined by Zi;jþm�=2 ¼ −Zij and Z0

i;jþm�=2 ¼
−Z0

ij, with 1 ≤ j < m�=2. This model is directly suggested
by Eq. (A5), observing that afterm�=2 kicks the sign of aij,
and bij inverts, see Appendix A.
Therefore, m� kicks of a resonance of an even order m�

have a similar effect on a particle as the first m�=2 kicks
applied twice. This argument suggests that a resonance of
order m�=2 odd will produce a similar emittance growth as
a resonance of order m�.

B. Effect of correlations on the emittance growth

In the following, we study the properties of the corre-
lations in electric field fluctuations. For this purpose, a
coasting beam is tracked in a constant focusing channel
with machine tunes Qx ≃ 0.19 and Qy ≃ 0.24. The length
of the channel is L ¼ 3 m. For simplicity, we chose the
integration lengthΔs ¼ L. The electric field Exðx; y; sÞ and
Eyðx; y; sÞ at x ¼ y ¼ 0 is calculated each turn for a total of
1024 turns, and a spectrum is retrieved by performing a
Fourier transform of the data. In the corresponding spec-
trum, see Fig. 5, the highest peak occurs at the machine

tune position. Other frequencies are excited due to a
coupling of both planes.
Since we pursue the study of the effect of stochastic

resonances in one plane, we have to ensure that we do not
have any interference of the other plane. This can be
guaranteed by setting one of the tunes close to an integer
value. If we choose Qx ≃ 1.001, we decouple sufficiently
the x and y planes, see Fig. 6.
In order to study the effect of the intrakick phase advance

on the artificial emittance growth, we use again the constant
focusing channel with the same simulation parameters as
above. We now systematically scan the vertical tune Qy in
the range Qy ¼ 0.1–0.4, while keeping Qx ≃ 1.001 fixed.
The initial emittance in the y-plane is chosen for any
machine tune such that we have a round beam (σx ¼ σy).
For each machine tune a coasting beam is tracked for 60000
turns and the slope of emittance growth per meter is
calculated. The dependence of emittance growth on the
machine tune, and thus on the excitation of stochastic
resonances, is retrieved and shown in Fig. 7.
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FIG. 5. Spectrum analysis of the electric field in x-direction
(top) and y-direction (bottom) at x ¼ y ¼ 0. For this analysis, the
beam is tracked in a constant focusing channel with tune Qx ¼
0.19 and Qy ¼ 0.24. Peaks occur at the tune frequencies, while a
coupling of both planes excites many other smaller local peaks.
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By studying the simplified scenario of a constant
focusing channel, we guarantee a constant phase advance
in between space charge kicks. Then, stochastic resonances
are excited when a multiple of the intrakick phase advance
is an integer of 2π, see Eq. (34). For a realistic model of a
machine the scenario gets more complex, as described by
Eq. (33). The emittance growth rates, as presented in Fig. 7,
confirm the prediction given by the theory developed in this
paper. In the absence of stochastic resonances (decorrelated
numerical noise), we find a growth rate that can be
predicted by the random walk model. The emittance growth
rate has a (local) peak whenever a stochastic resonance is
hit. The lower the order of the resonance m�, the stronger
we see its effect on the emittance growth rate. Further, we
find that ifm�=2 is an odd integer, the growth rate is similar
to the one of m�, e.g., in the case m� ¼ 6.
Until now, the space charge tune shift was fixed for

each simulation. In Appendix C we find that the width of
the stop band of a stochastic resonance and the slope of

artificial emittance growth are increased for more intense
beams.

C. Change of integration length

For long-term tracking studies it is desirable to avoid the
occurrence of correlated noise to (i) minimize artificial
emittance growth and (ii) avoid uncontrollable artifacts,
like tails in the distribution. In the following, we present a
strategy to ensure that the numerical noise is decorrelated
and thus controllable by a proper choice of simulation
parameters, as discussed above.
In most simulation studies the machine tune Qy is a

multiple of the intrakick phase advance, i.e.,

Xm
i¼1

ΔΦi ¼ 2πQy; ð37Þ

because the integration length Δs is a fraction of the
machine length L. For simulations close to a machine
resonance, i.e., of type nQy ¼ N ∈ N for n ∈ N, stochastic
resonances due to PIC noise will then be excited simulta-
neously and will afflict the simulations. However, this
situation can be avoided by choosing an appropriate
integration length Δs. As a demonstration of the influence
of the integration length on the occurrence of stochastic
resonances, the study presented in Sec. V B is repeated
for an integration length Δs ¼ L · 0.95. The results are
presented in Fig. 8.
The blue line in Fig. 8 is the same as in Fig. 7, where

Δs ¼ L, while the red line corresponds to Δs ¼ L · 0.95.
The peaks due to stochastic resonances are shifted for the
modified integration length.
The effect of changing the integration length can most

easily be understood for the simplified case of a constant
focusing channel. In fact, if the integration length is set to a
fraction f of the initial one, i.e., Δs ¼ L · f, the intrakick
phase advance is changed by a factor f. Therefore, the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 S
pe

ct
ru

m

Frequency

FIG. 6. Spectrum analysis of the electric field in y-direction at
x ¼ y ¼ 0. The vertical tune is Qy ¼ 0.267 while the horizontal
tune Qx ≃ 1.001 is close to an integer value. A peak occurs at the
tune position, while other frequencies are no longer excited.

 0

 2

 4

 6

 8

 10

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

E
m

itt
an

ce
 g

ro
w

th
 (

10
-6

 m
m

 m
ra

d/
m

)

Tune Qy

5 percent shift
Reference

FIG. 8. Emittance growth rate for different vertical tunes Qy,
whileQx ≃ 1.001. The tuneQy is changed systematically in steps
of ΔQ ¼ 0.001. The integration length is changed, compared to
the blue reference line, by a factor of 0.95 (red line).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

E
m

itt
an

ce
 g

ro
w

th
 (

10
-6

 m
m

 m
ra

d/
m

)

Tune Qy

4th order

8th order

6th order 3rd order

FIG. 7. Emittance growth rate for different vertical tunes Qy,
whileQx ≃ 1.001. The tuneQy is changed systematically in steps
of ΔQ ¼ 0.001.

FREDERIK KESTING AND GIULIANO FRANCHETTI Phys. Rev. ST Accel. Beams 18, 114201 (2015)

114201-10



resonance condition, Eq. (34), is fulfilled for another tune
Q0

y given by

m�Q0
y ¼

n�

f
: ð38Þ

We can thus effectively avoid correlated noise in our
working point Qy by changing the integration length, and
hence guarantee that single particles are solely affected by
white noise. Then, artificial noise effects can be mitigated for
an optimal parameter setting obtained using Eq. (27).

VI. CONCLUSION

In this paper we developed a model for predicting the
effect of white noise on a particle beam by using an
equivalent effective field fluctuation acting on all phase
space coordinates. We use simulation results to infer the
mathematical modeling of electric field fluctuations on a
single particle in the beam, and use this model to develop a
treatment of the full beam ensemble. The inferred scaling
law as a function of the simulation parameters enables us to
estimate artificial emittance growth.
We find that for specific machine tunes, which recall

those of a machine resonance, PIC noise becomes corre-
lated. The effect of these correlations on emittance growth
is more dramatic, and we explain this unusual dynamics in
terms of stochastic resonances. Our studies for the constant
focusing channel show that the intrakick phase advance
plays a crucial role on numerical noise as it defines the
tunes at which stochastic resonances appear. This under-
standing is used to develop a strategy to avoid or minimize
correlations in numerical noise, hence avoiding stochastic
resonances. The theory developed in this paper can thus be
applied to control unwanted noise effects in tracking
simulations of high intensity beams.
Last, we remark that in our studies we decoupled the PIC

induced numerical noise in the transverse planes by setting
the horizontal tune Qx close to an integer value. However,
in more realistic applications, the effect of coupling cannot
be neglected, and certainly will introduce corrections.
Investigations on the coupling between the planes will
be a part of future studies.
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APPENDIX A: EFFECT OF THE INTRAKICK
PHASE ADVANCE ON NUMERICAL NOISE

In the following, the combined effect of linear tracking
and numerical noise is studied. For simplicity, we discuss
the constant focusing channel.

Let us consider a single particle initialized at position xi,
x0i, and track it including the space charge through a
constant focusing channel. Due to numerical noise, a
fluctuation Δx0ðxi; x0i; sjÞ is induced at any longitudinal
position sj, where a space charge kick is applied. In totalNk

space charge kicks are applied, i.e., the particles are tracked
for a distance d ¼ ΔsNk. The numerical noise at position sj
affects the particle’s phase space coordinates at sNk

by

MNk−j
�

0

~Z0
ijΔx0ðxi; x0i; sjÞ

�
: ðA1Þ

We call the first component of this vector aij and the second
bij, which can be interpreted as random kicks on xi resp. x0i
due to numerical noise at s ¼ sj. Since we specialize on a
constant focusing channel, we can decompose the transfer
matrix M into M ¼ T−1RðΔΦÞT with

T ¼
 1ffiffiffiffi

βx
p 0

0
ffiffiffiffiffi
βx

p
!
; ðA2Þ

and

RðΔΦÞ ¼
�

cosðΔΦÞ sinðΔΦÞ
− sinðΔΦÞ cosðΔΦÞ

�
: ðA3Þ

Using l ¼ NK − j, we simplify Eq. (A1) to

RðΔΦlÞT
�

0

~Z0
ijΔx0ðxi; x0i; sjÞ

�
¼ T

�
aij
bij

�
: ðA4Þ

The random elements aij, bij can be described by

aij ¼ ~Z0
ij sin ðΔΦlÞβxΔx0ðxi; x0i; sjÞ;

bij ¼ ~Z0
ij cos ðΔΦlÞΔx0ðxi; x0i; sjÞ: ðA5Þ

A test-particle initialized at xiðs0Þ, x0iðs0Þ and tracked
through the constant focusing channel accumulates the
random elements aij, bij. For Nk space charge kicks the
particle coordinates are

xiðsNk
Þ ¼ x̂iðsNk

Þ þ
XNk

j¼1

aij ¼ x̂iðsNk
Þ þ ai;

x0iðsNk
Þ ¼ x̂0iðsNk

Þ þ
XNk

j¼1

bij ¼ x̂0iðsNk
Þ þ bi; ðA6Þ

where x̂iðsNk
Þ, x̂0iðsNk

Þ are the final coordinates of the test
particle for a noise-free tracking. The random elements aij,
bij, as derived in Eq. (A5), depend on the intrakick phase
advance ΔΦ. For most intrakick phase advances ΔΦ the
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cumulated numerical noise remains small, since the con-
tributions aij resp. bij are averaged to zero, i.e., haii ≈ 0

and resp. hbii ≈ 0. We note that ai (resp. bi) is a new
random variable, which is the result of the summation of
the Nk random variables aij (resp. bij). The random
variable ai has a variance of

σ2ai ¼
XNk

j¼1

σ2aij ; ðA7Þ

because the random variables aij are decorrelated. A direct
summation of this equation yields

σ2ai ¼ Nk

�
1ffiffiffi
2

p βxΔx0
�
2

; ðA8Þ

which retrieves the property of the randomwalk. Therefore,
we can substitute each aij with the random kick

aij → Zij
1ffiffiffi
2

p βxΔx0; ðA9Þ

with Zij ¼ �1 random, to retrieve the same final statistical
properties after Nk kicks. The same argument applied to the
quantity bi shows that each bij can be substituted with

bij → Z0
ij

1ffiffiffi
2

p Δx0; ðA10Þ

with Z0
ij ¼ �1 random and statistically independent from

the set Zij. This explains the effective random walk model
used in Eq. (13).
The random walk approach is not applicable anymore, if

m�ΔΦ ¼ 2πn�; ðA11Þ

because a correlation is created. We show the breaking
down of the random walk approach with a numerical
experiment. For this, we define a sequence of random
numbers ~Zij with the correlation

~Zij ¼ ~Ziðjþ4Þ 1 ≤ j ≤ Nk − 4; ðA12Þ

which resembles correlated numerical noise in the presence
of a stochastic resonance. The cumulated effect for a
constant fluctuation Δx0 for Nk ¼ 1000 is given by ai
and bi, as described in Eq. (A6). The averaged cumulated
numerical noise haii and hbii for 100 random configura-
tions of Z0

ij following Eq. (A12), is shown in Figs. 9 and 10
for intrakick phase advances 0 < ΔΦ < 2π.
We observe the cumulation of numerical noise for certain

intrakick phase advances, i.e., jhaiij ≫ 0, and jhbiij ≫ 0.
These results can be interpreted in the following way. If the
condition for a stochastic resonance, see Eq. (A11), is not
fulfilled, then the elements aij, bij are random and thus the
random walk model can be applied. Since both parameters
are decoupled and are in average equivalent, the model
given by Eq. (13) is justified. However, in the presence of
correlations this model is not valid anymore and the noise
has to be treated differently, see Sec. V.

APPENDIX B: PERIODIC RANDOM WALK

To explain the effect of a periodic randomwalk, we study
the following simplified case. A single particle with the one
dimensional coordinate x is affected by Nk random kicks of
strength Δx ¼ 1 in arbitrary units. We further enforce a
periodicity of m�, i.e., we define a set of random numbers
Xi ∈ f−1; 1g with i ∈ f1; 2;…m�g that is applied R times.
The number of repetitions R is chosen to fulfill NK ¼ m�R,
with NK constant. Since the averaged position after many
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FIG. 9. Averaged cumulated numerical noise haii for 100
initializations of ~Z0

ij following Eq. (A12). Peaks appear at phase
advances ΔΦ ¼ π=2, and ΔΦ ¼ 3π=2.
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FIG. 10. Averaged cumulated numerical noise hbii for 100
initializations of ~Z0

ij following Eq. (A12). Peaks appear at phase
advances ΔΦ ¼ 0.0, ΔΦ ¼ π=2, ΔΦ ¼ π, ΔΦ ¼ 3π=2, and
ΔΦ ¼ 2π.
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random kicks is hxi ≈ 0, the averaged second order moment
can be associated with the variance.
The dependence of hσ2xi on m� is retrieved in a

numerical experiment. For this purpose, σ2x is evaluated
for 100 random initializations of Xi for each m� ∈
f1; 2;…2000g. The results are presented in Fig. 11.
Fitting the numerical data, we find for m� < Nk the

scaling of the averaged second order moment on m�

hσ2xi ∝
1

m� : ðB1Þ

For m� ≥ Nk, the averaged second order moment becomes
independent of m� since we apply only Nk kicks in this
example. These results show that for a periodic random
walk the diffusion is enhanced. The smaller the periodicity
m�, the larger is the diffusion.
When applying these results to the situation of a

stochastic resonance created by PIC tracking, we have to
consider that correlations in the numerical noise are washed
out due to the numerical noise itself. The scaling, as given
in Eq. (B1), may suggest that the periodic random walk
could be an upper bound on the diffusion, because no loss
of memory is considered. If the correlations are completely
washed out, the diffusion type will the one of a random
walk. This defines the lower bound on the diffusion, as
indicated by the blue line in Fig 11.

APPENDIX C: EFFECT OF THE STRENGTH OF
SPACE CHARGE ON THE EXCITATION OF

STOCHASTIC RESONANCES

The excitation of stochastic resonances is certainly
affected by the strength of the space charge force. To gain
a quantitative knowledge, we repeat the study presented in
Sec. V B for different beam currents and thus different
space charge forces. The artificial emittance growth is

investigated in the vicinity of the third order stochastic
resonance, which is presented in Fig. 12.
As we learn from Fig. 12, an increase of the beam

current, and thus the space charge force, enhances artificial
emittance growth and leads to a broadening of the stop-
band of the stochastic resonance. The increase of artificial
emittance growth can be explained by the increase of the
driving force of the resonance, i.e., of the space charge.
At the same time, by increasing the space charge force we
enlarge the tune spread of the beam. Therefore, the range of
tunes Qy affected by the stochastic resonance grows larger.
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