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We propose to use of an undulator with the guiding axial magnetic field as a “kicker” forming a bunch of
electron gyro-oscillators with a small spread in the axial velocity. The cyclotron emission from the bunch
leads to losing oscillatory velocity of electron gyrorotation, but it does not perturb the axial electron
velocity. This effect can be used for transformation of minimization of the spread in electron axial velocity
in the undulator section into minimization of the spread in electron energy in the cyclotron radiation
section.
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I. INTRODUCTION

Fast development of the technique of photocathode
electron photoinjectors has resulted in creation of compact
and accessible sources of moderately relativistic (several
MeV) dense (up to 1 nC in a ps pulse) electron bunches
[1–3]. Methods providing a decrease in the energy spread
(cooling) are actual from the point of view of various
applications of such electron bunches, including free-
electron lasers (FELs) [4–6]. However, cooling methods
are developed now basically for electron beams of very
high energies [7–12]. As for moderately relativistic (several
or tens MeV) high-dense short electron bunches, the strong
Coulomb interaction of the particles results in a require-
ment for a short length of a cooling system. Therefore, in
this situation, the cooling system should possess resonant
properties, namely, a strong dependence of parameters of
the particles inside the cooling system on their input
energies.
An example of such a resonant system is a periodic

magnetistatic undulator immersed in a uniform guiding
axial magnetic field [13]. Such undulator systems are used
in mm-wavelength FELs [4,14] to decrease sensitivity of
these devices to the velocity spread. An important pecu-
liarity of such a system is a resonant character of the
dependence of the undulator velocity on the electron
energy. This dependence has the “normal” character
(namely, the decreasing one) at relatively low values of
the guiding magnetic field, when the electron cyclotron
frequency corresponding to this field is lower than the
bounce frequency of electron oscillations in the periodic
undulator field. In contrast, at high axial magnetic fields

this dependence has the “abnormal,” increasing character,
so that particles with higher input energies obtain bigger
undulator velocities.
It is shown in [13] that the abnormal dependence of the

undulator velocity on the electron energy can be used to
provide “axial cooling” of the electron bunch; this term
means minimization of the spread in axial electron velocity
inside the undulator due to transformation of the input
spread in axial velocity into the spread in undulator
velocity. It is mentioned also in [13] that the axial cooling
can be, in principle, transformed into “real” cooling of
the electron bunch (minimization of the spread in total
electron energy) due to cyclotron emission from gyrorotat-
ing electrons, which obtain their oscillatory velocities in the
axial cooling undulator (so that the undulator is used as a
“kicker” imparting electrons their rotatory velocities). In
this paper, we study this idea in detail. In Sec. II, we
describe the process of axial cooling of a moderately
relativistic electron bunch in a magnetostatic undulator
with guiding axial magnetic field, as well as discuss the use
of an rf-wave undulator in the case of higher electron
energies. Cyclotron emission from a short electron bunch,
which is kicked in the axial cooling undulator, as well as
motion of electrons in the radiated field is studied in
Sec. III.

II. AXIAL COOLING UNDULATOR

A system composed by a periodic magnetic field
(undulator) and a uniform magnetic field can be used to
provide axial cooling of an electron bunch, namely, a
significant decrease in the spread in axial electron velocity
by means of “transforming” this spread into the spread in
transverse velocity [13]. This is possible, if the dependence
of the velocity of undulator electron oscillations on the
axial electron velocity, VuðV∥Þ, has the abnormal character,
∂Vu=∂V∥ > 0.
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Let us consider a scheme shown in Fig. 1(a). Electrons
move along the axial magnetic field and enter into a
circularly polarized undulator, where they get some rota-
tory velocity. In order to avoid appearance of “parasitic”
cyclotron oscillations, the undulator includes an input
section, where its field adiabatically slowly grows with
the coordinate. If any electron at the input of the system
possesses only axial velocity, V0 ¼ V̄0 þ δV0, then axial
velocity in the regular undulator region is determined by the
energy conservation low: V2

∥ ≈ V2
0 − V2

u, where Vu is the
velocity of electron rotation in the undulator. Thus,

V2
∥ ≈ V̄2

0 þ 2V̄0 × δV0 − V2
uðV̄0Þ − α × δV0;

α ¼ ∂V2
u=∂V∥:

The condition of the axial cooling, α ¼ 2V̄, corresponds to
the minimal spread in V∥. This condition is independent on
the initial spread, δV0.
Evidently, in order to provide axial cooling at moderate

undulator fields, one should use the close-to-resonance
range of parameters, where ∂Vu=∂V∥ is great enough
[Fig. 1(b)]. In addition, ∂Vu=∂V∥ should be positive, so
that initial axial velocity excess, δV0, should be compen-
sated by greater rotatory velocity, Vu. This is possible due
to the presence of the axial magnetic field, B0 ¼ zB0. In
this case, a particle represents a free cyclotron oscillator
(with the frequency Ωc ¼ eB0=mcγ), which is under acting
of the periodic undulator force (with the bounce frequency
Ωu ¼ huV∥, where hu is the undulator wavelength). Due to
this fact, the dependence VuðV∥Þ has a resonant character

[Fig. 1(b)], namely, is a decreasing function at Ωu > Ωc
and an increasing function at Ωu < Ωc [4,14]. We
should operate in the region Ωu < Ωc, where electrons
with higher input energies get bigger oscillatory velocities
(∂Vu=∂V∥ > 0); this is similar to the “negative-mass”
effect well known in theory of cyclotron accelerators
[15,16] and cyclotron resonance masers [17–24].
We consider electron motion along a helical trajectory

in the axial uniform magnetic field, B0 ¼ zB0, and in the
quasiperiodic transverse field of a circularly polarized
undulator, Bx þ iBy ¼ BuðzÞ expðihuzÞ. The motion equa-
tion for the complex transverse momentum of a particle,
pþ ¼ px þ ipy ¼ γβþ, has the following form:

dpþ
dz

¼ ihc
pþ
p∥

þ ihuKðzÞ expðihuzÞ: ð1Þ

Here, p ¼ γβ, β ¼ V=c, γ ¼ ð1 − β2Þ−1=2 is the relativistic
electron Lorentz factor, hc ¼ eB0=mc2 ¼ γΩc=c is the
normalized axial magnetic field, and KðzÞ ¼ −eBu=
humc2 is the normalized undulator field (the so-called
undulator factor at the zero axial field B0 ¼ 0); its depend-
ence on the axial coordinate describes a smooth enter of
particles into the undulator. In the simplest model, electrons
have only axial velocities at the beginning of the system,
β0 ¼ zβ, with some spread, β̄0 − δβ0 < β0 < β̄0 þ δβ0.
If the entry into the undulator is smooth enough, then the

growth of the forced undulator oscillations does not induce
the free cyclotron oscillations of particles. Therefore, in the
regular region K ¼ const the transverse electron velocity is
described as follows:

βþ ¼ pþ=γ0 ¼ βu expðihuzÞ; ð2Þ

where

βu ¼ K=γ0Δ ð3Þ

is the velocity of electron rotation in the undulator field,
and Δ ¼ 1 −Ωc=Ωu is the mismatch between the electron
cyclotron frequency and the bounce frequency of the
undulator oscillations. The initial axial velocity is related
with the axial velocity in the regular undulator by the
energy conservation law:

β20 ¼ β2∥ þ β2u: ð4Þ

Evidently,

β∥ ≈ fðβ̄0Þ þ ðβ0 − β̄0Þf0; ð5Þ

where function β∥ ¼ fðβ0Þ is determined by Eqs. (4)
and (2). Having differentiated Eq. (4), one obtains

B0

e

V0

undulator

V ||
Vu

|Vu|

V ||
Ωc < ΩuΩc > Ωu

(b)

(a)

FIG. 1. (a) Minimization of the spread in axial velocity in a
circular-polarized magnetostatic undulator with guiding magnetic
field. (b) Resonant dependence of the undulator velocity on the
axial electron velocity.
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β0 ¼ β∥f0 − K2

ðγ0 − hc=β∥huÞ3
�
γ30β0 þ

hc
hu

f0

β2∥

�
: ð6Þ

According to Eq. (5), the spread in β∥ is minimal, when
f0 ¼ ∂β∥=∂β0 ¼ 0. In the ultrarelativistic limit, γ ≫ 1, this
leads to the following condition [13]:

K2 ≈ −Δ3: ð7Þ

In this paper, the axial cooling undulator is considered as
a specific kicking system, which imparts to electrons the
velocity of free cyclotron rotation in the axial homogeneous
magnetic field. According to Eq. (1), if the undulator
section possesses a sharp exit, then the exit of electrons
from the undulator leads to transformation of the forced
oscillations in the undulator field, βþ ¼ βu expðihuzÞ, into
free cyclotron oscillations,

βþ ¼ β⊥ exp

�
i
Z

Ωcdt

�
;

with the same oscillatory velocity β⊥ ¼ βu (Fig. 2). Thus,
at the beginning of the radiation section the electron bunch
has some spread in cyclotron rotation velocity, but the
spread in axial velocity is minimal. The particles lose their
transverse velocities due to the radiation, such that in the
optimal situation electrons possess only axial velocity at the
end. It is important that axial velocities stay constant during
this process (see Sec. III). Thus, if the spread in axial
velocity is minimized in the beginning of the radiation
section [Fig. 1(a)], then the radiation process results in
minimization of the spread in the total velocity (Fig. 2).
According to Eq. (7), in order to provide axial cooling at

moderate undulator fields,K < 1, one should use the close-
to-resonance range of parameters, jΔj < 1. In the case of a
magnetostatic undulator, the axial magnetic field should be
so high that the corresponding electron cyclotron frequency

should be of the order of (and slightly greater than) the
undulator bounce frequency,

Ωc ⪞ Ωu: ð8Þ

This formula leads to the following estimation:

B0 ⪞
γ

λu
; ð9Þ

where the axial magnetic field B0 and the undulator period
λu are measured in Tesla and cm, respectively. At relatively
low electron energies (γ ∼ 10), the undulator period λu ¼
5 cm corresponds to a moderate (especially for pulsed
systems) axial magnetic field of B0 ≈ 2 T.
A possible way to decrease the magnetic field required at

higher electron energies is the use a powerful rf pulse
propagating together with electrons instead of a magneto-
static undulator. In the case of the rf undulator, the bounce
frequency is determined as follows:

Ωu ¼ ωu − huV∥ ¼ ωuð1 − βgr;uβ∥Þ; ð10Þ

where βgr;u ¼ Vgr;u=c ¼ chu=ωu is the normalized group
velocity of the undulator wave. In this situation, the
Doppler conversion factor leads to a significant decrease
in the value of the required magnetic field:

B0 ⪞
γ

λu
ð1 − βgr;uβ∥Þ; ð11Þ

where λu is the wavelength measured in cm.

III. CYCLOTRON RADIATION SECTION

We consider the cyclotron rf emission from a short
electron bunch moving in a circular cross-section wave-
guide [Fig. 3(a)]. The electron move along helical trajec-
tories is due to gyrorotations of particles in the guiding
magnetic field B ¼ zB0 around the waveguide axis. In
order to provide coherent character of the spontaneous
radiation, the axial bunch length, Le, should be shorter than
the characteristic wavelength of the radiated wave, Le < λ.
In this situation, the bunch radiates a wave packet with an
axial length, which is significantly longer that the bunch
length [Fig. 3(b)]. It will be shown further that the optimal
(from the points of view of both the rate and the quality of
the cooling process) situation is realized, when the radiated
wave packet propagates together with the electron bunch,
such that the axial electron velocity, V∥, should be close to
the group velocity of the rf wave, Vgr.
Let us introduce a polar system of coordinates,

xþ iy ¼ reiϕ. Since every electron rotates around the
waveguide axis, its polar phases coincides with the gyro-
rotation phase, and the complex oscillatory velocity is
determined as follows:

B0

e

undulator cyclotron
radiation

V ||
Vu

V ||
V⊥

FIG. 2. Transformation of the axial cooling (minimization of
the spread in axial electron velocity) in the undulator section into
the real cooling (minimization of the spread in electron energy)
in the radiation section.
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Vþ ¼ iV⊥ expðiϕÞ; ϕ ≈ ϕ0 þ
Zt
0

Ωcdt:

The interaction between an axis-encircling electron
beam and a mode of a circular waveguide at the funda-
mental cyclotron resonance is possible, if the azimuthal
index of the mode is equal to 1 [25,26]. We consider a
wave, which has a fixed transverse structure corresponding
to the lowest possible TE1;1 transverse mode. The electric
and magnetic components of the field of this mode

E ¼ −1
c

∂A
∂t ; B ¼ rotA

are described by the following vector potential:

A ¼ ReAðz; tÞFðr;ϕÞ expðiω0t − ih0zÞ; ð12Þ

where

F ¼ −i
k0k⊥

rot

�
z0J1ðk⊥rÞ expð−iϕÞ

�

is the membrane function corresponding to the mode TE1;1.
In these formulas, ω0 is a basic frequency, k0 ¼ ω0=c, and
h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2⊥

p
is the axial wave number corresponding to

the basic frequency, which is chosen so that it satisfies
exactly the cyclotron resonance condition,

ω0 ¼ h0V∥ þΩc0; ð13Þ

where Ωc0 ¼ eB0=mcγ0 is the initial cyclotron frequency.
It is important that the emission from a short electron bunch
possesses a nonmonochromatic spatiotemporal character.
We suppose that the frequency spectrum of the radiated rf
signal is narrow, δω ≪ ω0. These two statements are

described by the assumption that the complex rf wave
amplitude in Eq. (12), Aðz; tÞ, is a slow function of both the
axial coordinate and the time.

A. Equations of electron motion

Let us notice that Eq. (12) describes the rf field, which is
similar to a plane circularly polarized wave in the center of
the waveguide (in the point of injection of the electron
bunch):

Eþjr→0 ≈
i
2
Aðz; tÞ expðiω0t − ih0zÞ; Bþ ≈ i

h0
k0

Eþ:

ð14Þ

In this case, the equation for the relativistic electron
energy,

mc2
dγ
dz

¼ − e
V∥

ReEþV�þ; ð15Þ

leads to the following normalized equation:

1

k0

dγ
dz

¼ − p⊥
2p∥

Reaðz; tÞ expðiφÞ; ð16Þ

where a ¼ eA=mc2k0 is the dimensionless slow wave
amplitude, and φ ¼ ω0t − h0z − ϕ is the wave phase on
the basic frequency.
The equation for the axial electron momentum has the

following form:

mc
dp∥

dz
¼ − e

cV∥
ImBþV�þ: ð17Þ

This equation together with Eqs. (14) and (15) leads
to the following simple relations between changes in the
energy and in the axial momentum [15,16,27–31]:

dp∥

dz
¼ βgr

dγ
dz

; ð18Þ

where βgr ¼ Vgr=c ¼ h0=k0 is the group velocity of the
radiated wave normalized to the speed of light. This fact has
an evident quantum interpretation, namely, the elementary
act of radiation of the wave by a particle is emission of a
quant with energy ℏω and axial momentum ℏh, so
that δp∥=δγ ¼ βgr.
Equation (18) leads to the following equation describing

the change in the axial electron velocity:

dβ∥
dz

¼ d
dz

�
p∥

γ

�
¼ dγ

dz
×
βgr − β∥

γ
: ð19Þ

If the group velocity coincides with the axial electron
velocity, βgr ¼ β∥, then the axial electron velocity is

λ

Le

rf  wave packet

B0

x

y

ϕ

e-bunch

e

V ||
V ⊥

V ||V ⊥

V gr≈V ||

(a)

(b)

FIG. 3. (a) Motion of the electron bunch of gyrorotating
electrons inside the waveguide of the radiation section, and
(b) a short electron bunch on the background of the radiated
rf-wave packet in the case of the group synchronism.
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constant, and the cyclotron radiation leads to the loss in the
transverse component of the electron velocity only. Let us
suppose that at the end of the radiation section the particles
lose all their initial oscillatory velocity. If the axial cooling
(minimization of the spread in β∥) is provided at the input
of the radiation section, then the radiation process trans-
forms this axial cooling into the real cooling (minimization
of the spread in the total energy) (Fig. 2).
The equation for the change in the normalized transverse

momentum of a particle follows from the general relativ-
istic relation γ2 ¼ 1þ p2⊥ þ p2

∥ and Eq. (20):

dp⊥
dz

¼ 1

p⊥
d
dz

ðγ2 − p2
∥Þ ¼

dγ
dz

×
γð1 − βgrβ∥Þ

p⊥
: ð20Þ

Having taken into account Eq. (16), one obtains

1

k0

dp⊥
dz

¼ − 1 − βgrβ∥
2β∥

× Reaðz; tÞ expðiφÞ:

Since βgr ¼ β∥ and β∥ ¼ const, in the ultrarelativistic
approximation one obtains

1

k0

dp⊥
dz

≈
−1
2γ20

× Reaðz; tÞ expðiφÞ: ð21Þ

In the right-hand part of the following equation for the
electron phase with respect to the radiated wave,

1

k0

dφ
dz

¼ 1

k0

d
dz

ðω0t − h0z − ϕÞ ¼ 1

β∥
− βgr − Ωc0

β∥ω0

×
γ0
γ
;

only the last term varies in the process of the rf-wave
radiation. Having taken into account both cyclotron reso-
nance condition (13) and group synchronism condition
βgr ¼ β∥, one obtains

1

k0

dφ
dz

¼ − Ωc0

β∥ω0

×

� ∂
∂γ

γ0
γ

�
× ðγ − γ0Þ þ Δ ≈

γ − γ0
γ30

þ Δ:

ð22Þ

Let us assume that at the beginning of the radiation
section, z ¼ 0, electrons have the same phases of their
cyclotron rotation, ϕ. Then the initial phase of a particle,
φðz ¼ 0Þ ¼ φ0 ¼ ω0t0, is determined by the time of its
entry into the radiation section. Thus, the phase size of the
electron bunch is determined by the ratio between its length
and the characteristic wavelength of the radiated wave:

0 ≤ φ0 ≤ δφ0; δφ0 ¼ 2πLe=λ: ð23Þ

In Eq. (22), the mismatch of the cyclotron resonance,
Δ ¼ 1

β∥
− βgr − Ωc0

β∥ω0
, describes the possible effect of

the spread in electron velocity of the process of the

electron-wave interaction. If the spread is absent, then one
should put Δ ¼ 0 in Eq. (22). It is seen from the formula for
δ ¼ 0 (and well known from the cyclotron-resonance maser
theory [29–31]) that the most important effect making worse
the cyclotron interaction of relativistic electrons with a
traveling wave is the spread in axial electron velocity, β∥.
Thus, the use of the axial cooling undulator as a kicker
imparting to electrons their cyclotron oscillations is a way to
solve the problem of sensitivity of the cyclotron maser to the
spread in axial electron velocity. Therefore, the cyclotron
maser with the axial cooling kicker proposed in this paper
can be attractive not as a way to provide a cooling cyclotron
radiator, but also from the more general point of view,
namely, the realization of a relativistic electron cyclotron
source of a short-wavelength radiation as itself.
One should notice that equations of electron motion used

in our model do not include the rf space-charge effects. An
analytical description of these effects for amoving bunch of a
complicated form (a piece of helix) is difficult, but there are
two reasons to neglect these effects (at least in the simplest
model). Both of themare due to the fact that in themechanism
of electron bunching in the cyclotron masers significantly
differ from this mechanism taking place in the electronmaser
based with the axial electron bunching, namely, free-electron
masers and Cherenkov (Smith-Purcell) devices. In cyclotron
masers, the electron bunching the 2D character, namely, this
is a combination of the axial bunching (caused by the
dependence of the axial electron velocity on the energy)
and the azimuthal bunching (caused by the dependence of the
electron cyclotron velocity on the energy). It is important that
axial and azimuthal bunching mechanisms have “opposite
signs,” so that there is a partial compensation of these two
kinds of bunching; this compensation is described by the
difference ð1 − βgrβ∥Þ ≈ γ−20 in Eq. (22).
Thus, the first reason to neglect the rf space-charge effects

is their weakness. Actually, due to the partial compensation
of the two different kinds of bunching, a “compensation”
factor ð1 − βgrβ∥Þ ≈ γ−20 appears in the space-charge param-
eter in the theory of the cyclotron resonance maser [24].
Moreover, in the case of the cyclotron excitation of a wave
with the group velocity comparable with the speed of light,
there is one more effect weakening the rf space-charge
forces. This is a complicated (helical) spatial structure of the
electron bunches [18–24] caused by rotating character of
the excited wave. According to the theory [24], this effect is
described also by a factor of ≈γ−20 . Finally, as compared to
the cases of both free-electron and Cherenkov masers, the
space-charge parameter in the case of the cyclotron maser is
smaller by a factor of γ−40 . The second reason to neglect the
rf space-charge effects is the “negative-mass” character of
these effects [18–24]. Since the azimuthal bunching is
stronger than the axial one, the quasi-Coulomb interaction
of electrons leads not to their mutual repulsion (as it
happens free-electron and Cherenkov masers) but to their
effective phase attraction.

CYCLOTRON RADIATION COOLING OF A SHORT … Phys. Rev. ST Accel. Beams 18, 110702 (2015)

110702-5



B. rf wave emission

In order to describe the spatiotemporal evolution of
the slow rf wave amplitude aðz; tÞ, we consider the wave
equation,

1

c2
∂2A
∂t2 − ∂2A

∂z2 − Δ⊥A ¼ 4π

c
j;

with the electron current density,

jþ ¼ jx þ ijy ¼ ρhVþi × fðz − V∥tÞ × δðrÞ:

Here, ρ is the electron density, hVþi is the averaged
complex transverse velocity, h� � �i denotes averaging over
all electrons having the same z-coordinate, and fðz − V∥tÞ
describes the position of the electron bunch: f ¼ 1 at
0 ≤ z − V∥t ≤ Le, otherwise f ¼ 0. The wave equation
leads to the following equation for the slow rf wave
amplitude:

1

c2
∂2a
∂t2 þ 2iω0

c2
∂a
∂t þ 2ih0

∂a
∂z −

∂2a
∂z2

¼ ik20
2I
NIA

ð1 − β2grÞ × ĵ × fðz − V∥tÞ: ð24Þ

Here, N ≈ 0.404 is the norm of the TE1;1 transverse
mode, and ĵðz; tÞ ¼ hβ⊥ expð−iφÞi is the electron-current
harmonic.
Similar to works [32,33] devoted to the cyclotron

superradiation of a short electron bunch, we introduce
the following normalized variables:

ζ ¼ k0 × ðz − V∥tÞ; τ ¼ ω0 × ðt − V∥z=c2Þ: ð25Þ

Then, Eq. (24) is transformed as follows:

∂2a
∂τ2 −

∂2a
∂ζ2 þ 2is

∂a
∂τ − 2iε

∂a
∂ζ ¼ ig

2I
NIA

× ĵ × fðζÞ: ð26Þ

Here, g¼ð1−β2grÞ=ð1−β2∥Þ, s ¼ ð1 − βgrβ∥Þ=ð1 − β2∥Þ,
and ε ¼ ðβ∥ − βgrÞ=ð1 − β2∥Þ are factors determined by
the axial electron velocity and the group velocity of the
radiated wave.
Further, we consider the situation, when the group

synchronism condition is fulfilled at least approximately,
βgr ≈ β∥. In this case, g ≈ s ≈ 1, whereas the factor describ-
ing the slippage of the wave with respect to electrons,

ε ≈ γ20ðβ∥ − βgrÞ; ð27Þ

can be small. In addition, we consider emission from a very
short electron bunch, Le ≪ λ. In this case, function fðζÞ
can be approximated as follows [see also Eq. (23)]:

fðζÞ ≈ k0LeδðζÞ ≈ δφ0δðζÞ;

and wave equation (26) is reduced as follows [32,33]:

2i
∂a
∂τ þ 2iε

∂a
∂ζ −

∂2a
∂ζ2 ¼ iG × ĵðτÞ × δðζÞ; ð28Þ

with G ¼ 2I
NIA

δφ0. Let us notice that in this delta-function
approximation, the electron current harmonic is determined
by the same formula,

ĵðτÞ ¼ hβ⊥ expð−iφÞi; ð29Þ

but h� � �i denotes averaging over all electrons of the bunch.
Thus, in order to provide the start of the spontaneous rf-
wave emission, the initial phase size of the electron bunch
should be small enough: δφ0 < 2π and, therefore, Le < λ.
In the left-hand part of Eq. (28), ∂2a

∂τ2 has been omitted, as

this is small as compared to ∂a
∂τ. As for the term

∂2a
∂ζ2 cannot be

omitted if the slippage factor ε is small. Otherwise, in the
approximation of a large slippage factor (ε ∂a

∂ζ ≫
∂2a
∂ζ2), one

easily obtains the following solution of Eq. (28):

a ≈
G
2ε

× ĵðτ − ζ=εÞ; ð30Þ

which describes quasistationary spontaneous emission
from the electron bunch.
In the general case, the solution of Eq. (28) cam be

obtained after the following substitution:

aðζ; τÞ ¼ a1ðζ; τÞ expð−iε2τ=2 − iεζÞ:

This transforms Eq. (27) into the Schrödinger equation,

2i
∂a1
∂τ − ∂2a1

∂ζ2 ¼ Sðζ; τÞ; ð31Þ

with the following source:

Sðζ; τÞ ¼ iG × ĵðτÞ × expðiε2τ=2þ iεζÞ × δðζÞ:

At the zero initial condition, a1ðτ ¼ 0; ζÞ ¼ 0, the
solution of Eq. (31) can be found analytically [34],

a1ðζ; τÞ ¼
1

2
ffiffiffiffiffi
iπ

p
Zt
0

1ffiffiffiffiffiffiffiffiffiffiffi
τ − τ0

p
�Zþ∞

−∞
Sðζ0; τ0Þ

× exp½− ffiffiffiffi
2i

p
ðζ0 − ζÞ2=4ðτ − τ0Þ�dζ0

�
dτ0:

This leads to the following formula for the slow rf
wave amplitude in the point of the electron beam,
abðτÞ ¼ aðτ; ζ ¼ 0Þ:
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abðτÞ ¼ expð−iατÞ ×
ffiffi
i

p
G

2
ffiffiffi
π

p
Zτ
0

ĵðτ0Þffiffiffiffiffiffiffiffiffiffiffi
τ − τ0

p expðiατ0Þdτ0; ð32Þ

where α ¼ ε2=2 describes a small slippage of the radiated rf
wave with respect to the electron bunch. In the simplest
approximation of the exact group synchronism (α ¼ 0) and
the stationary state of the electron bunch (ĵ ¼ const ¼ ĵ0),
Eq. (32) reduces to the following formula:

abðτÞ ¼
ffiffi
i

p
Gffiffiffi
π

p ĵ0 ×
ffiffiffi
τ

p
: ð33Þ

Let us compare solutions (30) and (33). If the difference
between the wave group velocity and the electron axial
velocity is significant, then the radiated wave leaves the
electron bunch region fast, so that different “quanta”
emitted from the bunch in different moments of time are
radiated independently [Fig. 4(a)]. In this case, the rf wave
emission has a quasistationary character [abðtÞ ≈ const]
described by Eq. (30). In contrast, if the group synchronism
takes place (βgr ¼ β∥), then quanta emitted in different
moments of time do not leave the bunch region, so that the
rf field is accumulated close to the bunch [Fig. 4(b)];
according to Eq. (33), this is described by the growth of the
rf wave amplitude, abðtÞ ∝

ffiffi
t

p
. This is analogous to the

superradiation effects, studied both theoretically and exper-
imentally for various types of electron masers [32,33].
Evidently, the use of this superradiant regime should lead to
a faster rate of the loss of the transverse electron velocity in
the radiation process. Thus, the group synchronism regime
is required to provide both conservation of the axial
electron velocity (this is required for the “proper” trans-
formation of the “axial velocity cooling” into the “energy

cooling” in the process of the cyclotron emission) and to
increase of the rate of this process.

C. Estimations and numerical simulations

In equations of the electron motion (21) and (22), the
transition to normalized variables ðζ; τÞ [see Eq. (25)] can
be provided in the following way:

1

k0

d
dz

≈
1

k0

� ∂
∂zþ

1

V∥

∂
∂t
�

¼ 1 − β2∥
β∥

∂
∂τ ≈ γ−20

∂
∂τ :

Thus, Eqs. (21) and (22) are transformed as follows:

∂p⊥
∂τ ≈

−1
2

× ReabðτÞ expðiφÞ;
∂φ
∂τ ≈

γ − γ0
γ0

; ð34Þ

with the initial conditions

p⊥ðτ ¼ 0Þ ¼ p⊥0 ¼ γ0β⊥0; φðτ ¼ 0Þ ¼ φ0; ð35Þ

where the initial phases are distributed uniformly over
interval described by Eq. (23). The electron energy is
related with the transverse momentum by the general
relativistic relation γ2 ¼ 1þ p2⊥ þ p2

∥; in the case of
β∥ ¼ const, this leads to the following formula:

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2⊥
1 − β2∥

s
: ð36Þ

Let us use the “superradiant” approximation (33) for the
rf wave amplitude, abðτÞ, as well as the approximation of a
small phase size of the electron beam, δφ0 → 0. Moreover,
we assume that φ ¼ const ¼ 0, so that the radiation process
does not result in a significant change in the electron energy
(and, therefore, in the electron phase); this is true in the case
of small enough initial transverse momentum. Then one
obtains

p⊥ðτÞ ≈ γ0β⊥0 − β⊥0G

3
ffiffiffiffiffiffi
2π

p τ3=2: ð37Þ

The normalized time τ ¼ ω0ðt − V∥z=c2Þ, which corre-
sponds to a particle with the axial coordinate z ¼ V∥t, is
related to the length of the path of this particle, L, as
follows:

τ ≈ γ−2 × 2πL=λ:

Therefore, Eq. (37) leads to the following condition for
the length of the radiated section, L, which is required to
provide the loss of the whole electron transverse momen-
tum, p⊥ðLÞ ¼ 0:

e

rf
V gr < V ||

V ||

(a)
z

t1 < t2 t2 < t3 t3

a(z)

e

rf
V gr ≈V ||

||V

(b)

z
t=t1

t1

t=t2

t1

t2

t=t3

t1
t2
t3

a(z)

t=t3

a(z)
a(z)

FIG. 4. (a) Portions of the rf wave radiated by the electron
bunch in different moments of the time t1 < t2 < t3 and char-
acteristic forms of the wave packet (a) in the case, when the group
velocity of the radiated waveguide wave is smaller than the axial
electron velocity, and (b) in the case of the group synchronism
between electrons and the radiated wave.
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�
L
λ

�
3=2

×
Le

λ
×

I
IA

× γ−40 ×
8π2

3N
¼ 1. ð38Þ

As an example, we consider an electron bunch with the
total charge 1 nC and the duration 1 ps; this corresponds
to I ¼ 1 kA and Le ¼ 0.3 mm. We assume also Le ¼ λ=3,
so that the wavelength of the radiated wave is λ ≈ 1 mm.
For these parameters, estimation (38) is reduced as
follows:

L=λ ≈ γ8=30 : ð39Þ

In the case of a 5 MeV electron bunch (γ0 ≈ 10), the
radiation section length amounts to L ∼ 500λ ¼ 50 cm. An
increase in the electron energy up to γ0 ≈ 50 results in
L ∼ 35000, λ ¼ 35 m.
Let us notice that parameters mentioned above corre-

spond to a waveguide diameter of 6 mm at γ0 ≈ 10 and to
a waveguide diameter of 3 cm at γ0 ≈ 50. This is true in
the case of the lowest TE1;1 operating transverse mode;
naturally, the system could be more oversized, if the
“operating” group synchronism condition βgr ¼ β∥ is
organized for a higher transverse mode. In this situation,
it is natural (at least, in the simplest model) to neglect the
transverse-position-dependent effects (wakefields, inhomo-
geneity of the transverse structure of the radiated wave),
which could be the source of an additional spread in
electron energy.
Estimations (38) and (39) are followed from formula

(33), which is obtained in the approximation of the constant
transverse electron velocity, β⊥ ≈ β⊥0. More important,
estimation (38) is obtained in the approximation of a small
phase size of the electron bunch, δφ0 → 0. This approxi-
mation is true, when the wavelength significantly exceeds
the bunch length, λ ≫ Le. However, according to Eq. (38),
an increase in the wavelength leads to the increase in the
radiation section length. On the other hand, if the bunch
phase size is not small, then electrons with different phases
have a different rate of the radiation loss of their transverse
velocities. At the same time, in order to provide minimi-
zation of the spread in energy, one should provide the
situation, when all electrons lose their oscillatory velocity
almost in the same point.
In order to study this problem, we solve numerically

motion equations (34)–(36) together with formula (32)
for the rf wave amplitude. We introduce the normal-
ized “transverse kinetic energy” of a particle, w⊥ ¼
ðβ⊥=β⊥0Þ2. Since β∥ ¼ const in the radiation process,
and the spread in initial axial velocity has been minimized
at the beginning of this process, the spread in relativistic

electron energy, γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2∥ − β2⊥

q
, is determined by

the spread in w⊥:

δγ

γ0
≈

1

γ0

∂γ
∂ðβ2⊥Þ δðβ

2⊥Þ ¼
p2⊥0

2
δw⊥:

Figures 5 and 6 show results of numerical simulations for
an electron bunch with γ0 ¼ 10, I ¼ 1 kA and Le ¼ λ=3,
when the initial phase size of the bunch is quite large
δφ0=2π ¼ 1=3, and the initial transverse momentum
imparted by the kicking undulator is γ0β⊥0 ¼ 0.3. Solid
curves in Fig. 5 illustrate averaged (over the whole electron
ensemble) transverse kinetic energy hw⊥i, rf wave ampli-
tude in the point of the electron bunch and the averaged
change in gamma factor, hγ − γ0i=γ0, versus the axial
coordinate of the bunch, z=λ ¼ γ2τ=2π, in the case of
the exact group synchronism, βgr ¼ β∥, when the rf wave
amplitude is determined by formula (32) at α ¼ 0. The
behavior of transverse kinetic energies w⊥ of electrons
with different initial phases 0 ≤ φ0 ≤ δφ0 is illustrated in
Fig. 6(a).
In the beginning of the radiation process, the rf wave

amplitude increases as predicted by formula (33),

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

0 200 400 600 800

0 200 400 600 800
Axial coordinate, z/λ

0

0.05

<w⊥ >

|ab |

<γ0-γ>/γ0

(a)

(b)

(c)

FIG. 5. Results of simulations for the electron energy γ0 ¼ 10:
(a) averaged transverse electron energy hw⊥i, (b) rf wave
amplitude in the point of the electron bunch, and (c) the averaged
change in the total electron energy versus the axial coordinate of
the bunch. Solid curves illustrate the case of the exact group
synchronism (α ¼ 0), and dashed curves correspond to the case
of the optimal mismatch of the group synchronism (α ¼ 0.072).
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abðzÞ ∝
ffiffiffi
z

p
. However, abðzÞ goes to saturation, when the

loss in the averaged transverse energy of electrons, hw⊥i,
becomes significant. Estimations (38) and (39) predict
quite exactly the radiation section length corresponding
to the maximal loss in the averaged transverse energy, hw⊥i
[Fig. 5(a)]. However, this loss is not total; the particles of
the bunch lose approximately 70% of their initial transverse
energy. The reason has been mentioned above, namely, this
is a different rate of the emission of electrons with different
initial phases, φ0. According to Fig. 6, every particle loses
its initial transverse energy, w⊥ ¼ 0, at some point of the
axial coordinate. After this point, the cyclotron emission of
this particle is changed to the absorption of the energy of
the radiated wave propagating together with the particle,
such that the transverse energy of this electron increases.
Since in the case of the exact group synchronism (βgr ¼ β∥,
α ¼ 0) the points of the total loss of the transverse energy,
w⊥ ¼ 0, are very different for particles with different initial
phases [Fig. 6(a)], the averaged transverse energy of all
electrons of the bunch, hw⊥i, cannot reach zero.
In order to solve this problem, one should provide the

situation, when the group synchronism condition is fulfilled
only approximately, βgr ≈ β∥. In this case, the slippage
factor α in formula (32) for the rf wave amplitude is not
equal to zero. If the bunch phase size is not too large, δφ0,
then there is an optimal value of the slippage factor, α; at

this value, the averaged transverse energy of all electrons
of the bunch, hw⊥i, becomes very close to zero at some
point of the radiation section [Fig. 5(a)]. After this point,
the radiation process should be stopped (for instance, by
changing the group velocity of the radiated waveguide
mode).
In the case of γ0 ¼ 10 and Le ¼ λ=3, the optimal value

of the slippage factor amounts to α ¼ 0.072. In this case, at
the length of the radiation section z=λ ¼ 600–800, trans-
verse energies of all electrons of the bunch becomes close
to zero [Fig. 6(b)]. This length is slightly longer than the
optimal length in the case of the exact group synchronism
(α ¼ 0); according to Fig. 5(b), this is due to a smaller
amplitude of the rf wave in the case, when there is a
slippage between the electron bunch and the radiated rf
signal. As for the loss in the total electron energy caused by
the cooling radiation hγ − γ0i=γ0, this is as small as several
percent [Fig. 5(c)].
Figures 7 and 8 are similar to Figs. 5 and 6, respectively,

but they illustrate the cooling process for an electron bunch
with a higher energy, γ0 ¼ 50. As compared to the case of

FIG. 6. Results of simulations for the electron energy γ0 ¼ 10.
Transverse kinetic energies w⊥ of electrons with different initial
phases versus the axial coordinate of the bunch in the cases of
(a) the exact group synchronism (α ¼ 0) and (b) the optimal
mismatch of the group synchronism (α ¼ 0.072).

0 50000 100000

0 50000 100000

0 50000 100000
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0.2

0.4

0.6

0.8

1
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0
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<w⊥ >

|ab |
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<γ0-γ>/γ0

FIG. 7. Results of simulations for the electron energy γ0 ¼ 50:
(a) averaged transverse electron energy hw⊥i, (b) rf wave
amplitude in the point of the electron bunch, and (c) the averaged
change in the total electron energy versus the axial coordinate of
the bunch. Solid curves illustrate the case of the exact group
synchronism (α ¼ 0), and dashed curves correspond to the case
of the optimal mismatch of the group synchronism (α ¼ 0.014).
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γ0 ¼ 10, the interaction of more heavy electrons with the
radiated wave is weaker; correspondingly, the required
length of the radiation region is longer. In this situation, the
same phase size of the electron bunch (Le ¼ λ=3) leads to a
significantly bigger spread in the electron transverse
energy, w⊥, arisen in the radiation process. According to
Fig. 8(a), in the case of the exact group synchronism
(α ¼ 0) at z=λ > 50000 the bunch contains both of the
emitting electrons, which have lost almost the whole of
their initial transverse energies, and absorbing particles
with significantly increased transverse energies. In this
situation, the radiation provides the loss of only about half
of the initial transverse energy of the whole bunch, hw⊥i
[Fig. 7(a)]. However, even in this case the proper choice of
the slippage factor (α ¼ 0.014) provides the situation,
when all electrons of the bunch lose their transverse
energies almost simultaneously [Fig. 8(b)], and the aver-
aged transverse energy of the bunch becomes close to zero
[Fig. 7(a)]. Similar to the case of γ0 ¼ 10, the loss in the
total electron energy caused by the cooling radiation
amounts to several percent [Fig. 7(c)].
Let us discuss these results from the point of view of

sensitivity of the proposed system to electron bunch
parameters. Although the spread in axial electron velocity
is minimized by the kicker (axial cooling undulator), the
spread in initial electron energy (in electron cyclotron
frequency) exists. The effect of this spread can be easily

estimated from Eq. (22). The spread in initial electron
energy, δγ, induces the following spread in mismatch:

δΔ ≈
Ωc0

β∥ω0

δγ

γ0
≈
�
1

β∥
− βgr

�
δγ

γ0
≈
δγ

γ30
:

The radiation process is sensitive to this spread, if the
spread induces a significant spread in electron phases
during the motion of the electron bunch through the entire
radiation section, k0L × δΔ ≈ 2π. This leads to the follow-
ing simple estimation for the permissible spread in electron
energy:

δγ

γ0
≈ γ20

λ

L
: ð40Þ

In the case of γ0 ¼ 10, the radiation section length
amounts to L=λ ¼ 600–800 [Fig. 5(a)]; this leads to a
reasonable value of the permissible energy spread
(δγ=γ0 ≈ 13–17%). As for the case of γ0 ¼ 50, the
radiation section length L=λ ≈ 105[Fig. 7(a)] corresponds
to a permissible energy spread of δγ=γ0 ≈ 2.5%. According
to estimations (39) and (40), the further increase in the
energy should lead to a decrease in the relative permissible
energy spread, δγ=γ0 ∝ γ−2=30 .
An important peculiarity of the electron-wave inter-

action illustrated by Figs. 5 and 7 is the slowness of this
process at the end region, where transverse momenta of
all electrons are small and, therefore, their interaction
with the rf wave (either the further radiation or the
absorption of the wave energy) is weak. Due to this fact,
the length of the radiation section is not strongly fixed.
In the case of γ0 ¼ 10 the length can be varied within a
range of L=λ ¼ 600–800 [Fig. 5(a)], such that the
possible relative variation is as big as δL=L ≈ 30%.
This fact makes the cooling process weakly sensitive to
nonstability (jitter) of parameters of the electron bunch.
Actually, according to Eq. (38), the permissible varia-
tions of the electron current in the bunch, δI, and of the
bunch length, δLe, are related with a variation of the
radiation section length as follows:

δI
I
¼ δLe

Le
≈
3

2

δL
L

≈ 45%:

In the case of γ0 ¼ 50 the radiation section length can be
varied within a range of L=λ ¼ ð1.0–1.2Þ × 105 [Fig. 7(a)];
thus corresponds to δL=L ≈ 18% and to the following
permissible variations of the electron bunch parameters:
δI=I ¼ δLe=Le ≈ 27%. Evidently, the further increase in
the electron energy should lead to an increase in the
sensitivity of the cooling process to a jitter of bunch
parameters.
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FIG. 8. Results of simulations for the electron energy γ0 ¼ 50.
Transverse kinetic energies w⊥ of electrons with different initial
phases versus the axial coordinate of the bunch in the cases of
(a) the exact group synchronism (α ¼ 0) and (b) the optimal
mismatch of the group synchronism (α ¼ 0.014).
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IV. CONCLUSION

In this paper, we propose to use of an undulator with the
guiding axial magnetic field as a kicker, which transforms a
bunch of rectilinear electrons into a bunch of particles,
which move in a uniform axial magnetic field and perform
free cyclotron oscillations. At definite conditions, such a
kicker can form a bunch with very special properties,
namely, the initial (at the input of the kicker) spread in
electron energy can be transformed into the spread in
oscillatory (transverse) velocity, whereas the spread in the
axial velocity is minimized at the output of the kicking
system. This effect (axial cooling) can be provided, if the
cyclotron electron frequency corresponding to the axial
magnetic field exceeds the bounce frequency of electron
oscillations in the periodic undulator field. In this situation,
electrons with higher input energies obtain bigger undu-
lator oscillatory velocities. In the case of a magnetostatic
undulator, the value of the axial magnetic field required to
provide this “negative-mass” effect is proportional to the
electron gamma factor. The problem of high magnetic
fields required to provide axial cooling at high electron
energies can be solved by the use of an rf-wave undulator
copropagating together with the electron bunch.
The cyclotron emission from the electron bunch leads to

losing oscillatory velocity of electron gyrorotation in a
magnetic field. However, if the group velocity of the
radiated wave (waveguide mode) coincides with the axial
electron velocity (the group synchronism condition), then
the cyclotron emission does not lead to a change in the axial
electron velocity. This effect can be used for transformation
of the axial cooling of the electron bunch (minimization of
the spread in electron axial velocity) in the undulator
section into the “real cooling” (minimization of the spread
in electron energy) in the cyclotron radiation section. The
group synchronism condition is needed also to provide the
maximal rate of the radiation and, therefore, of the cooling
process. Another condition of the fast cooling process is the
coherent character of the cyclotron radiation; this occurs
if the length of the electron bunch is smaller than the
wavelength of the radiated wave.
It is important that the cooling of the electron bunch is

provided, if all electrons lose their transverse velocities
almost in the same point of the cyclotron radiation section.
This is provided automatically, if the phase size of the
electron bunch is small (the bunch length is negligibly short
as compared to the wavelength of the radiated wave).
However, shorter wavelengths are more attractive from the
point of view of the length of the radiation section. It is
shown in this paper that even in the case when the bunch
length is comparable with the wavelength, the simultaneous
loss of the transverse velocities of all electrons of the bunch
can be provided by an optimization of parameters of the
microwave system of the radiation section.
The process of cyclotron radiation cooling studied in this

paper is strongly dependent on the energy of electrons. First

of all, the energy determines the length of the radiation
region required to provide the entire loss of the transverse
energy of all particles. In the example considered in the
paper, this length amounts to several hundreds of wave-
lengths in the case of a 5 MeV electron bunch, whereas an
increase in the electron energy up to 50 MeV results in
length as long as 105 wavelengths. Naturally, longer
lengths of the radiation section cause stronger sensitivity
of the cooling process to the spread in electron energy and
to a jitter of the electron bunch parameters. Evidently, this
is the main factor limiting the usage of the proposed
approach for high-energy electron bunches.
In conclusion, we could state that the system described in

this paper can be interesting from the point of view of not
only electron cooling, but also as a way for creation of a
submillimeter-wavelength source of coherent cyclotron
radiation from a relativistic electrons bunch. Actually,
the proposed way to impart cyclotron rotation to electrons
in the axial cooling undulator is attractive, as it provides
minimization of the spread in axial electron velocity; the
strong sensitivity to this kind of spread is the “Achilles
heel” of relativistic electron cyclotron masers with a high
Doppler–up-conversion of the electron cyclotron fre-
quency. The use of the coherent spontaneous character
of the cyclotron radiation (instead of the stimulated
emission) is also attractive, as it provides a high efficiency
and a high rate of the extraction of the kinetic electron
energy. In addition, the phase of the radiated rf signal is
fixed by the short electron bunch; this property can be
useful for some applications.
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