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A stack of thin, closely spaced conducting foils has been investigated by Lund et al. [Phys. Rev. ST
Accel. Beams 16, 044202 (2013)] as a passive focusing lens for intense ion beams. The foils mitigate space-
charge defocusing forces to enable the beam self-magnetic field to focus. In this study, we analyze possible
degradation of focusing due to scattering of beam ions resulting from finite foil thickness using an envelope
model and numerical simulations with the particle-in-cell code WARP. Ranges of kinetic energy where
scattering effects are sufficient to destroy passive focusing are quantified. The scheme may be utilized to
focus protons produced in intense laser-solid accelerator schemes. As an example, the spot size of an
initially collimated 30 MeV proton beam with initial rms radius 200 μm, perveance Q ¼ 1.8 × 10−2, and
initial transverse emittance εx;rms ¼ 0.87 mmmrad propagating through a stack of 6.4 μm thick foils,
spaced 100 μm apart, gives a 127.5 μm spot with scattering and a 81.0 μm spot without scattering,
illustrating the importance of including scattering effects.
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I. INTRODUCTION

Charged particle beams tend to radially expand under
space-charge forces and thermal forces if no applied
focusing fields constrain their transverse dynamics [1,2].
Active focusing systems such as solenoids or quadrupole
magnets are usually used. However, passive focusing
schemes have been investigated which employ material
structures to reduce self-fields. These include: Metallic
conic guide tubes for electron focusing [3] and ion focusing
[4], and stacks of thin foils for electron focusing [5].
Recently, it has been shown that ion beams propagating
through a stack of thin metallic foils can be magnetically
self-focused due to the mitigation of their electrostatic

repulsion [6]. This novel passive focusing scheme opens
the possibility of collimating or focusing ion beams to a
small spot size since the focusing becomes stronger as the
beam radius reduces. Applications may include focusing
intense beams on the X-target for fast ignition-driven fusion
energy [7], injectors for compact proton accelerators for
tumor therapy [8], and ion beam-driven warm dense matter
studies [9]. The stack of thin foils can be made from
aluminum and manufactured at low cost. Foil stacks can be
used for transverse focusing of laser-produced proton
beams [10] where intense space-charge has been limiting
applications [11]. This can also remove electrons comoving
with the protons, without large degradations in beam
brightness thereby addressing another issue limiting appli-
cations. The most studied laser-based ion beam production
process, the target-normal-sheath-acceleration (TNSA)
model [11], can achieve proton beams with a broad energy
spectrum up to a few dozen MeVand whose total current is
in the kA range.
Ongoing research based on alternative laser-based ion

beam production processes—e.g., radiation pressure
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acceleration, collisionless shock acceleration, breakout
afterburner, acceleration in near-critical and underdense
plasmas, resistively enhanced acceleration (see Ref. [10])
—offers beams with promising characteristics (e.g., mono-
energetic, higher energy and/or higher current) whose
space-charge could be successfully controlled by our stack
of thin foils.
An idealized analytical envelope theory was previously

developed by Lund et al. [6] and agrees with particle-in-cell
simulations. This guided an ongoing campaign of experi-
ments, described in Ref. [12] designed to study the
mitigation of the defocusing self-electric field of proton
beams. These proton beams were produced by intense
short-pulse lasers and accelerated by the target-normal-
shealth-acceleration (TNSA) process [11] at the TITAN
laser facility at GSI and the JUPITER laser facility at
Lawrence Livermore National Laboratory [13].
This paper extends the idealized analytical envelope

theory of Ref. [6], which assumed infinitely thin foils, to
include foil-induced scattering and kinetic energy loss
associated with finite thickness foils. This scattering causes
random deflections in the distribution of particle angles and
results in emittance growth that can degrade beam quality
[1,2,14,15]. The beam ions also deposit a fraction of their
kinetic energy into the foils, evaporating the foils after
penetration of the beam. The stack of foils is therefore a
single-use lens. However, estimates show that the foils
remain at near solid density during the transit of the beam
within the stack because the hydrodynamical expansion
timescale is much longer than the beam transit time scale
[6,12]. Besides, the ion beam experiences straggling due to
statistical kinetic energy losses into the foils, causing
momentum spread and therefore chromatic aberrations as
the passive focusing depends on the momentum of the
beam ions. Straggling is neglected in our present mono-
energetic study: the emphasis is on the angular deflections
of the beam ions and the mean kinetic energy loss.
Nevertheless, straggling must be taken into account when
kinetic energy loss is important. Reference [6] includes
transverse nonlinear effects between the foils in the
envelope equations and indicates that modest changes in
the radial structure of the beam associated with geometric
aberrations do not significantly alter the passive focusing.
Numerical simulations (in which the profile is allowed to
evolve self-consistently) show reasonably good agreement
with these assumptions.
This paper is organized as follows. In Sec. II, foil-induced

scattering is treated analytically using the Rutherford scat-
tering model and numerically using theMonte-Carlo particle
simulation code SRIM [16]. In Sec. III, the envelope
equations are derived and numerically solved for several
foil and beam configurations to highlight cases for which
foil-induced scattering becomes a dominant limitation of
the transverse focusing. In Sec. IV, a module to model foil-
induced scattering and kinetic energy loss is implemented in

the particle-in-cell code WARP [17] and is applied to
numerically test the envelope theory of Sec. III. Good
agreement between the envelope theory and numerical
model is found.

II. SCATTERING

A. Single particle model

A single beam ion of velocity vb, charge number Zb,
mass mb, and kinetic energy Eb ¼ ðγb − 1Þmbc2, with
γb ¼ ð1 − β2bÞ−1=2, βb ¼ vb=c, and c the speed of light
in vacuum, is assumed to penetrate through a homogenous
thin foil of thicknessΔf. The foil is made of a single atomic
species of charge number Zf, massmf and mass density ρf.
The nuclei and electrons of the foil alter the dynamics of the
beam ions differently: the electrons can absorb an appreci-
able amount of energy from the beam ions without causing
significant angular deflections, whereas the nuclei absorb
little energy but cause significant angular deflections of
the beam ions due to their greater electric charge [18].
In this section, the energy loss of the beam ions due to the
collisions with atomic electrons is neglected. This is con-
sistent for thin foils with large incident beam kinetic energy
[19]. Small kinetic energy losses within one foil are analyzed
in Sec. II B. Results found there justify the constant energy
assumption.
Because the interaction between the beam ions and the

foil nuclei is primarily electrostatic, the differential scatter-
ing cross section dσ=dΩ between the incoming beam
ion and a stationary foil nucleus, where the solid angle
dΩ ¼ sin θdθdϕ (θ is the normal angle, taken as the
deflection angle, ϕ is the azimuthal angle in spherical-
polar coordinates), is governed by the small-angle
Rutherford cross-section [18]

dσ
dΩ

¼
�
2ZbZfe2

4πϵ0mec2

�
2 1 − β2b

β4b

1

θ4
: ð1Þ

Here, e is the elementary electric charge, and ϵ0 the vacuum
permittivity. Here and henceforth, large-angle scattering is
ignored: those events are rare [18]. Equation (1) is valid
between a small cutoff angle

θmin ¼
ℏ

pba
≃ Z1=3

f

192

mec
mbvb

ð2Þ

due to electrostatic screening from bound electrons, and a
large cutoff angle

θmax ¼
ℏ

pbR
≃ 274

A1=3
f

mec
mbvb

ð3Þ

that is due to the finite radius R of the nucleus. In Eqs. (2)
and (3), a≃ 1.4a0Z

−1=3
f is the length scale of the screening

obtained by a rough fit to the Thomas-Fermi atomic
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potential, a0 the Bohr radius, ℏ ¼ h=ð2πÞ where h is
Planck’s constant, Af is the mass number of the nucleus,
me is the mass of the electron, and pb ¼ mbvb is the
momentum of a assumed nonrelativistic beam ion.
We approximate Af ≃ 2Zf.
The total scattering cross-section is

σtot ¼
Z

2π

0

dϕ
Z

θmax

θmin

dθ sin θ
dσ
dθ

: ð4Þ

A beam ion traversing a thin foil undergoes many small
angle deflections and emerges with a small angular
deflection due to the cumulative statistical superposition
of many small angle collisions. Assuming the number of
collisions is sufficient for Gaussian statistics (verified
a posteriori), the central limit theorem applies to the net
deflection angle distribution. This implies that the net
deflection angle is Gaussian distributed, centered around
0, with variance hθ2i given by

hθ2i≡
R
2π
0 dϕ

R θmax
θmin

dθ sin θθ2 dσ
dθR

2π
0 dϕ

R θmax
θmin

dθ sin θ dσ
dθ

: ð5Þ

The beam ion undergoes N ¼ nfσtotΔf collisions after
penetration of a foil of thickness Δf and atomic density nf.
Each of these collisions causes a random deflection θ that
follows the above-mentioned distribution. We take z as the
axial coordinate normal to the foil and x, y as the transverse
coordinates. Equation (5) corresponds to a deflection θx in
the (x − z) plane and a deflection θy in the (y − z) plane
such that θ2 ¼ θ2x þ θ2y in the small angle approximation
(see Fig. 1). By symmetry, the mean and the variance of the
total deflection angle at foil exit in the (x − z) and the
(y − z) plane are therefore 0 and hθ2toti≃ hθ2x;toti þ
hθ2y;toti ¼ 2hθ2x;toti because of symmetry, and with hθ2x;toti
and hθ2y;toti the variance of total deflection angle at foil

exit in the (x − z) and (y − z) planes. If β2b ≪ 1, the
rms deflection angle in the (x − z) and (y − z) planes
reduce to

hθ2x;toti1=2 ¼ hθ2y;toti1=2 ¼ G0

Δ1=2
f

Eb
; ð6aÞ

G0 ¼
�
2πnf

�
ZbZfe2

4πϵ0

�
2

lnð204Z−1=3
f Þ

�
1=2

: ð6bÞ

The argument in the logarithm in Eq. (6b) depends on the
choice of cutoff angle θmin and θmax employed which is
somewhat arbitrary. However, for our present analysis in
which the physics of scattering has been idealized (e.g.,
electron screening is partially omitted), these specific
cutoffs are sufficient. What is of interest here is the scaling
of the rms deflection angle distribution hθ2toti1=2 in Eq. (6a).
The scaling is compared and verified by the Monte-Carlo
code SRIM in Sec. II B. The code includes a wider range
of physical phenomena (more details can be found in
Sec. II B). Equation (6a) shows that: (i) higher energy beam
ions are less likely to be deflected because of their stiffer
trajectories, (ii) higher charge states of the beam ions and
higher charged foil nuclei yield broader deflections because
the Coulomb interaction is stronger, and (iii) ions undergo
larger deflections in denser and thicker foils.

B. Monte-Carlo simulations

The multiple small-angle scattering of beam ions
induced by their penetration through a foil is simulated
using the Monte-Carlo code SRIM (stopping and range of
ions in matter) [16]. SRIM contains much richer physics
than the analytical model used in Sec. II A because it
computes the 3D trajectory of a single beam ion through
rectangular layers of materials using a quantum mechanical
treatment of ion-atom collisions and with adjustments for
consistency with experimental data; it also includes
screened Coulomb collisions between the beam ion and
the foil atoms due to the overlapping electron shells,
electron excitations, plasmons, and effective charge Z�

f

effects where Z�
f < Zf due to the collective electron cloud,

and large angle scattering. Statistical energy losses, angular
scattering, kinetic effects related to energy losses from
target damage, sputtering, ionization, and phonon produc-
tion are also accounted for.
SRIM simulation results for protons with three different

initial beam kinetic energies, Eb ¼ 2 MeV, 5 MeV and
10 MeV, penetrating a single foil of thickness Δf ranging
from 0.125 μm to 5 μm are shown in Figs. 2 and 3. The
material of the foil is solid aluminum (Zf ¼ 13,
ρ ¼ 2.7 g cm−3). For each initial Eb and Δf, Np ¼ 3000
protons (Zb ¼ 1) are tracked and for each proton i, the loss
of kinetic energy ΔEi and the deflection angle in the
transverse direction θtot;i after penetrating the single foil are

FIG. 1. Schematic of a beam ion at velocity v that has been
deflected by a normal angle θ from the axial direction z. The
angular deflections θx in the (x − z) plane and θy in the (y − z)
plane are represented.
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evaluated. Because of axial symmetry, the deflection angles
in both x- and y-directions θx;tot;i and θy;tot;i are statistically

equal. The average of a quantity A is denoted hAi ¼
1=Np

PNp

i¼1 Ai with Ai the individual value for the ith
proton. SRIM also takes into account rare large angle
scatterings, which are not relevant for the bulk of the proton
distribution. In our averages, we reject protons whose
deflection angle at the exit of the foil is more than 5
standard deviations from the mean. We refer to these
averages as “smoothed.” We compute, for each initial Eb
and Δf, the average kinetic energy loss hΔEi, the average

transverse angular deflection and average squared trans-
verse angular deflection in the x-direction, hθx;toti and
hθ2x;toti, and in the y-direction, hθy;toti and hθ2y;toti.
The smoothed average kinetic energy loss hΔEi, as a

function of foil thickness Δf, is plotted in Fig. 2. As
expected, hΔEi is small for small Δf and high Eb. In the
case where Eb ¼ 5 or 10 MeV, protons lose a negligible
amount of their initial kinetic energy (2% or less), even for
foils up to 5 μm. However, the 2 MeV protons lose close to
8% of their kinetic energy after penetrating 5 μm of solid
aluminum. The assumption of constant kinetic energy for
beam protons becomes relatively poor for μm thick foils
with a proton energy lower than 2 MeV. Although the
proton kinetic energy can be taken to be constant within
one foil, it cannot be assumed to be constant in the full
stack of foils because the small decrements in kinetic
energy in each foil can result in a substantial net total
energy loss when penetrating many foils.
As expected, there is zero mean angular deflection:

hθx;toti ¼ hθy;toti ¼ 0 (plot not shown). The rms deflection
angle hθ2x;toti1=2ð¼ hθ2y;toti1=2 because of symmetry) as a
function of foil thickness Δf from the smoothed distribu-
tion is plotted in Fig. 3. A least-square fit based on the Δf

and Eb dependance of Eq. (6) and the results of the Monte-
Carlo simulations show that

hθ2x;toti1=2 ¼ GSRIM

Δ1=2
f

Eb
; ð7Þ

with GSRIM ¼ 9.8 × 10−3 MeV μm−1=2. In contrast, using
Zb ¼ 1, Zf ¼ 13 and nf ¼ 6.02 × 1028 m−3, the coeffi-
cient G0 from Eq. (6) gives G0 ¼ 2.4 × 10−2 MeV μm−1=2

for aluminum which is 2.4 times higher than GSRIM. Such a
discrepancy may be justified by the richer models that
SRIM employed compared to the model in Sec. II A.
Equation (7), is employed in the analysis in the following
sections since it should be more accurate. Note also that for
Eb ¼ 5 MeV and 10 MeV, Eq. (7) produces an excellent fit
to the SRIM simulation results. In contrast, data slightly
departs from the fit for 2 MeV, because the significant loss
of kinetic energy for lower energy protons results in
enhanced angular scattering.
Methods presented in this section using SRIM can be

readily applied to other foil materials and a variety of
incident ions.

III. TRANSVERSE ENVELOPE MODEL

This section closely follows the treatment in Ref. [6].
First, the beam model, the geometry of the foil system, and
the beam fields are described, and then, particle equations
of motion both between two foils and within a foil are
derived. The particle equations of motion are averaged to
obtain an envelope equation for the transverse beam radius.
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FIG. 3. Dots give smoothed (large angle events rejected) rms
deflection angle computed with SRIM, averaged overNP ¼ 3000
protons with initial ion kinetic energy Eb after penetration of a
solid aluminum foil of thicknessΔf. Solid lines correspond to fits
of the data based on Eq. (6) using a least-squared method for each
initial kinetic energy Eb. Brown, blue, and red colors respectively
represent the initial kinetic energies of Eb ¼ 2, 5, and 10 MeV.
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FIG. 2. Dots give smoothed (large angle events rejected) proton
kinetic energy loss computed with SRIM, averaged over Np ¼
3000 protons with initial kinetic energy Eb as indicated after
penetration of a solid aluminum foil of thickness Δf. Smoothing
eliminates less than 0.2% of the simulated protons in the worst
case with Eb ¼ 2 MeV andΔf ¼ 5 μm. Solid lines correspond to
a linear fit of the data for initial kinetic energies Eb. Brown, blue,
and red colors represent initial kinetic energies Eb ¼ 2, 5, and
10 MeV.
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Illustrative examples of scattering effects on beam propa-
gation are presented in Sec. III E.

A. Geometry and beam model

The focusing system (see Fig. 4) is treated as a two-foil
system separated by length L, perpendicular to the axial z
axis, centered at z ¼ 0 and infinite in the transverse
directions x and y. This model requires that the character-
istic transverse beam radius is much smaller than the
transverse extent of the foils. Each foil has finite thickness
Δf: the beam dynamics is therefore treated differently
between the foils and within a foil. The foils are assumed to
be grounded conductors.
The ion beam is assumed to be single-species, mono-

energetic with kinetic energy Eb, mass mb and charge
q ¼ Zbe, filling the space between many foils. The axial
extent of the beam is assumed to be long compared to its
transverse size. We describe the beam with a Vlasov model
and beam distribution function fbðx⊥;p; zÞ. Because the
beam is assumed monoenergetic, the axial coordinate z can
be chosen as an independent variable, in place of the time t.
The beam charge density ρb ¼ q

R
d3pfb is assumed to

be axisymmetric (∂ρb=∂θ ¼ 0). The z-variation of ρb is
neglected between two adjacent foils and within a foil,
i.e., ρb ¼ ρbðrÞ, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. However, ρbðrÞ is

assumed to vary with z on length scales larger that the
interfoil spacing.
The beam line charge λb ¼ 2π

Rþ∞
0 drrρbðrÞ is propor-

tional to the beam current Ib with Ib ¼ βbcλb. By defi-
nition, the beam current density is Jb ¼ q

R
d3pvfb with v

the particle velocity. The beam is assumed to be mostly
axial, Jb ≃ ẑβbcρbðrÞ. Here, βbc is the axial beam velocity
consistent with the axial particle energy Eb ¼ ðγb − 1Þmc2

where γb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2b

q
. The radial shape of the charge

density ρb is assumed not to change form throughout the
stack of foils (in z) while the radial extent of the beam
charge density is allowed to vary in z. This idealization of

self-similar evolution is consistent with the conservation of
the linear charge density (λ ¼ const) under radial self-field
forces [6].
The transverse (⊥) statistical average of a quantity A

over the beam distribution fbðx;p; zÞ is defined by

hAi⊥ ≡
R
d2x⊥

R
d3pAðx⊥;p; zÞfbR

d2x⊥
R
d3pfb

; ð8Þ

where x⊥ ¼ x̂xþ ŷy denotes the transverse coordinate.
The z-varying radial extent of the beam charge density is
measured by the rms width σxðzÞ≡ hx2i1=2⊥ .

B. Self-field solutions

In this section, the beam electric and magnetic fields
are explicitly solved for the case of an axisymmetric
beam profile. We employ the quasistatic approximation:
∂E=∂t≃ 0 and ∂B=∂t≃ 0 in Maxwell’s equations. The
boundary conditions are set by the conducting foils. Er is
screened by the conducting foils: Er ¼ 0 within the foils,
and Bθ remains unmodified by the foils. Details of the
derivations can be found in Ref. [6].

1. Self-magnetic field between two foils

Using a potential vector A such that B ¼ ∇ ×A and
the Coulomb gauge ∇ ·A ¼ 0, A≃ ẑAz and ∇2Az≃
−μ0βbcρbðrÞ. Here, μ0 is the permeability of free space
and c2 ¼ 1=ðμ0ϵ0Þ. E can be expressed as the gradient
of an electrostatic potential in vacuum ϕv such that
∇2ϕv ¼ −ρbðrÞ=ϵ0. The integration of the two previous
equations using relevant radial boundary conditions yield
AzðrÞ≃ βbϕvðrÞ=c. The self-magnetic field has therefore
only an azimuthal component

B≃ θ̂BθðrÞ≃ −θ̂
βb
ϵ0cr

Z
r

0

d~r ~r ρbð~rÞ: ð9Þ

2. Self-magnetic field within a foil

As the thickness of the foils Δf is small compared to the
interfoil spacing L (Δf=L ≪ 1), B is assumed constant and
equal to the self-magnetic field at the surface of the foils.

3. Self-electric field between two foils

E can be expressed as the gradient of an electrostatic
potential ϕg such that E ¼ −∇ϕg and

∇2ϕg ¼ −
ρbðrÞ
ϵ0

: ð10Þ

In contrast to ϕv, ϕg takes into account the boundary values
ϕg ¼ 0 on the foils at z ¼ �L=2. Reference [6] provides
the derivation of the solution to Eq. (10):

FIG. 4. Axisymmetric beam between two conducting foils
located at z ¼ �L=2. The foils are grounded.
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ϕgðr; zÞ ¼
1

ϵ0

Z
∞

0

dk
k
coshðkL=2Þ − coshðkzÞ

coshðkL=2Þ J0ðkrÞ

×
Z

∞

0

d~r ~r ρbð~rÞJ0ðk~rÞ: ð11Þ

Here, J0 denotes a 0th order ordinary Bessel function. It
was found in Ref. [6] that the radial Er ¼ −∂ϕg=∂r and
axial Ez ¼ −∂ϕg=∂z field components could, to a good
approximation, be replaced by the z-average values
between the foils

Ēr;gðrÞ ¼
Z

L=2

−L=2

dz
L
Erðr; zÞ

¼ 1

ϵ0

Z
∞

0

dk

�
1 −

2

kL
tanhðkL=2Þ

�
J1ðkrÞ

×
Z

∞

0

d~r ~r ρbð~rÞJ0ðk~rÞ;

Ēz;gðrÞ ¼
Z

L=2

−L=2

dz
L
Ezðr; zÞ ¼ 0: ð12Þ

4. Self-electric field within a foil

The foils are assumed to be perfect conductors so
that E ¼ 0.

C. Particle dynamics

The particle dynamics between the thin foils has been
previously treated [6]. This section extends the analysis to
include the deleterious effects of scattering within a foil.
The particle dynamics is analyzed in two separate

regions: between two foils, which is assumed to be vacuum,
and within a perfectly conducting foil. Intrabeam scattering
is neglected. Within a foil, deflections of beam ions due to
the scattering with foil atoms are included in the equations
of motion using the results of Sec. II. A static magnetic field
can also be superimposed to improve focusing as treated
in Ref. [6].

1. Between two foils

The beam charge density is assumed to be axisymmetric,
and the foils are assumed to be transversely homogenous,
leading to axisymmetric self-fields. The axial self-electric
field, Ezðr; zÞ, is neglected. In the paraxial approximation
(v ¼ ẑβbcþ δv≃ ẑβbc), the single particle equation of
motion between the foils is

x00⊥ ≃ q
mγbc2

∂ϕv

∂x⊥
−

q
mγbβ

2
bc

2

∂ϕg

∂x⊥
: ð13Þ

Here, derivatives with respect to z are represented by
primes ( 0 ¼ d=dz). The first term on the right-hand side
of Eq. (13) represents the self-magnetic focusing

contribution, and the second term corresponds to the
self-electric defocusing contribution.

2. Within a foil

Because the foils are assumed to be perfect conductors,
no electric field penetrates the foils. The finite thickness of
the foils induces Coulomb scattering between beam ions
and foil atoms. Therefore, beam ions are both transversely
deflected and lose kinetic energy on the foils.
Knock-on electrons emitted from the foils [20] and their

effects on the dynamics of the beam ions are a topic for
further research. Knock-on electrons fill the gaps between
the foils, and the subsequent current neutralization is greater
than the subsequent charge neutralization as, by definition,
the velocity of the knock-on electrons is higher than the ion
beam velocity. Knock-on electrons could therefore mitigate
the passive focusing scheme. Nevertheless, the presence of
knock-on electrons does not confound the passive focusing
in regimes where the foil atoms and the beam ions are of low
atomic number, where the beam kinetic energy is high, and
where the foils are thin. In this case, the number of generated
knock-on electrons would remain negligibly low according
to the Rutherford scattering model.
The ion beam kinetic energy Eb is no longer constant and

depends on the distance traveled within the foil and the
stopping power S of the foil material. Values of S are found
in tabulated data such as the PSTAR database [21].
Straggling is ignored here, where we consider transverse
dynamics. An analysis of straggling would be important for
substantial changes in mean beam energy or when energy
spread is important. The electric field vanishes in the foil,
and terms representing energy loss and the scattering-
induced deflection of the particle are added. The cumu-
lative scattering-induced deflection of a single particle
trajectory is a stochastic process that depends on the
distance z traveled in the material and the material proper-
ties. It is modeled by a Brownian noise w such that for
0 ≤ z0 ≤ z ≤ Δf, wðzÞ − wðz0Þ is a Gaussian distributed
variable with mean 0 and variance ðz − z0Þ ×G2=E2

bðzÞ to
have a form consistent with Eqs. (6) and (7). The
instantaneous scattering-induced deflection in the particle
equation of motion is therefore represented by the white
noise w0 which is the formal derivative of the Brownian
noise w. The equation of motion is then the stochastic
differential equation

x00⊥ þ ðγbβbÞ0
ðγbβbÞ

x0⊥ −
q

mγbc2
∂ϕv

∂x⊥
≃ w0; ð14Þ

and includes the particle kinetic energy loss due to the
stopping power of the foil material E0

b ¼ SðEbÞ (see Fig. 5),
or equivalently

ðγbβbÞ0 ¼
SðEbÞ
mc2βb

: ð15Þ
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The deceleration-induced term ðγbβbÞ0
ðγbβbÞ x

0⊥ is derived
in Ref. [2].

D. Envelope equations

The statistical transverse envelope equations are derived
by taking the derivatives in z of σxðzÞ and the transverse
rms emittance of the beam εx;rms ≡ ½hx2i⊥hx02i⊥−
hxx0i2⊥�1=2, and then applying the particle equations
between two foils and within one foil. Because the beam
is axisymmetric, only the x-component of the beam
envelope equation is treated. This section extends the
envelope formalism of Ref. [6] to include additional effects
due to scattering within a foil.

1. Between two foils

The beam envelope equation between two foils, derived
in Ref. [6], is

d2

dz2
σx þ

γ2b
4
½β2b − F̄� Q

σx
−
ε2x;rms

σ3x
¼ 0: ð16Þ

The dimensionless perveance Q ¼ qλb=ð2πϵ0mγ3bβ
2
bc

2Þ is
constant [1,2,22]. It is assumed that, between the foils, the
nonlinear field effects are small and therefore εx;rms is
constant.

F̄ ¼ −
4πϵ0
λ

�
r
Z

L=2

−L=2

dz
L

∂ϕg

∂r
�

⊥
ð17Þ

is a dimensionless “form factor” that models the average
screening of the defocusing field due to the foils for closely
spaced foils (L ≪ ρð∂ρ=∂zÞ−1) as the beam ions cannot

rapidly respond to fast variations of the defocusing electric
field between closely space foils (see Ref. [6] for details).
Scattering does not change this result as it does not happen
between the foils. In vacuum, F̄ ¼ 1 and the envelope
equation reduces to the familiar vacuum form [6]. The form
factor F̄ ∈ ½0; 1� can be effectively seen as an attenuation
factor of the defocusing electric field due to the foils.

2. Within a single foil

In this paragraph, z ¼ 0 is taken at the middle of the foil
and the foil domain in z is ½−Δf=2;Δf=2�. Equation (14)

and the derivatives of hx2i1=2⊥ in z yield the beam envelope
equation within a single foil.

d2

dz2
σx þ

ðγbβbÞ0
ðγbβbÞ

d
dz

hxx0i1=2⊥ þ γ2b
4
β2b

Q
σx

−
ε2x;rms

σ3x
¼ hxw0i⊥

σx
:

ð18Þ
Equation (18) differs from the beam envelope equation
between two foils, Eq. (16), by the absence of a defocusing
electric field, and the presence of scattering and deceleration.
Furthermore, the emittance is not conserved because of
both kinetic energy losses and cross-terms between x, x0
and w0 due to scattering-induced deflections. Differentiating
ε2x;rms with respect to z and applying Eq. (14) yields

d
dz

ε2x;rms ¼ −2
ðγbβbÞ0
γbβb

ε2x;rmsþ 2σ2xhx0w0i⊥− 2hxx0i⊥hxw0i⊥:

ð19Þ
In Appendix A, a detailed analysis of the cross-terms for
beam kinetic energy Eb leads to Eqs. (A10) and (A13),
and shows that hxw0i⊥ ¼ 0 and hx0w0i⊥ ¼ G2=ð2E2

bÞ. Using
these results, Eq. (18) reduces to

d2

dz2
σx þ

ðγbβbÞ0
γbβb

d
dz

hxx0i1=2⊥ þ γ2b
4
β2b

Q
σx

−
ε2x;rms
σ3x

¼ 0; ð20Þ

and Eq. (19) reduces to

d
dz

ε2x;rms ¼ −2
ðγbβbÞ0
γbβb

ε2x;rms þ
G2

E2
b

σ2x: ð21Þ

For a paraxial beam, angles of particle trajectories in the
foil are small and the total distance traveled by the ions
within the foil is, therefore, to first approximation, Δf. The
beam size can be approximated as constant within an
individual foil (σx ¼ const) when the foils are thin com-
pared to transverse focal length. Then, the kinetic energy
loss ΔEb of the ion beam reduces to

ΔEb ≃ SðEbð−Δf=2ÞÞΔf ≃ SðEbÞΔf: ð22Þ
Generally, jΔEbj ≪ Eb, and the energy Eb can be assumed
constant within a single foil when computing quantities that
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FIG. 5. Stopping power SðEbÞ of a proton in solid aluminum
(mass density ρ ¼ 2.7 g=cm3).
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are functions of Eb because the higher-order induced errors
are small. The emittance evolution equation (19) can then
be integrated across a foil,

ε2x;rmsðΔf=2Þ ¼ ε2x;rmsð−Δf=2Þ þ
Z

Δf=2

−Δf=2
dz

d
dz

ε2x;rmsðzÞ

≃ ε2x;rmsð−Δf=2Þ

þ Δf

�
−2

ðγbβbÞ0
γbβb

ε2x;rms þ
G2

E2
b

σ2x

�
z¼−Δf=2

:

ð23Þ

In Eq. (23), terms of order Δ2
f and higher are neglected.

Because the foils induce deceleration of the ions, ðγbβbÞ0 is
negative, causing emittance growth. Because G is always
positive, the scattering term also causes emittance growth.
Note that while the kinetic energy loss within one foil is
small compared to the kinetic energy of the beam, the
accumulated losses of kinetic energy due to its propagation
through a large number of foils can be significant and
should be accounted for in the beam dynamics. We employ
the thin foil approximation and apply Eqs. (22) and (23) in
the following sections.
Note that, instead of our previously defined transverse

emittance, it is possible to use the normalize transverse
emittance as a measure of beam quality as it is a conserved
quantity under acceleration or deceleration. In this case, an
auxillary equation for γ0b [2] must be taken into account.

E. Example: Application of the envelope
model to intense proton beams

We analyze a lens where thin foils of constant thickness
Δf are stacked with constant foil spacing L. Modulation of
foil spacing L as a function of the beam radial size can
optimize the focusing mechanism, but is not treated here.
The foil material is solid aluminum (ρ ¼ 2.7 g cm−3,
Zf ¼ 13), with angular deflection coefficient GSRIM ¼
9.8 × 10−3 MeV μm−1=2 from Sec. II and the stopping
power SðEbÞ extracted from Ref. [21]. Use of conducting
materials different from solid aluminum results in a differ-
ent deflection coefficient G that can be recomputed using
the methods of Sec. II, and a different stopping power
SðEbÞ. The continuous approximation of the form factor F̄
from Eq. (17) is used. No external focusing system is
employed. The ion beam is assumed to have no angular
momentum. Secondary electrons and neutralizing plasma
are neglected.
For efficient passive focusing, the beam must ideally be

high current and high energy consistently as analyzed in
Sec. III D. For example, consider a proton beam with a high
perveance value ofQ ¼ 1.8 × 10−2—e.g., a monoenergetic
4.8 kA 30 MeV proton beam. Such characteristics may be
achievable in the near future by laser-produced proton
beams as the individual characteristics can already be

separately reached [10]. The initial beam density is radially
Gaussian with rms beam width σx ¼ 200 μm and zero
divergence σ0x ¼ 0. The foil spacing is set to L ¼ 100 μm
and the foil thicknesses Δf range from 0 to 12.8 μm.
The initial beam emittance is εx;rms ¼ 0.87 mmmrad. The
emittance in this case grows due to foil-induced scattering
in the thin, but finite thickness foils. The finite foil
thickness induces a reduction of focusing that we quantify
by the focusing efficiency defined by

ηðΔfÞ ¼
σx;init − σx;minðΔfÞ

σx;init − σx;minðΔf ¼ 0Þ : ð24Þ

Here, σx;init is the initial rms beam width. σx;minðΔfÞ is the
best focus for foils with thickness Δf, occurring at a
distance zmin after the first foil. zmin is called the effective
focal length. The minimum beam rms width for infinitely
thin foils is σx;minðΔf ¼ 0Þ. This definition of the focusing
efficiency factor η is valid only when the foil spacing is
small enough to induce initial focusing. The focusing
efficiency η is desired to be as close as possible to unity,
corresponding to small defocusing degradation due to
scattering and energy losses. Mitigation of foil-induced
scattering can be achieved by reducing the foil thickness
Δf, the addition of an external focusing system, or using
higher initial beam energy Eb.
The dependence of the focusing efficiency η as a

function of foil thickness Δf for various initial proton
kinetic energies is shown in Fig. 6. The beam rms width σx,
emittance and energy for various foil thicknesses and an
initial beam kinetic energy Eb ¼ 30 MeV are plotted in
Fig. 7. The plot of the beam rms width shows that, as
expected, thicker foils decrease the maximum beam focus,
but are still preferable to the vacuum case where the beam
quickly expends. The plot of the axial beam kinetic energy
Eb is consistent with the stopping power of the employed
tabulated PSTAR data in Ref. [21]. Emittance growth is
observed in the plot of the beam emittance. Table I

50 MeV
40 MeV

30 MeV
25 MeV20 MeV

15 MeV

Thickness, f m

Fo
cu

si
ng

E
ff

ic
ie

nc
y,

0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

FIG. 6. Proton focusing efficiency η as a function of foil
thickness Δf is computed for specified initial kinetic energies
Eb. Green, cyan, blue, purple, pink, red colors represent initial
kinetic energies Eb ¼ 15, 20, 25, 30, 40, and 50 MeV.
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summarizes the beam size and emittance at maximum
focusing for a variety of foil thicknesses. Plots of particle-
in-cell simulation results obtained from WARP [17] (see
Sec. IV) are also included in Fig. 7. The focusing efficiency
is quickly reduced with thicker foils, which moves the focal
spot closer to the entrance of the stack of the thin foils,
reduces the beam kinetic energy, and increases the beam
emittance. The effects are more deleterious for a beam with
lower perveance (i.e., less magnetic focusing) and lower
energy (i.e., more scattering and faster kinetic energy loss).
For example, a cold 10 MeV proton beam of perveance
8.14 × 10−3 would have a focusing efficiency of 9% for

even an extremely thin foil of thickness Δf ¼ 160 nm,
which means that passive focusing cannot effectively
operate for such low energy and low perveance beams.
In order to achieve a focusing efficiency of 70% for such a
beam, the foil thickness would have to be about 24 nm.
Nonetheless, even though focusing cannot be achieved, the
stack of foils strongly mitigates defocusing compared to
vacuum values (see Fig. 7). Results presented here help
clarify where idealized results from Ref. [6], in which
scattering and energy losses were neglected, can be reliably
applied.
Since passive focusing is nonlinear (the focusing term in

the envelope equation is proportional toQ=σx in contrast to
solenoidal focusing that is linear, i.e., proportional to κσx
where κ is the applied focusing function), equivalence in
terms of thin lens optics is not possible. Therefore, as an
approximate comparison between passive focusing and
solenoidal focusing, we compute the necessary solenoidal
magnetic field to reach the same minimum spot size σx;min
provided by passive focusing. For the above-mentioned
beam parameters, in the absence of foils, a solenoidal
magnetic field of 600 T would be required to reach the
minimum spot size σx;min ¼ 157.6 μm that is provided by a
stack of thin foils of thickness Δf ¼ 12.8 μm. This shows
the advantage of foil focusing relative to vacuum focusing
with applied fields for the beam parameters examined here.
In optimized systems, it may be advantageous to use
combined solenoid and foil focusing, using fewer foils
and the solenoid strength where the beam is large, and more
foils as the beam focuses. This could partly mitigate
scattering issues and give more system tunability. Note
that, while quadrupoles are also linear optics, their uses are
more even problematic. One could indeed superimpose
high gradient pulsed magnet quadrupole periodic lattices to
replace the solenoid focusing. Estimates show that for an
occupancy of 0.5 and the quadrupole length L ¼ 2 mm
(this short length is required for the effective focal length
zmin to be in the same range as the study above, i.e., in the

vacuum
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FIG. 7. The evolution of rms beam width σx (a), rms transverse
emittance growth Δεx;rms (b), and axial kinetic energy Eb (c) as a
function of z for foil spacing L ¼ 100 μm and foil thickness
Δf ¼ 0, 1.6, 3.2, 6.4, 12.8 μm as labeled. Quantities at the focal
spot (z position of the smallest σx) are summarized in Table. I.
Dashed lines represent the envelope model solutions. Solid lines
represent WARP simulations.

TABLE I. Minimum σx;min and corresponding z-location zmin
(effective focal length) for foil spacing L ¼ 100 μm and initial
kinetic energy Eb ¼ 30 MeV for different foil thicknesses Δf.
Corresponding focusing efficiency η, kinetic energy Eb at σx;min,
and beam rms emittance growth Δεx;rms at σx;min are displayed for
the 30 MeV initial beam shown in Fig. 6 and 7.

Foil Foil Spacing

Thickness L ¼ 100 μm

Δf ( μm) σx;min ( μm) η
zmin
(mm)

Eb
(MeV)

Δεx;rms
(mm mrad)

0 81.0 1 19.0 30 0
1.6 94.1 0.89 19.1 28.8 0.4
3.2 106.1 0.79 19.0 27.7 0.7
6.4 127.5 0.61 18.4 25.4 1.2
12.8 157.6 0.36 16.1 22.1 2.1
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tens of mm range), the required magnetic gradient is
6 × 105 T=m, or, equivalently, a field of 30 T for a radius
of 50 μm. These are extreme fields. Alternatively, to avoid
those extreme fields, one could use upstream (nonim-
mersed) quadrupole optics in a combined type final focus
using permanent magnets, but that also introduces another
issue regarding the behavior of electrons respective to the
dynamics of ions when entering the quadrupoles.

IV. SIMULATIONS

The envelope model is compared to particle-in-cell
simulations using the WARP code [17] in axisymmetric
cylindrical (r − z) geometry with a regular grid. The basic
simulation model is also discussed in Ref. [6]; it is
generalized here to include scattering and energy loss
effects. The setup of the present simulations is similar to
what was referred as the “infinite beam” simulation setup of
Ref. [6], and agrees well with its analytical envelope model
that excludes scattering and energy loss effects. The
domain is bounded radially by the beam pipe at r ¼
1.2 mm and axially by the ends of two adjacent foils,
and contains by 64 radial grid cells and 8 axial grid cells.
The boundary conditions for macroparticles are absorbing
in the r direction and periodic in the z direction. This choice
of boundary conditions for particles speeds up the simu-
lation as particles exiting from the right end are reinjected
back into the domain from the left end with the same
velocity and the same transverse position. This bypasses
the need for much larger simulations of the whole stack of
thin foils and focuses on the beam dynamics between two
foils and within one foil. The electric field is calculated in
the electrostatic approximation with Dirichlet boundary
conditions in r and in z. The magnetic field is calculated in
the magnetostatic approximation with Dirichlet boundary
conditions in r and periodic boundary conditions in z.
Beam macroparticles are initially loaded with regular
spacing in the z direction.
In the r direction, the particles are loaded following an

initially axisymmetric Gaussian charge profile, chopped at
r ¼ rmax ¼ 3.5σb. The particles are spaced uniform in R2

out to R ¼ rb ¼ 2σb, with R related to the actual radius r
by the relation

r ¼ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln

�
1 −

�
R
2rb

�
2

N
�s
: ð25Þ

with N ¼ 1 − expð−r2max=ð2σ2bÞÞ, a normalization factor
due to the chopping (see Appendix B for details).
The rms transverse beam size σx is computed by

averaging over the full axial domain. Typically, 296
macroparticles are loaded per particle-containing cell.
These simulated beam parameters are identical to the beam
parameters of the envelope model of Sec. III E for direct
comparison. Parametric numerical studies in the absence of

scattering showed that the grid resolution and statistics
were sufficient for well converged simulations [6].
Scattering and energy losses are not expected to change
requirements.
Scattering and energy loss options were added to the

modeling of foils in WARP. Foils are located at each axial
end of the domain and assumed to extend to the radial
boundaries. When a particle penetrate a foil, the particle is
given a random transverse kick that follows the normal
distribution with mean 0 and variance hθ2xi ¼ G2

SRIMΔf=E2
b

[see Eq. (7)]. After scattering, the kinetic energy of the beam
Eb is reduced by ΔEb ≃ SðEbð−Δf=2ÞÞΔf [see Eq. (22)].
Results of these simulations are shown in Fig. 7 and

agree reasonably well with the envelope results for the axial
kinetic energy Eb. The minor discrepancies between the
simulations and the envelope model are due to various
effects not included in the envelope model as mentioned in
Ref. [6]: (i) the radial density is evolving and does not stay
Gaussian, (ii) the electric field is not averaged between the
foil by using F̄, and (iii) emittance growth due to the
nonlinear nature of the self-fields. Thicker foils enhance
these differences.

V. REMARKS

This paper generalized recent theory and simulation
models in Ref. [6] to include the degradation of beam
quality due to foil-induced scattering and energy loss in
passive focusing. This study shows that a higher beam
kinetic energy, a lower beam atomic number and/or foil
thickness are needed for optimal passive focusing using a
stack of thin foils. Extending the study to a larger range of
foil properties (e.g., with irregular spacing and thickness,
different shape, holes) would open possibilities to opti-
mized passive focusing systems for more complex beams
(e.g., with large energy spectrum, not initially collimated,
with comoving and secondary elections).
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APPENDIX A: CALCULATION OF THE
MOMENTS hxw0i AND hx0w0i WITHIN

METALLIC FOILS

Consider Eq. (14) with constant kinetic energy
(γbβb ¼ const) and in the x direction. By introducing
K ¼ − q

mγbc2x
∂ϕv∂x , a Hill’s equation with a stochastic term

is obtained,

x00ðzÞ þ KðzÞxðzÞ ¼ w0ðzÞ; ðA1Þ
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where w0 is white noise that we model as a sum of discrete
kicks with

w0ðzÞ ¼
Xn
i¼1

Δiδðz − ziÞ: ðA2Þ

Here, δðzÞ is the Dirac delta function, zi is the axial position
where the ith transverse kick occurs, n is the total number
of transverse kicks from the axial coordinate −Δf=2 to z,
and Δi the amplitude of the ith kick. From Sec. II B, the
kicks Δi are normal distributed centered on 0 with variance
G2=E2

bðzÞδz. Here δz is the mean free path between
two collisions. Between two kicks (i.e., for any z ≠ zi
with i ∈ ⟦1; n⟧), Eq. (A1) reduces to the regular Hill’s
equation,

x00ðzÞ þ KðzÞxðzÞ ¼ 0: ðA3Þ

The solution of the regular Hill’s equation, Eq. (A3),
between the ith kick and the ðiþ 1Þth kick has the form

xiðzÞ ¼ ½Aifiðz − ziÞ þ Bigiðz − ziÞ�½Hðz − ziÞ
−Hðz − ziþ1Þ�: ðA4Þ

Here, Ai and Bi are constants that depend on the initial
conditions, Ci and Si are cosine-like and sine-like functions
satisfying Eq. (A3) with initial conditions Cið0Þ ¼ 1,
Ci

0ð0Þ ¼ 0, Sið0Þ ¼ 0, Si0ð0Þ ¼ 1, and H is a “step”
function defined such that

HðzÞ ¼
8<
:

1; z > 0
1
2
; z ¼ 0

0; z < 0:

ðA5Þ

The general solution of Eq. (A1) can be expressed as

xðzÞ ¼
Xn
i¼0

xiðzÞ: ðA6Þ

Consider a particle with initial conditions xðz0Þ ¼ x0 and
x0ðz0Þ ¼ x00 where z0 ¼ −Δf=2. This sets A0 ¼ x0,
B0 ¼ x00. Note that zi > zi−1 for i > 0. Then, the following
equations recursively hold for any i > 0:

Ai ¼ Ai−1Ci−1ðzi − zi−1Þ þ Bi−1Si−1ðzi − zi−1Þ;
Bi ¼ Ai−1Ci−1

0ðzi − zi−1Þ þ Bi−1S0i−1ðzi − zi−1Þ þ Δi:

ðA7Þ

It can be shown that, for any i > 1,

Ai ¼ Ai þ
Xi−1
j¼1

Ci;jΔj; Bi ¼ Bi þ
Xi−1
j¼1

Di;jΔj þ Δi; ðA8Þ

where Ai, Bi, Ci;j, Di;j are constants that depend solely on
A0, B0, and Ci, Ci

0, Si, Si0 evaluated at zi and zi−1.
Their explicit evaluation is not necessary in our
analysis.
We can now compute hxw0i and hx0w0i within the

metallic foil. Applying Eq. (A2), Eq. (A4), and
Eq. (A8), we first calculate

hxw0iðzÞ ¼
�Xn

i¼1

Xn
k¼1

Δk½Aifiðzk − ziÞ þ Bigiðzk − ziÞ�

× ½Hðzk − ziÞ −Hðzk − ziþ1Þ�δðz − zkÞ
�

¼
�
1

2

Xn
i¼1

Δiδðz − ziÞðAi þ
Xi−1
j¼1

Ci;jΔjÞ
�
:

ðA9Þ

Because the Δi are isotropically distributed, we have
hPn

i¼1Δiδðz− ziÞAii¼ 0, hPn
i¼1Δiδðz−ziÞ

P
i−1
j¼1Ci;jΔji¼

0. In this result, note that for j < i, Δi ≠ Δj and all terms in
the average vanish because there is no quadratic terms inΔ2

i
in the sums. Together, these results show that

hxw0iðzÞ ¼ 0: ðA10Þ

Similarly, we compute hx0w0i within a metallic foil,

hx0w0iðzÞ ¼
�Xn

i¼1

Xn
k¼1

Δk½Aifi0ðzk − ziÞ þ Bigi0ðzk − ziÞ�

× ½Hðzk − ziÞ −Hðzk − ziþ1Þ�δðz − zkÞ
�

¼
�
1

2

Xn
i¼1

Δ2
i δðz − ziÞ

�
: ðA11Þ

hPn
i¼1Δ2

i δðz − ziÞi in Eq. (A11) is approximated by
averaging it over a mean free path δz. Because the Δi
are normal distributed centered on 0 with variance
G2=E2

bðzÞδz, carrying out this average gives

�Xn
i¼1

Δ2
i δðz − ziÞ

�
≃ 1

δz

Z
zþδz

2

z−δz
2

dz

�Xn
i¼1

Δ2
i δðz − ziÞ

�

≃ 1

δz
hΔ2

ni≃G2

E2
b

; ðA12Þ

resulting in

hx0w0iðzÞ ¼ 1

2

G2

E2
b

: ðA13Þ

SCATTERING EFFECTS IN PASSIVE FOIL FOCUSING … Phys. Rev. ST Accel. Beams 18, 091301 (2015)

091301-11



APPENDIX B: LOADING IN THE RADIAL
DIRECTION OF A BEAM WITH A RADIAL
GAUSSIAN PROFILE ON THE (r − z) GRID

Transversely, the beam macroparticles are initially
loaded as if the beam radial distribution is axisymmetrically
uniform, following the uniform beam radial density

ρb;uniðRÞ ¼
	

λ
π
1
r2b
; 0 ≤ R ≤ rb;

0; rb < R:
ðB1Þ

The number of particles therefore scales as R2 in the (R − z)
grid. Then, the radial coordinate R of each of the macro-
particles is mapped to the new coordinate r to obtain a
Gaussian distribution in the physical (r − z) grid chopped
at r ¼ rmax using the formulaZ

r

0

ρb;gauð~rÞ2π ~rd~r ¼
Z

R

0

ρb;unið ~RÞ2π ~Rd ~R ðB2Þ

where

ρb;gauðrÞ ¼
	 λ

π
1
2σ2b

h
exp



− r2

2σ2b

�
=N

i
; 0 ≤ r ≤ rmax;

0; rmax < r

ðB3Þ
is the Gaussian radial density chopped at rmax. N ¼ 1 −
exp½−r2max=ð2σ2bÞ� is a normalization factor to account for
the chopping. Equation (B2) yields an explicit expression
for

r ¼ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln

�
1 −

�
R
2rb

�
2

N
�s
: ðB4Þ

Note that rb ¼ 2σb as both values are rms-equivalent beam
radii [6].
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