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Cherenkov-transition radiation in a waveguide partly filled
with a resonance dispersion medium
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We analyze the electromagnetic field of a charged particle that uniformly moves in a circular waveguide
and crosses a boundary between a dielectric medium, which possesses frequency dispersion of a resonant
type, and a vacuum area. The investigation of the waveguide mode components is analytically and
numerically performed. It is shown that Cherenkov radiation (CR) can penetrate through the boundary, and
Cherenkov-transition radiation (CTR) can be excited in the vacuum region. The conditions for this effect
are obtained. It is shown that the CTR can be composed of a single mode (compared with the CTR in a
nondispersive dielectric, which is multimode). The amplitude of the CTR is comparable to the amplitude
of CR in an extensive range of parameters. The considered effect can be used to generate intense

quasimonochromatic radiation.
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I. INTRODUCTION

An investigation of the electromagnetic fields of charged
particles that move in a waveguide through the boundary
between different media is interesting in regards to the
development of new methods for the generation of electro-
magnetic radiation and the acceleration of charged particles.

Note that the case of the border between a vacuum
and cold isotropic plasma was previously investigated
[1,2]. In this case, only transition radiation (TR) is excited;
Cherenkov radiation (CR) is absent because the plasma
refractive index is less than 1. The energetic characteristics
of the radiation are analyzed in [1], and the field structure is
examined in [2].

The problems with transversal boundaries between a
dielectric and a vacuum in a waveguide were also inves-
tigated in a series of papers [3—7]. Note that CR can be
generated in a dielectric compared with cold plasma. This
radiation is transmitted through the boundary and reflected
off the boundary. This reflected and transmitted radiation is
referred to as Cherenkov-transition radiation (CTR). The
case of a charge flying from the vacuum area of a wave-
guide into a dielectric area [3,5] is important for the
wakefield acceleration technique [8,9]. The case of the
charge flying from a dielectric area into a vacuum area [4,5]
is interesting for the new perspective method of the
generation of terahertz and gigahertz radiation [10-12].

Note that the radiation of the charges in the dielectric
loaded waveguides with transversal boundaries was only
analyzed for nondispersive dielectrics. However, the
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medium dispersion can radically influence particle radia-
tion. We consider the case of a semi-infinite dielectric that
possesses a resonant dispersion. The field of a charge in this
unbounded resonant medium was analyzed in [13—15]. The
case of a regular (i.e., homogeneous along its axis) wave-
guide filled with this medium was analyzed in [16—18]. As
discussed in these papers, the role of resonant dispersion is
essential in these problems.

The primary focus is the study of CTR in the vacuum
area of the waveguide because this effect can be especially
interesting for the development of techniques for the
generation of terahertz and gigahertz radiation.

II. ANALYTICAL INVESTIGATION:
GENERAL ASPECTS

The problem statement is as follows: a small charge

particle ¢ uniformly moves with the velocity V= cpe.
along the z -axis of a metal circular waveguide with the
radius a and intersects the border (z =0) between
two semi-infinite media (Fig. 1). The nonmagnetic homo-
geneous isotropic medium on the left from the boundary
(z < 0) is described by the following frequency-dependent
electric permittivity:
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FIG. 1. Geometry of the problem.
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where @, and , represent a plasma frequency and a
resonant frequency, respectively. The permittivity at zero
frequency is & = £g = 1 + wp/w}, and &, > 1 atw — oo.
Note that Formula (1) is typical for different media in
different states of aggregation of matter. Further we use, as
an example, the ammonia which has resonance at 24 GHz.
The medium on the right (z > 0) is a vacuum with &, = 1.
The charge intersects the boundary at the moment ¢ = 0.

The general analytical solution to the problem for two
arbitrary isotropic homogeneous media is given in the form
of a decomposition in infinite series of normal modes [1-7].
In this paper, we write only expressions for the magnetic
field:

o o b
HI.ZZH(II’2+H1_2, (2)

where subscript 1 and subscript 2 relate to the areas z < 0
and z > 0, respectively. The first summand in (2) is the
“forced” field, and the second summand in (2) is the “free”
field (we employ terms from [19]). The forced field is the
field of a charge in a regular waveguide. It is written in the
following form:
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where w, = y,c/a, y, is the nth zero of the Bessel
function [Jy(y,) = O]

The free field connected with the influence of the
boundary is written in the form [3]
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Here,
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where Imk, , > 0 if the radicand is real negative or
complex and Re(wk_; ,) > 0 if the radicand is real positive.
(Note that we initially assume that a small imaginary part of
the permittivity Ime, , exists. However, it is only applied to
determine the comparative disposition of the singularities

Bn1,2 =

and the integration pass. Subsequently, we tend this value
to zero.)

We investigate expressions (3) and (4) for the case of the
boundary between the resonant dielectric and the vacuum
area. Note that the forced field was previously investigated
[16-18]. Therefore, the main attention is focused on the
free-field components (4). They are analyzed using two
methods: an analytical method and a numerical one (they
were developed in our papers [2-7] for different problems
with sectionally homogeneous waveguides). In this paper,
we only provide the most important results.

The analytical investigation is based on the complex
variable function theory. The first step is a study of the
integrand singularities in (4) on the complex plane of @
which are listed as follows:

(1) the branch points of the radical k;

12
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(ii) the branch points of the radical k,
+w, —i0;
(iii) the poles

(12)
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Here,
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Note that the singularities placed on the real axis are
slightly shifted downward from the axis if small losses are
taken into account (Fig. 2 shows the comparative dispo-
sition of an initial integration pass and the singularities).
The branch cuts are defined by the following equations

Re\/w?e; — w2 =0, Re\/w* — w2 = 0.

The initial integration path goes along the upper edge of
the cuts.

Note that the poles iw&]) and ia)él,?) are also the
singularities of the integrands in (3) for the forced field
in medium 1 (left from the boundary). With the residue
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FIG. 2. Singularities, branch cuts, and integration paths in the
complex plane of w for the field components in a vacuum.

theorem, these poles yield the following expression for the
magnetic component of the forced field:

WJ1ar
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where 6(x) is the Heaviside step function.

The forced field includes CR (9) if the condition
e1(w)p? > 1 is fulfilled. One can see that the frequency
of the radiated waves lays within the interval o, < o < @,
where @, = w,(1 — yf?)"/?(1 = p*)71/% if gf> <1 and
w, = 0 if gyf? > 1. Thus, CR is generated in a medium
with resonance dispersion for any velocity of the charge
compared with nondispersive dielectrics, when the

|

(I +11), (®)
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X exp | —o.x,
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generation only occurs if the charge velocity exceeds the
Cherenkov threshold, that is, the condition gyf*> > 1 is
fulfilled. Note that the considered case can be reduced to
the nondispersive dielectrics case with the permittivity &; in
the limiting process when o, — 00, @, — o0 and &; — &.

For the forced electric field, one more pair of poles

+1/w} + w} contributes to the field and produces plasma

oscillations. However, these poles give no significant
contribution into the free field in the medium because they
are always situated in the frequency range of nonpropagat-

) (Fig. 2).

The forced field in the vacuum part of the waveguide has

a quasi-Coulomb character. It is written in the form

Hy, = Ay L) _
a1 - Ji)

III. ANALYTICAL INVESTIGATION: THE CTR

Our main interest is an analysis of radiation in the
vacuum area. To obtain asymptotic expressions for the free-
field mode, we can use the steepest descend technique [20].
Note that the procedure for the vacuum area (z > 0) is
similar to the procedure that was developed for different
situations in our previous study [2—7].

The most important results of the analytical investigation
for the free field in the area z > 0 concern the contributions

of the poles :l:w(() D described by Eq. (7). They give the
transmitted wave of the CR or the CTR in the vacuum
area:

ing waves @, < \/@? + a) < a),,

exp [—wrx(()i) =y

cp

HCTR 2 Z Wy “]IIZ%; r / a) ICTR
ISR = ACTRsin [l (,z¢™ = 1))z, —2). (1)
where
v, = /1=y, )7 (12)
4p%(eg — 1)

ACTR — ACRT, T =

Note that the pole being considered is always situated

within the interval cbﬁ,1> <a)811) <w, (Fig. 2). If a)(()fl1> > @y,

then the contribution of this pole is a propagating wave, that

is, this mode is a part of the CTR. If w\.") < w,. then this
mode exponentially decreases with the distance from the
boundary and it does not transport the electromagnetic
energy. One can show that the number of propagating
modes (which compose the CTR) is always finite. The

S+ 1= (eg—vn) 28V,(1 =) (eg— 1)~

(1+pY,)[S = 1= (e +yi —2)]

|
conditions for exciting the propagating mode with the
number n at w, > w,, are as follows:

. if g, <1
p{l T B @) e ()

The threshold value f, is explained by the total internal
reflection of the CR off the boundary. This effect is
observed at w, > w, and > f, (B, < 1) or at w, < w,,.
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This limitation can also be obtained based on the
Brillouin’s concept, which indicates that one of the CR
modes (9) consists of convergent and divergent waves:
exp [Fiy,ra™! :I:iw(()lzl)(zc‘lﬂ‘l —1t)]. The angle of inci-
dence of these waves is less than the critical (minimum)
angle for the total internal reflection when CR penetrates
through the boundary. This critical angle is defined by the

formula sin ¢ = 81_1/ 2. Thus, we obtain the inequality

po, (Pt + )7 < .
7 0n

and the solution for this result is expressed by Eq. (14).

For nondispersive dielectrics [4], the threshold f, is
(g9 — 1)~1/2, which is not dependent on the mode number.
Thus, the generation of a multimode CTR occurs in a
vacuum area compared with the case of a resonant medium
when the CTR only has a finite number of modes.

In the vacuum area, the CTR exists in the domain

z<zp=ct¥,, (15)

where W, is defined by Eq. (12). This inequality is obtained
from the condition of the intersection of the pole at the
transformation of the initial integration path to the steepest
descent path (analogous procedure was described in [3-7]).
One can show that the front of the CTR wave z, propagates
with the group velocity of the waveguide waves V, = cV,,.
It is dependent on the mode number and on the charge
velocity f, whereas the product of the group and the phase
velocities is constant V- Vi, = 2. Analytical estimations
and computations (below) indicate that the CTR of these
modes comprises the main part of radiation in the vacuum
area if the condition (14) is fulfilled for some mode
numbers.

Analysis of the CR (9) and CTR (11) shows that the
frequencies of the CR and CTR waves are equivalent

a)rxf)ill) [refer to (7)] which is always less than the resonance
frequency w,. However, the wave number in the z direction

for the CR AR = @,x{!V(cp)~! differs from the wave
number for the CTR h¢™R = a)rx(()lnl)\linc‘l. Some simple
approximations for the CR (10) and CTR (13) amplitudes
can be obtained for different velocities of . If # <« 1, then
AR =4y, (g9 - 1B+ O(F)],
ACTR =8y, (g = 1A (1= y2)"/2[1 + O(B)].

Ifp=~1 and §, > 1, then

AR = 4(eg = 1)(yi + 80— 1)1+ 0(72)],
1
ACTR = ACRT, T“2[1 + (vi +€0)\/2 = a —80} ,

where y = (1 — %)71/2. The CTR mode amplitude may
exceed the CR mode amplitude. A maximum increase in

ACTRE
oy =100!

FIG. 3. The first modes of the CTR and CR amplitudes (top)
and the ratio T = ACTR /AR (bottom), which is dependent on the
charge velocity $ and the ratio w,/w,;; n =1, x, = 5.

the CTR amplitude is twice the CR amplitude. In this

situation the velocity of the CTR front V, = ¢/2 — y2 — &
also decreases. If f~ f, < 1, then

ACRN 4(1 _ygl)2
1+ y5+ya(eg=3)"

ACTR »2AR v, <.

The behaviors of the amplitudes of the first modes of the
CTR and the CR (top) and the ratio 7 = ACTR/ACR
determined by Eq. (13) (bottom) are presented in Fig. 3
for different parameters of the problem. As can be seen,
the CTR only exists at f <, (note that g, <1 if

w, > \/wi — ;). A significant increase in the CTR
amplitude (with the maximum value 7 = 2) is observed
for the charge velocity = f,. The CTR amplitude is
comparable to the CR amplitude in an extensive range of
parameters of the problem.

IV. NUMERICAL INVESTIGATION AND
DISCUSSION

The exact integral representations (3), (4) are used to
calculate the free-field components. The numerical algo-
rithm is based on a certain transformation of the initial
integration path in the complex plane of w. This algorithm
was previously used for the computation of the field in
different dispersive unbounded [15] or semibounded [21]
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media including the case of a waveguide with semibounded
cold plasma [2].

First, we rewrite the exact formulas into the integrals
between the limits 0 and +o0. Second, we transform the
integration path into a new contour in the upper-half plane
for |z| > ct (before the “wave front”) and into another
contour in the lower-half plane for |z| < c7 (after the “wave
front”). These new contours are presented in Fig. 2 with
green dashed line and red dotted line. They should bypass
all of the singularities and subsequently go parallel to the
steepest descent path. Note that accurate calculations of
the free-field components can be obtained by optimizing
the characteristics of these new contours.

The results are presented in Fig. 4. Ammonia [22] is
considered to be a typical medium; it has a resonance of
23.87 GHz and nondimensional value x, =5 [refer to
Eq. (6)] at a = 1cm. Thus, the CTR in the vacuum area is
only composed of the first mode (the remaining modes are

=05 A8

ct/a=10 06}

evanescent). The critical value f, = 1.1, that is, CTR is
generated for any charge velocity.

Figure 4 shows the component H,, of the first mode of
the total field in the resonant medium and in the vacuum
area for different values of velocity f at different time
moments. The forced field (8) in the medium and the
analytical approximation for the CTR (11) are also
presented.

As can be seen, the forced field consists of CR and a
quasi-Coulomb field, which comprise the main parts of the
total field in a dispersive dielectric and in a vacuum domain
near the charge, respectively. If # < f, (14), the first mode
of the CR is transmitted through the boundary and the
single-mode CTR effect occurs in the vacuum area. For this
situation the upper threshold for CTR in a vacuum is not
important (f, > 1), and CTR is generated by charges with
any velocities (including the ultrarelativistic charges
with y > 1). The remaining modes of the CR are totally

T
3 —04Ff
(a)
p=08 ct/a=20Jr‘,7w p=08 ct/a=30 A, i
T K s
- ~ﬂo .
: U ”
2:"I n=1 H ::.n:]
(e) )
7 =100 05 — 7 =100 05 n=1 7 =100 q 1o i n=1
ct/a=10 ct/a=20 ! ct/a=30 J ? .
BN , MMM“M \{\Aﬂu{]m
-' iy v
3 - L2
—-10

-10

(®

FIG. 4. Dependence of the normalized transversal component H »=H

q,az /q of the 1*" mode of the total field (solid red line 1) on the

distance z/a at r = 0.5 for different values of the dimensionless time ct/a and the velocity . The dashed blue line 2 pertains to the CTR,
the dot-dashed green line 3 pertains to the forced field, and the dotted black line 4 pertains to the 2¢ mode of the total field (d);

y=0=p)"2 x =5 0,/0, =08, and §, = 1.1.
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reflected off the boundary [the second mode is also shown
in Fig. 4(d)].

The free field consists of the CTR and the TR in the
vacuum area. The front of the TR propagates with the light
velocity ¢ [2]. The computations show that the total field is
approximately equal to the CTR in the domain z < z; (15).
The dimension of the zone z; is on the increase in the group
velocity of the waveguide waves V, = ¢V, (12). The CTR
can be in front of the charge for the relatively small velocity
of the charge motion [Fig. 4(a)—(c)]. For ultrarelativistic
particles CTR and TR always occur after the charge
[Fig. 4(g)—(1)]. The frequencies of the CR and CTR waves,
which are the same, depend on the charge velocity and lay
within the interval 12—22 GHz for the results presented in
Fig. 4. One can see that the amplitude of CTR is comparable
to the amplitude of CR in an extensive range of parameters; it
becomes slightly more (7 ~ 1.2) for the ultrarelativistic
case. An increase in the CTR amplitude in the range 1 <
T < 2is possible for some parameters of the problem. Note
that the CR amplitude might have maximum magnitude up
to 500 KV/m for an electron bunch with |¢g| = 1 nC [4].

Phenomena under consideration can also take place in
THz frequency range if the medium has a corresponding
resonance. As an example, we can point out Cesium
Bromide (CsBr) which has several resonances [23]: one
of them lies at 2.2 THz, and the others have much more
frequencies. Nondimensional value x, (6) depends on a
waveguide radius a; for example, x, = 230 for a = 5 mm.
For these parameters, the CTR consist of 73 modes in the
vacuum area, and of 62 modes for an ultrarelativistic bunch
(limit value 8, > 1 forn < 63, w, = 0.52w,). The frequen-
cies of the CTR depend on the charge velocity and lay
within the interval 0.04—2.1 THz.

Note that, in recent years, waveguides with radiuses of
the order of 100-1000 ym are actively used for generation
of Cherenkov radiation [10]. If the filling material is CsBr
and a = 400 um, then x, = 18.4, the number of the CTR
modes is 6, and 5, > 1 for n < 6. Single mode condition of
the CTR can be reached for waveguide with radius being
about 100 ym. Thus, phenomena discussed here can occur
in THz range as well as in GHz one.

V. CONCLUSION

The electromagnetic field of a charged particle that
moves in a circular waveguide and intersects the boundary
between a resonant medium and a vacuum was considered.
The analysis of the field components was analytically and
numerically performed. The analytical investigation was
based on the steepest descent method of the complex
variable function theory. The algorithm for the computation
was also presented.

The analytical and numerical investigations show that
the CTR in the vacuum area always consists of a finite
number of propagating modes (compared with the case of

nondispersive dielectric when the CTR has an infinite
number of modes). The other modes of CR are totally
reflected off the boundary and penetrate in the vacuum
area in the form of evanescent waves. We can select the
parameters of a problem to ensure that the CTR only has the
first waveguide mode, that is, we can obtain monochro-
matic radiation.

The CTR can be the main part of the wave field in the
vacuum area of the waveguide for the previously described
conditions. The amplitudes of the CTR modes in a vacuum
may exceed the amplitudes of the CR modes in the resonant
medium. The CTR effect in the considered situation can be
used for generation of intense single-mode monochromatic
radiation in the vacuum part of the waveguide.
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