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We consider the calculation of electromagnetic fields generated by an electron bunch passing through a
vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or
cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where
the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For
such structures, we derive a Fourier representation of the wake potentials through one-dimensional
functions. A new numerical approach for calculating the wakes in such structures is proposed and
implemented in the computer code ECHO(2D). The computation resource requirements for this approach are
moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical
examples obtained with the new numerical code are presented.
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I. INTRODUCTION

The interaction of charged particle beams and the
vacuum chamber environment can be quantified using
the concept of impedance or wakefield [1]. In order to
calculate electromagnetic fields in accelerators several
different numerical approaches have been suggested and
implemented in computer codes. Such calculations for
complicated three dimensional structures, however, remain
a challenge even for today’s parallel computers. The
approaches suggested in papers [2–6] allow one to obtain
reliable results for rotationally symmetric and general
three-dimensional structures even when using a personal
computer. However, fully three dimensional calculations
can be cumbersome and require long computation times. In
contrast, for rotationally symmetric structures, the model-
ing is much simpler, the execution time is much shorter, and
the required computational resources are relatively modest.
Many three-dimensional vacuum chamber components

used in particle accelerators can be well-approximated with
structures of rectangular cross section whose height can
vary as function of longitudinal coordinate but whose width
and side walls remain fixed. Two examples of such
geometry are shown in Fig. 1: (i) a corrugated structure
that can be used as a dechirper [7], and (ii) a rectangular
tapered collimator. Another example of great interest
without symmetry in vertical direction is a vacuum cham-
ber in a bunch compressor. Calculation of the wakefields

for such structures can be greatly simplified by expanding
the field generated by the beam into Fourier series. As it
turns out, each Fourier harmonic can be solved separately,
and the wakefield calculated as a sum of their contributions.
This reduces the original 3D problem into a number of 2D
ones, each of which requires much less computing resour-
ces than the original problem.
In this paper we derive the equations for the Fourier

harmonics and propose a computational scheme for their
solution. The scheme was implemented in a computer code
that we call ECHO(2D).
The paper is organized as follows. In Sec. II, we apply

the Fourier transform in the horizontal direction (the

FIG. 1. Structures of constant width: (a) dechirper, (b) tapered
collimator.
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direction of constant width), and derive a system of
equations for the Fourier harmonics. In Sec. III, we prove
that the longitudinal wake function satisfies the Laplace
equation with respect to the coordinates of the source
particle. In Sec. IV, we show that, in the general case, the
wakefield of each harmonic can be described by four scalar
functions of one variable. The description is further sim-
plified in Sec. V where we assume that the entire structure
has a horizontal symmetry plane, and then analyze the
longitudinal and transverse wakefields near the system axis.
An important symmetry relation for the wake function is
established in Sec. VI. In Secs. VII and VIII we present a
numerical algorithm for solving equations derived in Sec. II.
We describe here in details a new hybrid conformal scheme
for structures with walls of finite conductivity. Several
numerical examples obtained with the computer code
ECHO(2D) are described in Sec. IX. The results of the paper
are summarized in Sec. X.

II. PROBLEM FORMULATION AND FOURIER
EXPANSION

We consider a bunch of particles moving with the
velocity of light c through a metallic structure comprising
an incoming pipe, a transition or cavity, and an outgoing
pipe, an example of which is shown in Fig. 2. The bunch is
characterized by the charge distribution ρ and the electric
current density j ¼ cρ. We assume that the bunch is moving
along a straight line parallel to the longitudinal axis of the
system, and we neglect the influence of the wakefields on
the bunch’s motion. Our problem is to find the electric and
magnetic fields E, H, in the domain Ω which is bounded
transversally by metallic walls, defined by the boundary ∂Ω
of the domain Ω. We need to solve Maxwell’s equations
with the boundary conditions:

∇×H ¼ ∂
∂tDþ j; ∇×E ¼ −

∂
∂tB;

∇ ·D ¼ ρ; ∇ ·B ¼ 0;

B ¼ μH; D ¼ ϵE; r ∈ Ω;

Eðt ¼ 0Þ ¼ E0; Hðt ¼ 0Þ ¼ H0; r ∈ Ω̄ ¼ Ω ∪ ∂Ω;
n×E ¼ Zs � ðn×HÞ; x ∈ ∂Ω; ð1Þ

where E0, H0, is an initial electromagnetic field in the
domain Ω̄, n is a unit vector normal to the surface ∂Ω, Zs is

a surface impedance and the asterisk means the operation of
convolution. While we consider the propagation of beams
through vacuum, for the generality of the computational
algorithm we included in Eqs. (1) arbitrary dielectric
constant ϵ and magnetic permittivity μ.
We choose a coordinate system with y in the vertical and

x in the horizontal directions; the z coordinate is directed
along the longitudinal axis of the system. The structures
considered in this paper have constant width 2w and a fixed
location of the perfectly conducting side walls (in the
x-direction).
The charge density is localized within the interval

0 < x < 2w and vanishes at the ends of the interval,
ρð0; y; zÞ ¼ ρð2w; y; zÞ ¼ 0. Such a function can be
expanded in Fourier series

ρðx; y; zÞ ¼ 1

w

X∞
m¼1

ρmðy; zÞ sinðkx;mxÞ; kx;m ¼ π

2w
m;

ρmðy; zÞ ¼
Z

2w

0

ρðx; y; zÞ sinðkx;mxÞdx: ð2Þ

It follows from the linearity of Maxwell’s equations,
Eqs. (1) and Eq. (2), that the components of electromag-
netic field can be represented by infinite sums:0

B@
Hx

Ey

Ez

1
CA ¼ 1

w

X∞
m¼1

0
B@

Hx;m

Ey;m

Ez;m

1
CA sinðkx;mxÞ;

0
B@

Ex

Hy

Hz

1
CA ¼ 1

w

X∞
m¼1

0
B@

Ex;m

Hy;m

Hz;m

1
CA cosðkx;mxÞ: ð3Þ

For each mode number m we can write an independent
system of equations

∂
∂yHz;m −

∂
∂zHy;m ¼ jx;m þ ∂

∂t Ex;mϵ;

∂
∂zHx;m þ kx;mHz;m ¼ jy;m þ ∂

∂t Ey;mϵ;

− kx;mHy;m −
∂
∂yHx;m ¼ jz;m þ ∂

∂t Ez;mϵ;

∂
∂yEz;m −

∂
∂z Ey;m ¼ −

∂
∂t Hx;mμ;

∂
∂z Ex;m − kx;mEz;m ¼ −

∂
∂t Hy;mμ;

kx;mEy;m −
∂
∂yEx;m ¼ −

∂
∂t Hz;mμ;

kx;mHx;mμþ
∂
∂yHy;mμþ

∂
∂zHz;mμ ¼ 0;

− kx;mEx;mϵþ
∂
∂yEy;mϵþ

∂
∂zEz;mϵ ¼ ρm: ð4ÞFIG. 2. Charged particle bunch moving through an accelerating

structure.
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Hence we have reduced the 3D problem, Eqs. (1), to an
infinite set of independent 2D problems, Eqs. (4). The
modal expansion Eqs. (3) was used earlier, for example, in
[8,9] for solving Maxwell’s equations in the frequency
domain.

III. LONGITUDINAL WAKE AS A
HARMONIC FUNCTION

Let us consider a line-charge beam with vanishing
transverse dimensions,

ρðx0; y0; x; y; sÞ ¼ Qδðx − x0Þδðy − y0ÞλðsÞ;
jzðx0; y0; x; y; sÞ ¼ cρðx0; y0; x; y; sÞ; ð5Þ

where x0, y0, define the transverse offset of the beam, s ¼
z − ct is the local longitudinal coordinate in the bunch,Q is
the bunch charge and λðsÞ is the longitudinal bunch profile
[for a point charge, λðsÞ ¼ δðsÞ]. The longitudinal wake
potential W∥ at point ðx; y; sÞ is defined as [1]

W∥ðx0; y0; x; y; sÞ ¼ Q−1
Z

∞

−∞
½Ezðx; y; z; tÞ�t¼ðz−sÞ=cdz;

ð6Þ
where the electric field on the right-hand side is the solution
to Maxwell’s equation with the sources of Eqs. (5) (this
field, of course, is also a function of x0 and y0 omitted in the
arguments of Ez for brevity).
It is well known [10] that the longitudinal wake potential

satisfies the Laplace equation for the coordinates x, y, of the
witness particle

� ∂2

∂x2 þ
∂2

∂y2
�
W∥ðx0; y0; x; y; sÞ ¼ 0: ð7Þ

In order to express the wake potential in structures of
constant width through one-dimensional functions we need
to prove that the longitudinal wake potential satisfies also
the Laplace equation with respect to the coordinates x0, y0,
of the source particle. This statement will actually be
proven below for arbitrary structures without any restric-
tions on the structure geometry. The only requirement
imposed on the system is that the incoming and outgoing
waveguides have perfectly conducting walls.
The proof is based on the directional symmetry relation

between the wake potential W∥ for the case when the
particle travels through the system in the positive z

direction, and the wake potential Wð−Þ
∥ corresponding to

the case when the particle travels through the same system
but in the negative z direction. It was shown in Ref. [11]
that the two wake potentials are related by

Wð−Þ
∥ ðr2; r1; sÞ −W∥ðr1; r2; sÞ ¼ 2cZeðr1; r2ÞλðsÞ; ð8Þ

where

Zeðr1; r2Þ ¼
ϵ0
c

�Z
SA

ds∇ϕAðr1; rÞ · ∇ϕAðr2; rÞ

−
Z
SB

ds∇ϕBðr1; rÞ ·∇ϕBðr2; rÞ
�
; ð9Þ

ϵ0 is the permittivity of vacuum, r1 ¼ ðx0; y0Þ and r2 ¼
ðx; yÞ are two dimensional vectors, and ϕA, ϕB, are the
Green functions for the Laplacian in the incoming and
outgoing pipes with cross-sections, SA, SB:

ΔϕAðri; rÞ ¼ −ϵ−10 δðr − riÞ; r ∈ SA;

ϕAðri; rÞ ¼ 0; r ∈ ∂SA;
ΔϕBðri; rÞ ¼ −ϵ−10 δðr − riÞ; r ∈ SB;

ϕBðri; rÞ ¼ 0; r ∈ ∂SB; i ¼ 1; 2; ð10Þ

where ∂S is the boundary of S. Note that r1 and r2 are
offsets of, respectively, the leading and the trailing particles
inW∥, while r2 is the offset of the leading particle, and r1 is

the offset of the trailing particle in Wð−Þ
∥ . Note also that,

according to the general property of the wake potentials (7),

Wð−Þ
∥ satisfies the Laplace equation

� ∂2

∂x20 þ
∂2

∂y20
�
Wð−Þ

∥ ðx; y; x0; y0; sÞ ¼ 0: ð11Þ

With the help of Green’s first identity (n is the outward
pointing unit vector normal to the line element dl),

Z
S
∇f ·∇ψds ¼

Z
∂S
f∂nψdl −

Z
S
fΔψds;

we can rewrite Eq. (8) as

Wð−Þ
∥ ðr2; r1; sÞ −W∥ðr1; r2; sÞ
¼ 2λðsÞ½ϕBðr1; r2Þ − ϕAðr1; r2Þ�; ð12Þ

where we have used the symmetry of Green’s functions,
ϕAðr1; r2Þ ¼ ϕAðr2; r1Þ, ϕBðr1; r2Þ ¼ ϕBðr2; r1Þ. We now
apply the Laplacian operator to the coordinates x0, y0 in
Eq. (12) and use relation (11) to obtain

� ∂2

∂x20 þ
∂2

∂y20
�
W∥ðx0; y0; x; y; sÞ ¼ 0: ð13Þ

This proves that the wake potential, in addition to being a
harmonic function with respect to the coordinates of the
trailing particle, is also a harmonic function with respect to
the coordinates of the leading particle. To our knowledge,
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this general property of wakefields has not been previously
reported in the literature.

IV. WAKE POTENTIAL REPRESENTATION IN
STRUCTURES OF CONSTANT WIDTH

It is well known [10,12,13] that for rotationally sym-
metric structures the wake potential can be represented
through one dimensional functions, with only one function
for each azimuthal mode number m,

W∥ðx0; y0; x; y; sÞ ¼
X∞
m¼0

WmðsÞrm0 rm cos½mðθ − θ0Þ�;

x0 ¼ r0 cosðθ0Þ; y0 ¼ r0 sinðθ0Þ;
x ¼ r cosðθÞ; y ¼ r sinðθÞ: ð14Þ

As it turns out, a similar, comparably simple representation
exists for the wake potential in structures of rectangular
cross section and constant width; however, in the latter case
four one-dimensional functions are needed for each mode
number m.
Substituting Eq. (5) into (2) we find for the charge

distribution

ρðx0; y0; x; y; sÞ ¼
1

w

X∞
m¼1

ρmðy0; y; sÞ sinðkx;mx0Þ sinðkx;mxÞ;

ρmðy0; y; sÞ ¼ Qδðy − y0ÞλðsÞ: ð15Þ

It then follows from Maxwell’s equations (4) that all
components of the fields will be proportional to
sinðkx;mx0Þ and using Eqs. (3) and (6) we find

W∥ðx0; y0; x; y; sÞ

¼ 1

w

X∞
m¼1

Wmðy0; y; sÞ sinðkx;mx0Þ sinðkx;mxÞ: ð16Þ

If we insert representation (16) into Eq. (7), we obtain the
one-dimesional equation

∂2

∂y2Wmðy0; y; sÞ − ðkx;mÞ2Wmðy0; y; sÞ ¼ 0; ð17Þ

which has a general solution of the form

Wmðy0; y; sÞ ¼ Wc
mðy0; sÞ coshðkx;myÞ

þWs
mðy0; sÞ sinhðkx;myÞ: ð18Þ

Finally from Eq. (13) it follows that functions Wc
mðy0; sÞ

and Ws
mðy0; sÞ satisfy equations

∂2

∂y20W
c
mðy0; sÞ − ðkx;mÞ2Wc

mðy0; sÞ ¼ 0;

∂2

∂y20W
s
mðy0; sÞ − ðkx;mÞ2Ws

mðy0; sÞ ¼ 0: ð19Þ

These equations can again be easily integrated with the
result:

W∥ðx0; y0; x; y; sÞ

¼ 1

w

X∞
m¼1

Wmðy0; y; sÞ sinðkx;mx0Þ sinðkx;mxÞ; ð20Þ

where

Wmðy0; y; sÞ ¼ ½Wcc
m ðsÞ coshðkx;my0Þ

þWsc
m ðsÞ sinhðkx;my0Þ� coshðkx;myÞ

þ ½Wcs
m ðsÞ coshðkx;my0Þ

þWss
m ðsÞ sinhðkx;my0Þ� sinhðkx;myÞ: ð21Þ

Thus, we have proven that, in structures of constant width,
for each mode number m four functions are needed to
completely describe the longitudinal wake potential. These
functions can be calculated as follows

Wcc
m ¼ Wmð0; 0; sÞ; Wsc

m ¼ 1

kx;m

∂
∂yWmð0; 0; sÞ;

Wcs
m ¼ 1

kx;m

∂
∂y0Wmð0; 0; sÞ;

Wss
m ¼ 1

ðkx;mÞ2
∂2

∂y∂y0Wmð0; 0; sÞ; ð22Þ

where the mth modal component of the wake potential

Wmðy0; y; sÞ ¼ Q−1
Z

∞

−∞
½Ez;mðy; z; tÞ�t¼ðz−sÞ=cdz ð23Þ

is excited by a charge distribution that does not depend
on x,

ρmðy0; y; sÞ ¼ Qδðy − y0ÞλðsÞ: ð24Þ

With a knowledge of the longitudinal wake we can
calculate the transverse wakes. For example, the vertical
wake potential, Wy, can be easily found through the
Panofsky-Wenzel theorem [10,14],

∂
∂sWyðx0; y0; x; y; sÞ ¼

∂
∂yW∥ðx0; y0; x; y; sÞ: ð25Þ

In the next section we will analyze both the longitudinal
and the transverse wakes assuming that the structure under
consideration has a symmetry axis.

I. ZAGORODNOV, K. L. F. BANE, AND G. STUPAKOV Phys. Rev. ST Accel. Beams 18, 104401 (2015)

104401-4



V. STRUCTURES WITH HORIZONTAL
SYMMETRY PLANE

Let us consider a structure of constant width 2w that also
has a vertical symmetry plane, at y ¼ 0. Structures in
Figs. 1(a) and (b) possess this symmetry; hence, they have a
symmetry axis located at x ¼ w, y ¼ 0. Due to the
symmetry, the wake potential satisfies the equation

W∥ðx0; y0; x; y; sÞ ¼ W∥ðx0;−y0; x;−y; sÞ; ð26Þ

and Eq. (21) simplifies:

Wmðy0; y; sÞ ¼ Wcc
m ðsÞ coshðkx;my0Þ coshðkx;myÞ

þWss
m ðsÞ sinhðkx;my0Þ sinhðkx;myÞ: ð27Þ

Note that

Wmðy0; y; sÞ ¼ Wmðy; y0; sÞ: ð28Þ
Let us consider the transverse wakes in such structures.

We first introduce the integrated wake functions (some-
times called the step function response)

Sccm ¼
Z

s

−∞
Wcc

m ðs0Þds0; Sssm ¼
Z

s

−∞
Wss

m ðs0Þds0: ð29Þ

It then follows from (25) that the transverse wake function
can be written as

Wyðx0;y0; x;y; sÞ

¼ 1

w

X∞
m¼1

kx;mWy;mðy0;y; sÞ sinðkx;mx0Þ sinðkx;mxÞ; ð30Þ

Wxðx0;y0;x;y;sÞ

¼ 1

w

X∞
m¼1

kx;mWx;mðy0;y;sÞsinðkx;mx0Þcosðkx;mxÞ; ð31Þ

where

Wy;mðy0; y; sÞ ¼ Sccm ðsÞ coshðkx;my0Þ sinhðkx;myÞ
þ Sssm ðsÞ sinhðkx;my0Þ coshðkx;myÞ;

Wx;mðy0; y; sÞ ¼ Sccm ðsÞ coshðkx;my0Þ coshðkx;myÞ
þ Sssm ðsÞ sinhðkx;my0Þ sinhðkx;myÞ:

Representations (30), (31), are valid for arbitrary offsets of
leading and trailing particles.
For small offsets near the symmetry axis, x ¼ w, y ¼ 0,

the transverse wake potential is usually expanded in Taylor
series,

Wyðw; y0; w; y; sÞ ≈ y0
∂
∂y0 Wyðw; y0; w; 0; sÞjy0¼0

þ y
∂
∂yWyðw; 0; w; y; sÞjy¼0: ð32Þ

The first term in (32) is usually called the transverse dipole
wake in the y-direction. It can be calculated as follows

Wy;dðsÞ≡ ∂
∂y0Wyðw; y0; w; 0; sÞjy0¼0

¼ 1

w

X∞
m¼1;odd

ðkx;mÞ2Sssm ðsÞ: ð33Þ

The second term in (32) is called the transverse quadrupole
wake in y-direction; it is obtained by

Wy;qðsÞ≡ ∂
∂yWxðw; 0; w; y; sÞjy¼0

¼ 1

w

X∞
m¼1;odd

ðkx;mÞ2Sccm ðsÞ: ð34Þ

The transverse wakes in the x direction are obtained by
equations corresponding to those of Eqs. (33), (34). Note
that Wy;qðsÞ ¼ −Wx;qðsÞ.
In numerical calculations of structures with symmetry

we can use the approach of paper [15] that allows us to
reduce the calculation domain in half. Indeed the charge
distribution (24) can be written as a sum of symmetric and
antisymmetric parts

ρmðy0; y; sÞ ¼ ρEmðy0; y; sÞ þ ρHmðy0; y; sÞ; ð35Þ

where

ρHmðy0; y; sÞ ¼
1

2
Q½δðy − y0Þ þ δðyþ y0Þ�λðsÞ; ð36Þ

ρEmðy0; y; sÞ ¼
1

2
Q½δðy − y0Þ − δðyþ y0Þ�λðsÞ: ð37Þ

In problems with the symmetric driving charges (36), the
tangential component of the magnetic field will be zero
in the symmetry plane (the so-called “magnetic” boun-
dary condition). In problems with the antisymmetric
driving charges (37) the tangential component of the
electric field will be zero in the symmetry plane (the
“electric” boundary condition). Thus, instead of solving
the system of equations (4) in the whole domain, one can
solve two independent problems in half of the domain:
one problem with the “magnetic” boundary condition at
y ¼ 0 and one problem with the “electric” boundary
condition at y ¼ 0. This is true not only for the line-
charge current distribution (5), but for any arbitrary three
dimensional charge distribution ρðx; y; z; tÞ. From solu-
tions WH

mðy0; y; sÞ and WE
mðy0; y; sÞ of the two problems

we can easily find the one dimensional modal functions
in Eq. (27):
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Wcc
m ðsÞ ¼ WH

mð0; 0; sÞ;

Wss
m ðsÞ ¼ ðkx;mÞ−2

∂2

∂y0∂yW
E
mðy0; y; sÞjy;y0¼0: ð38Þ

VI. SYMMETRY RELATIONS FOR THE
TRANSVERSE WAKE POTENTIAL

In the general case, from the directional symmetry
relation, Eqs. (8), discussed in Sec. III, one cannot
immediately infer the corresponding symmetry for the
transverse wakes taken in the positive and negative direc-
tions. It turns out, however, that for structures of constant
width with a symmetry axis, such a directional symmetry
relation for the transverse wake potential can be proven.
Indeed, from the symmetry relation (28) and Eq. (20)
follows the symmetry of the longitudinal wake potential,

W∥ðx0; y0; x; y; sÞ ¼ W∥ðx; y; x0; y0; sÞ: ð39Þ

Hence the directional symmetry relation (12) for the
longitudinal wake potential can now be written as

Wð−Þ
∥ ðr1; r2; sÞ −W∥ðr1; r2; sÞ
¼ 2λðsÞ½ϕBðr1; r2Þ − ϕAðr1; r2Þ�; ð40Þ

and from the Panofsky-Wenzel theorem (25) it follows that

Wð−Þ
⊥ ðr1; r2; sÞ −W⊥ðr1; r2; sÞ
¼ 2ΛðsÞ½∇ϕBðr1; r2Þ −∇ϕAðr1; r2Þ�;

ΛðsÞ ¼
Z

s

−∞
λðs0Þds0: ð41Þ

In the last equation we have used the vectorial notation for
the transverse wake, W⊥ ¼ ðWx;WyÞ.
Let us now calculate the directional relation for the dipole

and quadrupolewakes defined byEqs. (33), (34). Denote the
vertical aperture of the incoming rectangular pipe by2gA and
that of the outgoing pipe 2gB. (Both pipes have the same
width 2w.) The Green function for Poisson’s equation in a
rectangular pipe, ϕAðx0; y0; x; yÞ, has been obtained by
Gluckstern et al. [16]. For x0 ¼ w, their result reads1:

ϕAðw; y0; x; yÞ ¼ −
1

πϵ0

X∞
n¼1

e−
nπw
2gA cosh nπðx−wÞ

2g

n cosh nπw
2gA

sin
nπ
2g

ðyþ gAÞ sin
nπ
2g

ðy0 þ gAÞ

þ ln

(
½ðx − wÞ2 þ ðy − y0Þ2�

sinh2 πðx−wÞ
4gA

þ cos2 π
4gA

ðyþ y0Þ
sinh2 πðx−wÞ

4gA
þ sin2 π

4gA
ðy − y0Þ

9=
; − ln½ðx − wÞ2 þ ðy − y0Þ2�: ð42Þ

The last term is singular in the limit x → w and y → y0. All
other terms are finite for all admissible x and y, and the sum
in the first term rapidly converges. The Green’s function of
the outgoing pipe, ϕBðw; y0; x; yÞ, is obtained from (42) by
replacing gA → gB. It is then easy to see that the singular
terms cancel in the difference ϕA − ϕB; hence this function
is finite within the domain of its definition. If we follow the
approach of paper [17] and use Eqs. (39), (40), (45) from
that paper, then from Eq. (41) our final result reads

Wð−Þ
y;d ðsÞ −Wy;dðsÞ ¼ 2cΛðsÞ½Zy;dðgAÞ − Zy;dðgBÞ�;

Wð−Þ
y;q ðsÞ −Wy;qðsÞ ¼ 2cΛðsÞ½Zy;qðgAÞ − Zy;qðgBÞ�;

Zy;dðgÞ ¼
πZ0

12g2

�
1þ 24

X∞
m¼1

m

1þ e2πmðw=gÞ

�
;

Zy;qðgÞ ¼
πZ0

24g2

�
1 − 24

X∞
m¼1

2m − 1

1þ eπð2m−1Þðw=gÞ

�
:

ð43Þ

VII. TE/TM SCHEME IN MATRIX NOTATION

In this section we describe a particular realization of the
implicit TE/TM scheme introduced in [6]. The scheme will
be discussed in the context of the finite integration
technique [18].
We will consider Maxwell’s equations in their integral

form on a domain Ω with the linear nondispersive con-
stitutive relations:I

∂S
Edl ¼ −

∂
∂t∯

S

Bds;

I
∂S
Hdl ¼ ∂

∂t∯
S

Ddsþ∯
S

jds; ∀ S ⊂ Ω;

∯
∂V
Dds ¼ ∰

V

ρdv; ∯
∂V
Bds ¼ 0; ∀V ⊂ Ω;

D ¼ ϵE; B ¼ μH; ∀ x ∈ Ω: ð44Þ
Let us start by introducing a grid-based decomposition of

the entire computation domain Ω into cell complex G. We
use here a three dimensional Cartesian mesh in x; y; z

1There is a typo in Eq. (5.11) of Ref. [16] that is corrected
in (42).
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coordinates, with the corresponding indexing ði; j; kÞ.
Unlike in finite-difference methods where one starts by
allocating the field components, we begin by taking the
voltage along cell edges and the magnetic flux through cell
facets as the computational unknowns:

eϑ ¼
Z
Lϑ

Edl; bϑ ¼
Z Z

Sϑ

Bds; ð45Þ

where ϑ is a mesh multi-index and Lϑ; Sϑ ∈ G. Solving
Faraday’s law in integral form for the front surface shown
in Fig. 3 yields:

−eði;j;kÞx þ eði;j;kÞy þ eði;jþ1;kÞ
x − eðiþ1;j;kÞ

y ¼ −
∂
∂t b

ði;j;kÞ
z :

Note, that this representation is still exact, as eϑ is (by
definition) the exact electric voltage along one edge of the
cell, and similarly bϑ represents the exact value of the
magnetic flux density integral over the cell surface. If we
compose column vectors

e ¼
0
@ ex

ey
ez

1
A; b ¼

0
@ bx

by
bz

1
A ð46Þ

from all voltage and flux components, we can write the
combination of all equations over all surfaces in an elegant
matrix form as

Ce ¼ −
∂
∂tb: ð47Þ

The matrixC picks the affected components out of the long
vector to make up the corresponding equation.C is thus the
discrete curl operator over the mesh G. With an appropriate
indexing scheme the curl matrix has a 3 × 3 block structure:

C ¼

0
B@

0 −Pz Py

Pz 0 −Px

−Py Px 0

1
CA: ð48Þ

The double-banded, topological Px;Py;Pz-matrices take
the role of discrete partial differential operators.
The second important differential operator in Maxwell’s

equations (1) is the divergence operator. In order to

construct a discrete divergence operator we integrate
Maxwell’s equation

H
∂V Bds ¼ 0 over the entire surface

of a mesh cell depicted in Fig. 3. By adding up the six
fluxes for each cell and by writing down all such equations
for the entire mesh we obtain a discrete analogue to the
divergence equation:

Sb ¼ 0; S ¼ ðPxPyPzÞ: ð49Þ
The discretization of the remaining Maxwell equations

requires the introduction of a second cell complex ~G which
is dual to the primary cell complexG. For the Cartesian grid
the dual complex ~G is defined by taking the foci of the cells
of G as gridpoints for the mesh cells of ~G. We again
introduce the computational unknowns as integrals

hϑ ¼
Z
~Lϑ

Hdl; dϑ ¼
ZZ

~Sϑ

Dds; jϑ ¼
ZZ

~Sϑ

jds; ð50Þ

where ϑ is a mesh multi-index and ~Lϑ; ~Sϑ ∈ ~G.
Following an equivalent procedure for the remaining

Maxwell’s equations, but using the dual cell complex ~G, we
obtain a set of four discrete equations representing
Maxwell’s equations on grid:

Ce ¼ −
∂
∂tb; C�h ¼ ∂

∂tdþ j;

Sb ¼ 0; ~Sd ¼ q; e;b ∈ G; h;d ∈ ~G;

~S ¼ ð−P�
x − P�

y − P�
zÞ; ð51Þ

where the asterisk denotes the Hermetian adjoint operator.
Equations (51) are completed by the discrete form of the

material relations (constitutive equations) which appear (in
the simplest linear case) as matrix equations

e ¼ cMϵ−1d; h ¼ cMμ−1b: ð52Þ

withMϵ−1 the discrete inverse permittivity matrix, andMμ−1

the inverse permeability matrix.
In the case of Cartesian grids (or, more generally,

whenever the primary and dual grids are orthogonal) all
material operators can be represented by diagonal matrices.
Note that the material matrices contain both averaged

FIG. 3. One cell of cell complex G showing the positions of the voltage and magnetic flux components.
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material parameters, and the lengths and areas of the grid
edges and faces, respectively. In the standard staircase
approximation the material matrices contain elements
(without double indices for simplicity of notation)

ϵ
−1
pijk ¼ ðcϵÞ−1 Lpijk

~Spijk
; μ

−1
pijk ¼ ðcμÞ−1 Spijk

~Lpijk

; ð53Þ

with p ¼ x; y; z, and the face areas and edge lengths of the
primary and secondary grid given by S; L; ~S; ~L, respectively.
In the conformal scheme [19], we allow the cells of the

computational grid to be only partially filled by a perfectly

electric conducting (PEC) material and with an arbitrarily
shaped interface. To model such a case we modify only the
elements of the material matrices:

ðϵ−1p Þði;j;kÞ ¼ ðcϵÞ−1 l
ði;j;kÞ
p

~Sði;j;kÞp

; ðμ−1p Þði;j;kÞ ¼ ðcμÞ−1 s
ði;j;kÞ
p

~Lði;j;kÞ
p

;

ð54Þ

where s; l denote the reduced cell areas and lengths,
including only those parts inside the computational domain
(outside PEC material), as shown in Fig. 4.
The complete set of equations (51) and (52) is referred to

as Maxwell’s grid equations.
For our 2D rectangular structures, Maxwell’s equa-

tions (1) reduce to the modal equations (4). In addition,
the dual three-dimensional cell complex ðG; ~GÞ reduces to
the two-dimensional plane complex shown in Fig. 5. In
Maxwell’s grid equations the discrete operator Px reduces
to the diagonal matrix kx;m ¼ kx;mI, where I is the unit
matrix.
System (51) is a time-continuous and space-discrete

approximation of problem (4). The next step is a discre-
tization of the system in time. The field components can be
split in time and the leap-frog method can be applied. With
“electric/magnetic” splitting, a well-known Yee’s scheme
[20] will be obtained. However Yee’s scheme has large
dispersion errors along the grid lines. In the following we
consider an alternative TE/TM splitting scheme [6], one
that does not have dispersion errors in the longitudinal
direction.
Let us rewrite Eqs. (51) in an equivalent form

∂
∂τ u ¼ MuðTuuþLv − juÞ;
∂
∂τ v ¼ MvðTvv −L�u − jvÞ; ð55Þ

where τ ¼ ct and

Tu ¼

0
B@

0 0 −Py

0 0 kx;m

P�
y −kx;m 0

1
CA; Tv ¼

0
B@

0 0 −P�
y

0 0 kx;m

Py −kx;m 0

1
CA; L ¼

0
B@

0 Pz 0

−Pz 0 0

0 0 0

1
CA;

Mu ¼

0
B@

Mμ−1x
0 0

0 Mμ−1y
0

0 0 Mϵ−1z

1
CA; Mv ¼

0
B@

Mϵ−1x
0 0

0 Mϵ−1y
0

0 0 Mμ−1z

1
CA;

u ¼

0
B@

hx

hy

ez

1
CA; v ¼

0
B@

ex
ey
hz

1
CA; ju ¼

0
B@

0

0

jz

1
CA; jv ¼

0
B@

jx
jy
0

1
CA: ð56Þ

FIG. 4. Grid doublet ðG; ~GÞ in ðy; zÞ-plane.

FIG. 5. Curved metal boundary in a Cartesian mesh.
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Applying TE/TM splitting [6] of the field components in
time to system (55), the following numerical scheme is
obtained

unþ0.5−un−0.5

Δτ
¼Mu

�
Tu

unþ0.5þun−0.5

2
þLvn− jun

�
;

vnþ1 − vn

Δτ
¼Mv

�
Tv

vnþ1þ vn

2
−L�unþ0.5 − jvnþ0.5

�
:

ð57Þ

Two-layer operator-difference scheme (57) acquires the
canonical form [21]

B
ynþ1 − yn

Δτ
þAyn ¼ fn; ð58Þ

where

B ¼

0
B@Mu

−1 − αTu 0

2αL� Mv
−1 − αTv

1
CA;

A ¼
�−Tu −L

L� −Tv

�
;

yn ¼
�
un−0.5

vn

�
; fn ¼

�
jnu

jnþ0.5
v

�
; α ¼ 0.5Δτ:

It was shown in [6] that stability of the method is insured if

Q≡B − αA > 0: ð59Þ
If the matrix Q is positive definite, then we can define a
discrete energy as

Wn ¼ 0.5hQyn; yni ð60Þ

and the discrete energy conservation law holds

Wnþ1 −Wn

Δτ
¼ −hênþ0.5; ĵnþ0.5i;

ênþ0.5 ¼ 0.5

0
B@

enþ1
x þ enx

enþ1
y þ eny

enþ0.5
z þ en−0.5x

1
CA;

ĵnþ0.5 ¼

0
B@

jnþ0.5
x

jnþ0.5
y

jnz

1
CA: ð61Þ

The stability condition (59) in the staircase approximation
(of the boundary in vacuum) can be rewritten in the form

I − α2ðΔzÞ−2PzP�
z > 0: ð62Þ

This last condition resembles the well-known stability
condition of the explicit finite-difference time domain

(FDTD) scheme for one-dimensional problems. The maxi-
mal eigenvalue of the discrete operator PzP�

z fulfills the
relation λmax < 4, and the stability condition of the scheme
in the staircase approximation of the boundary in vacuum
reads

Δτ ≤ Δz: ð63Þ

On an equidistant mesh the implicit scheme (57) has a
second order local approximation error in homogeneous
regions.
Relation (63) does not contain information about the

transverse mesh. Hence the transverse mesh can be chosen
independent of stability considerations. Following the
conventional procedure [6], the dispersion relation can
be obtained in the form

�
sinΩ
Δτ

�
2

¼
�
sinKz

Δz

�
2

þ
�
sinKy

Δy
cosΩ

�
2

;

where Ω ¼ 0.5ωΔτ, Ky ¼ 0.5kyΔy, Kz ¼ 0.5kzΔx. With
the “magic” time step Δτ ¼ Δz, the scheme does not have
dispersion in the longitudinal direction.
Following the approach of [6] it is easy to show that

charge conservation holds:

gnþ0.5
e − gn−0.5

e

Δτ
þ ~S j̄n ¼ 0;

gnþ1
h − gn

h

Δτ
¼ 0;

gnþ0.5
e ¼ ~SM−1

ϵ−1
ēnþ0.5
z ; gn

h ¼ SM−1
μ−1

h̄n
z ;

where functions with overbars are defined as

f̄n ¼ ½ 0.5ðfnþ1
x þ fnxÞ; 0.5ðfnþ1

y þ fnyÞ; fnþ0.5
z �T:

VIII. HYBRID CONFORMAL TE/TM SCHEMEFOR
CONDUCTIVE WALLS

In the previous section we have described in matrix
notation the conformal scheme for perfectly conducting
boundaries. However, in order to use the Fourier expansion
(3), it is sufficient to require only that the walls at x ¼ 0 and
x ¼ 2w be perfectly conducting. The bottom and top walls
of the structure can have different boundary conditions. In
the following we will introduce a conformal scheme for
metallic walls with finite conductivity. “Conformal” means
here a better description of material interfaces in order to
reduce approximation errors and to improve the conver-
gence [22]. To simplify the discussion we will switch to the
component notation.
For the case of rotationally symmetric geometry and

usage of the “staircase” approximation for the boundaries a
similar schemewas described in [23]. However the staircase
scheme provides only first order convergence. Attempts of
authors [23] at that time to suggest and to implement a
conformal scheme (with second order convergence) have
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failed due to instabilities of the scheme for the maximal time
step required for “dispersion-free” propagation. The con-
formal scheme described below shows the second order
convergence and the stability.
We consider the case of high conductivity κ when only

tangential components of the field propagate in the metal.
For example, for the Gaussian bunch with rms length σz
this condition is fulfilled if

κσz ≫ ϵ0; ð64Þ

where ϵ0 is electric permittivity of the vacuum. It can be
seen from Fig. 6 that at the boundary cells there are two
tangential components of the electric field which should
be updated at each time step. The continuous form of
the update equations in the local system of coordinates
(t -tangential vector in yz-plane and p—the vector normal
to yz-plane) reads

1

Z0

∂
∂τEt þ κEt ¼

∂
∂sHp;

Z0

∂
∂τHp ¼ ∂

∂s Et; ð65Þ

1

Z0

∂
∂τEp þ κEp ¼ ∂

∂sHt;

Z0

∂
∂τHt ¼

∂
∂sEp; ð66Þ

where s is a distance along the conductive line (see Fig. 6).
A detailed discussion of this approximation and its equiv-
alence to the surface impedance boundary condition can be
found in [19,23].
Let us suggest that the field components in vacuum are

known and consider the updates of tangential components
of the electric field at the boundary. A boundary cell
together with the field components is shown in Fig. 6.
The systems of equations (65) and (66) are decoupled.

System (65) can be approximated as follows (to simplify
the notation we omit indices ði; jÞ of the boundary cell
under consideration)

~hnp;0¼ lchnx;

~hnp;k¼hn−0.5p;k þ Δτ
2ΔsZ0

ðen−0.5t;k −en−0.5t;k−1 Þ; k¼1;2;…;N;

ð1þ2dÞ~enþ0.5
t;k þdð~enþ0.5

t;k−1 þ ~enþ0.5
t;kþ1 Þ

¼ða−1Þen−0.5t;k þbð ~hnp;kþ1− ~hnp;kÞ;
enþ0.5
t;k ¼en−0.5t;k þ ~enþ0.5

t;k ; k¼1;2;…;N−1;

hnþ0.5
p;k ¼ ~hnp;kþ

Δτ
2ΔsZ0

ðenþ0.5
t;k −enþ0.5

t;k−1 Þ; k¼1;2;…;N;

ð67Þ

where N is the number of mesh points at the conducting
line and

a ¼ e−~κΔτ; b ¼ 1 − a
~κΔs

; d ¼ Δτ
2Δs

b;

Δs ¼ 2

ffiffiffiffiffiffi
Δτ
~κ

r
; ~κ ¼ Z0κ: ð68Þ

To close the system of equations (67) we impose on field
component Et the Dirichlet boundary condition at the end
of the “wire,” enþ0.5

t;N ¼ 0, and introduce the update equation
at the material interface

ð1þdÞ~enþ0.5
t;0 þd~enþ0.5

t;1 ¼ða0−1Þen−0.5t;0 þb0ð ~hnp;1− ~hnp;0Þ;
enþ0.5
t;0 ¼en−0.5t;0 þ ~enþ0.5

t;0 ;

a0¼e−0.5~κΔτ; b0¼2
1−a0
~κΔs

: ð69Þ

Equations (67)–(69) provide the second order local
approximation of continuous equations (65) and define
the map

Mn
t ∶ ðhn

x; en−0.5t ;hn−0.5
p Þ → ðenþ0.5

t ;hnþ0.5
p Þ: ð70Þ

In order to approximate the second system (66) we need
to calculate first the tangential component of the magnetic
field ~hði;jÞ;nt;0 . From geometric arguments (see Fig. 4) the
following equation follows

FIG. 6. A boundary cell in the vacuum and 1D conductive line in the metal.
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~hði;jÞt;0 ¼ lði;jÞy hði;jÞz þ lðiþ1;jÞ
y hðiþ1;jÞ

z

2ΔyΔz
tði;jÞz

þ lði;jÞz hði;jÞy þ lði;jþ1Þ
z hði;jþ1Þ

y

2ΔyΔz
tði;jÞy ; ð71Þ

where ðtði;jÞz ; tði;jÞy Þ are components of the tangential vector
tði;jÞ for the part of the conductive boundary in the cell with
multi-index ði; jÞ.
The update algorithm for components ep;ht has exactly

the same form as equations (67)–(69) with corresponding
change in the notation. Hence the second map is defined
as well

Mn
p∶ ðhn

y;hn
z ; en−0.5p ;hn−0.5

t Þ → ðenþ0.5
p ;hnþ0.5

t Þ: ð72Þ

Now we are able to formulate the hybrid algorithm. The
field components hnþ0.5

x ;hnþ0.5
y ; enþ0.5

z at time level nþ 0.5
can be found as

~hn
x ¼ hn−0.5

x þ αMμ−1x
½Pzeny − Pyen−0.5z þ en−0.5t;0 �;

~hn
y ¼ hn−0.5

y þ αMμ−1y
½−Pzenx þ kx;men−0.5z þ en−0.5p;0 �;

Mn
t ∶ ð ~hn

x; en−0.5t ;hn−0.5
p Þ → ðenþ0.5

t ;hnþ0.5
p Þ;

Mn
p∶ ð ~hn

y;hn
z ; en−0.5p ;hn−0.5

t Þ → ðenþ0.5
p ;hnþ0.5

t Þ;
enþ0.5
z ¼ en−0.5z þ 2αW−1

e Mϵ−1z
½−kx;m ~hn

y þ P�
y
~hn
x − jnz �;

hnþ0.5
x ¼ ~hn

x þ αMμ−1x
½Pzeny − Pyenþ0.5

z þ enþ0.5
t;0 �

hnþ0.5
y ¼ ~hn

y þ αMμ−1y
½Pzenx þ kx;menþ0.5

z þ enþ0.5
p;0 �; ð73Þ

where ~hn
x; ~h

n
y are auxiliary vectors and operator matrix We

is a sparse one,

We ¼ Iþ α2½ðkx;mÞ2Mϵ−1z
Mμ−1y

þMϵ−1z
P�
yMμ−1x

Py�: ð74Þ

The field components enþ1
x ; enþ1

y ;hnþ1
z at time level nþ 1

can be found as

~enþ0.5
x ¼enxþαMϵ−1x

½P�
zhnþ0.5

y −P�
yhn

z −jnþ0.5
x �;

~enþ0.5
y ¼enyþαMϵ−1y

½P�
zhnþ0.5

x −kx;mhn
z −jnþ0.5

y �;
hnþ1
z ¼hn

z þ2αW−1
h Mμ−1z

½−kx;m ~enþ0.5
y þPy ~enþ0.5

x þenþ0.5
p;0 �;

enþ1
x ¼ ~enþ0.5

x þαMϵ−1x
½P�

zhnþ0.5
y −P�

yhnþ1
z −jnþ0.5

x �
enþ1
y ¼ ~enþ0.5

y þαMϵ−1y
½P�

zhnþ0.5
x −kx;mhnþ1

z −jnþ0.5
y �;

ð75Þ

where ~enþ0.5
x ; ~enþ0.5

y are auxiliary vectors and operator
matrix Wh is a sparse one,

Wh ¼ Iþ α2½ðkx;mÞ2Mμ−1z
Mϵ−1y

þMμ−1z
PyMϵ−1x

P�
y�: ð76Þ

In the staircase approximation of the boundary, the
material matrices Mμ−1 , Mϵ−1 are diagonal, and the oper-
ators (74), (76) are tridiagonal matrices. The equations
involving these operators can be solved easily by the
“elimination” method [21]. In order to obtain second order
convergence and avoid time step reduction, we use the
conformal method with enlarged boundary cells in the same
way as described for the rotationally symmetric case in
[24]. However, for the stability of the conformal scheme it
was crucial to use the full interpolation scheme with eight
weights as described in [22].

IX. NUMERICAL EXAMPLES

In this section we consider two example calculations: a
corrugated pipe (“dechirper”) with perfectly conducting
walls, and a tapered collimator with resistive walls. We
compare results obtained with ECHO(2D) with those of
several 3D codes.

FIG. 7. For the Pohang dechirper: function Wccðkx; sÞ (left), and the harmonics m ¼ 1, 9, 19, of Wcc
m ðsÞ (right).
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For our dechirper example we used the parameters of the
dechirper experiment performed at the Pohang Accelerator
Laboratory [25]. The geometry is shown in Fig. 1(a). The
dechirper structure is 1 m long, has a width 2w ¼ 50 mm,
and is made of aluminum. The corrugations are charac-
terized by the period p ¼ 0.5 mm, height h ¼ 0.6 mm, and
aspect ratio h=t ¼ 2. The gap between the jaws is adjust-
able; at a nominal setting the full gap 2a ¼ 6 mm.
We have performed calculations of the wakes for a

Gaussian bunch with rms length σz ¼ 0.5 mm. The trans-
verse dimensions of the bunch were assumed negligibly
small. In the right plots of Figs. 7–8, we show some of the
harmonics Wcc

m ðkx; sÞ and k2x;mWss
m ðkx; sÞ, calculated for

2w ¼ 5 cm. If the bunch passes through the middle of the
structure, at x0 ¼ w, then only odd harmonics are excited.
In the left plots of Figs. 7–8, these functions are shown as
continuous functions of kx (denoted with subscript m
removed); they are independent of the width parameter

2w. (Here we have used 2w ¼ 10 cm to obtain a denser
sampling of the functions in the figures.) Finally, in Fig. 9,
we compare the longitudinal (left plot) and the dipole (right
plot) wakes obtained with ECHO(2D) with the existing, fully
3D code, ECHO(3D) [6]. In the calculation of the wake
potentials, where the width 2w ¼ 5 cm, we used only the
first 15 odd harmonics. We see that the agreement with the
existing code is very good.

FIG. 9. Longitudinal wake potential (left) and dipole wake potential (right), calculated from first 15 odd harmonics.

FIG. 8. For the Pohang dechirper: function k2xWssðkx; sÞ (left), and the harmonics m ¼ 1, 9, 19, of k2x;mWss
m ðsÞ (right).

TABLE I. For the Pohang dechirper, for a Gaussian bunch with
σz ¼ 0.5 mm: the ratio of the numerically obtained and the
analytical result (see [25]), that we denote by r. We compare the
results given in Ref. [26], r[T3P], with the new results, r[ECHO].

Wake r[T3P] r[ECHO]

Longitudinal, loss factor 0.84 0.83
Dipole, kick factor 1.08 0.79
Quad, kick factor 0.73 0.73
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In Table I we compare the calculated average wakes (the
loss factor in the longitudinal case and the kick factors in
the transverse cases) with numerical results obtained
with the time-domain code T3P of the code suite ACE3P
[26]. The results in the table, denoted by r, have been
normalized to analytical results, valid for infinitesimally
small corrugations (see [25]).We see good agreement except
for the case of the dipolewake. (Note, however, that we have
good reason to believe that r should always be ≤1.)
Incidentally, it should be noted that in [25] the strength of
the wakes of the Pohang dechirper were measured, both the
longitudinal and transverse wakes, and it was estimated that
their measured (effective) rwas about 0.75, a result that is in
good accord with the ECHO(2D) results.
As the second example problem we consider a sym-

metric, tapered collimator [see Fig. 1(b)]. The dimensions
are: width 2w ¼ 10 cm, height of large pipe 2a ¼ 10 cm,
length of tapers T ¼ 5 cm; height and length of the
minimum gap section, 2b ¼ 2 cm and L ¼ 12 cm. As
was mentioned above, ECHO(2D) is capable of modeling
structures with metallic walls of finite conductivity. The
tapered walls and the walls of the minimum gap section are
taken to have conductivity σ ¼ 100 S=m [note, that con-
dition (64) is well fulfilled], while the remaining surfaces
are assumed to be perfectly conducting. In the left plot of
Fig. 10 we compare the longitudinal wake for this colli-
mator with one that has the same geometry but is perfectly
conducting. The Gaussian bunch in the simulations has an
rms length σz ¼ 0.25 cm. Both wakes were obtained with
ECHO(2D). In the right plot of Fig. 10 we compare the ECHO

(2D) wake potential with the one obtained using a fully
three-dimensional, commercially available code CST [27].
The good agreement between the results indicates a good
accuracy of the conformal meshing and the resistive wall
modeling in ECHO(2D).

Finally, in order to demonstrate the capabilities of the
new code to calculate wakes of very short bunches, we give
in Fig. 11 the calculated loss factor ϰ ¼ hW∥ð0; 0; sÞi as
function of bunch length in the 1 m-long Pohang dechirper
(black plotting symbols). Note that the shortest bunch
length used in the calculations is σz ¼ 10 μm. The dimen-
sions of the bunch and of the structure are different by 5
orders of magnitude. To our knowledge such kind of
calculations cannot be done by any 3D code available.
For the shorter bunches, the loss factor in a 1 m-long
structure is larger than the steady-state (periodic) result. We
can see that by plotting on the same figure the difference of
ϰ for a 2 m structure minus that for a 1 m structure (the gray
curve). Note that the analytical, asymptotic value of the loss
factor, for σz → 0, is ϰ ¼ Z0cL=ð2πa2Þ · ðπ2=16Þ ¼ 1234.
V/pC [we have taken Z0 ¼ 377 Ω, structure length

FIG. 10. Longitudinal wake potential of tapered collimator.

FIG. 11. Loss factor for very short bunches in the dechirper (in
black). The grey symbols give the difference between the loss
factors for 2 m-long structure and a 1 m-long structure.
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L ¼ 1 m, and half-gap a ¼ 3 mm], which agrees well with
the linear extrapolation of the ECHO(2D) steady-state
results (the gray curve).

X. SUMMARY

In this paper we presented a new method for solving
electromagnetic problems and calculating wakefields
excited by a relativistic bunch in a structure that is charac-
terized by a rectangular cross-section whose height can vary
as function of longitudinal coordinate but whose width and
side walls remain fixed. Using the Fourier expansion of the
fields, currents and charge densities, we derived a Fourier
representation of the wake potential in terms of four one-
dimensional functions for each harmonic. We proved that
the longitudinal wake is a harmonic function with respect of
the coordinates of the leading charge. For a structure that has
a horizontal symmetry plane we also proved an important
symmetry relation of the wake function.
A numerical method was proposed for solving Fourier

harmonics of the fields. The method does not generate
dispersion in the longitudinal direction and for perfectly
conducting geometry it conserves the energy and charge in
the calculations. Additionally, we have described a new
hybrid conformal scheme for structures with walls of finite
conductivity. The computer resources required to find several
tens of the lowest harmonics aremoderate and comparable to
those needed for 2D rotationally symmetric calculations.
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