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Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending
on the ratio of the electron beam phase space area (emittance) to the characteristic radiation wavelength λ.
On the other hand, numerical codes used to predict x-ray beam line performance can typically only
propagate coherent fields from the source to the image plane. We investigate methods for representing
partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in
standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of
coherence. In the limit when the electron beam emittance along at least one direction is much larger than λ
the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes
we discuss an economical method of defining the relevant coherent fields that samples the electron beam
phase space using low-discrepancy sequences.
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I. INTRODUCTION

Modern storage rings now produce partially coherent x
rays for experimental use, and new facilities under both
construction and design hold the promise for increasing the
coherent flux by 1–2 orders of magnitude (see, e.g., [1–4]).
In tandem with these developments, a host of experimental
x-ray techniques have been developed over the last few
decades that take advantage of partially coherent radiation,
including x-ray photon correlation spectroscopy and scat-
tering [5,6], coherent x-ray diffractive imaging [7–9], x-ray
scanning microscopy [10], and x-ray nanoprobe spectros-
copy [11]. The ability to make detailed predictions of the
x-ray properties has become an important component in
both the design and interpretation of these experiments.
This in turn requires accurately simulating the radiation
from the source to the detector, including realistic models
of all beam line optical elements, and of the sample itself.
In the limit of either complete incoherence or full

coherence, simulation of x-ray propagation through the
beam line optics is straightforward: ray tracing can be
employed in the former while Fresnel propagation can be
applied to the latter. On the other hand, accurately modeling
the full coherence properties of partially coherent undulator
radiation is a challenging task that can become numerically
intensive. In this paper we discuss how partially coherent
undulator radiation can be represented optimally for differ-
ent cases of electron beam distributions typical to both
current third generation storage rings and in those of future

upgraded machines. Our approach is based on an appro-
priate summation of coherent fields similar to those
discussed in [12,13]. This is in contrast to other, approxi-
mate methods that are based on judiciously combining ray-
tracing and wavefront propagation; these alternatives have
been based on the superposition of Gaussian wavelets [14],
the Green function Monte Carlo methods [15], and the so-
called “hybrid method” of Ref. [16], but we will not discuss
them further. We limit our discussion to the first-order
coherence, which can be quantified by the ensemble
average of quantities quadratic in electric field amplitudes.
Most coherence experiments in synchrotron radiation
explore the first-order coherence.
In Sec. II we present some background material covering

undulator radiation and its characterization using statistical
optics. After beginning with a description of the emission
of undulator radiation by a single electron, in Sec. II B we
introduce some basic quantities of statistical optics includ-
ing the cross-spectral density and brightness or Wigner
function. We conclude this section with a brief review of a
few useful, simple metrics that characterize the coherence
that we will apply to undulator radiation later in the paper.
Section III presents and compares various ways that
partially coherent undulator radiation may be represented
using coherent fields or modes, and represents the main
results of this paper.
After briefly showing how these “coherent mode”

expansions may be used to represent the cross-spectral
density, we discuss the simplest such expansion to the
undulator field in Sec. III A. This expansion approximates
the undulator field by a Gaussian mode, and results in the
so-called Gaussian-Schell model of undulator radiation that
has a long history in statistical optics. The Gaussian-Schell
model only applies if the electron beam phase space area
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(or emittance) in both horizontal and vertical planes is
much larger that λ=4π. To go beyond this incoherent case,
in Sec. III B we investigate the limit where one emittance is
large while the other is arbitrary; this case applies at modern
third generation storage rings over a wide range of
parameters. Here, we find that the Gaussian-Schell expan-
sion is valid along the large-emittance direction, while
the coherent modes in the other direction can be found
numerically with a matrix eigensolver. Finally, in Sec. III C
we turn to the case where the e-beam emittances in both
planes can be arbitrarily small. In this case, we show that a
relatively compact representation of the field can be built
by a suitable Monte Carlo sampling of the electron beam
phase space with low-discrepancy sequences. Finally, we
conclude in Sec. IV.

II. STATISTICAL OPTICS OF
UNDULATOR RADIATION

Undulator radiation is most naturally described using
statistical optics. This section is primarily a review of the
necessary concepts and an introduction to our notation. We
begin with the paraxial description of the field, and proceed
to write down the radiation generated by a reference
electron moving along the optical axis in an undulator.
We then relate the reference solution to that of an electron
with arbitrary initial coordinates in phase space. Since the
particle coordinates are only known probabilistically, we
are naturally led to characterize the field statistically. We
then briefly present some basic notions from statistical
optics, and show how a specific correlation function (the
cross-spectral density) describes undulator radiation.

A. Paraxial description of undulator radiation

Within the paraxial approximation, the electric field
Eðx; t; zÞ is represented at the location z along the optical
axis as a function of the time t and the coordinates
x ¼ ðx; yÞ in the plane transverse to z. We will find it
convenient to write the field in terms of its Fourier trans-
form with respect to both t and x, and therefore introduce
the angular-spectral representation of the field

~Ekðϕ; zÞ≡ 1

2πλ2

Z
dxdtEðx; t; zÞeikðct−x·ϕÞ; ð1Þ

where k ¼ 2π=λ ¼ ω=c is the ẑ component of the wave
vector and jϕj ≪ 1 is the angle with respect to the optical
axis. The evolution of the field ~Ek is governed by the
paraxial wave equation� ∂

∂zþ
ik
2
ϕ2

�
~Ekðϕ; zÞ

¼ −
Z

dtdx
J − cρϕ
4πϵ0cλ2

eikðct−z−ϕ·xÞ; ð2Þ

where ϵ0 is the permittivity of free space, c is the speed of
light, and ρ, J are the charge and current density, respec-
tively. For synchrotron radiation produced by highly
relativistic electrons whose energy γ ≫ 1 and longitudinal
velocity dz=dt ≈ c, the source terms due to electron j are
given by

ρjðx; t; zÞ ¼ −
e
c
δ½x − xjðzÞ�δ½t − tjðzÞ�; ð3Þ

Jjðx; t; zÞ ¼ cxj0ρjðx; t; zÞ; ð4Þ

where e is the magnitude of the electron charge and x0j ≡
dxj=dz is the angle that the electron makes with the optical
axis z. We will consider synchrotron radiation from an
undulator whose period and peak magnetic field are λu
and B0, respectively. We introduce the reference electron
energy γr, which defines the fundamental radiation wave-
length λr ¼ 2π=kr in terms of the undulator period λu ¼
2π=ku and deflection parameter K ≡ eB0=mcku via

λr ≡ 1þ K2=2
2γ2r

λu: ð5Þ

We model the undulator as an ideal, hard-edged device
of length Lu that is centered at z ¼ 0, assuming that the
magnetic field is sinusoidal and directed along ŷ when
jzj ≤ Lu=2 ¼ Nuλu=2 and zero otherwise (Nu is the num-
ber of undulator periods). If we assume further that the
electron energy deviation from resonance is small, jηjj≡
jγj − γrj=γr ≪ 1, and that the natural undulator focusing is
negligible, 2πKNu=γr ≪ 1, then the electron trajectory
follows the wiggle motion in x and a simple straight line
along y:

x0jðzÞ ¼
K cosðkuzÞ

γr
þ x0j; y0jðzÞ ¼ y0j; ð6Þ

xjðzÞ ¼
K sinðkuzÞ

γrku
þ x0jzþ xj; yjðzÞ ¼ y0jzþ yj:

ð7Þ

Here, we have defined the “initial” coordinates xj ≡ xjð0Þ
and x0j ≡ x0jð0Þ to be those that the particle would have at
z ¼ 0 in the absence of the undulator; the ideal reference
electron has xj ¼ x0j ¼ 0. The electron time coordinate
under the same assumptions is

ctjðzÞ ¼
�
1þ ku

kr
ð1 − 2ηjÞ

�
zþ K

4γ2rku
sinð2kuzÞ

þ Kx0j
γrku

sinðkuzÞ þ
1

2
x02j zþ ctj; ð8Þ
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where tj ¼ tjð0Þ is the time when the particle passes the
plane z ¼ 0 and the reference electron has tj ¼ 0.
We can now determine the electric field by inserting the

particle trajectories (6)–(8) into the sources (3) and (4),
which we then use in the paraxial wave equation (2). While
a complete solution can be easily written down, we will
focus on the field within the central cone defined by
γrjϕj≲ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ K2ÞNu

p
. In this case the source dramati-

cally simplifies, particularly for the reference electron
whose initial phase space coordinates vanish; the undulator
field in the central cone due to this reference electron is

~E0
kðϕ; 0Þ ¼

eK½JJ�Lu

8πϵ0γrcλ2
e−iπNuðk−krÞ=kr

× sinc

�
πNu

�
kr
2ku

ϕ2 þ k − kr
kr

��
; ð9Þ

where we use the standard notation for the Bessel function
factor ½JJ�≡ J0½ K2

4þ2K2� − J1½ K2

4þ2K2�. Equation (9) expresses
the field at the virtual source point z ¼ 0 (i.e., in the middle
of the undulator), which is what one would measure if the
field was imaged downstream with 1∶1 optics.
Before continuing, we will find it convenient to intro-

duce dimensionless coordinates. As seen in (9), the natural
angular divergence ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
λr=Lu

p
, which implies a diffraction

limited waist ∼
ffiffiffiffiffiffiffiffiffi
Luλr

p
. While the precise scaling is some-

what arbitrary, we choose to define dimensionless trans-
verse coordinates in terms of the rms angular and spatial
widths σr0 and σr as

ϕ̂≡ ϕffiffiffi
2

p
σr0

with σr0 ≡ 1

2

ffiffiffiffiffiffi
λr
Lu

s
; ð10Þ

x̂≡ xffiffiffi
2

p
σr

with σr ≡
ffiffiffiffiffiffiffiffiffi
λrLu

p
2π

: ð11Þ

Note that the product σrσr0 equals the minimum radiation
phase space area λr=4π, while the coordinate scaling

was chosen such that eikrϕ·x ¼ eiϕ̂·x̂; we will explain our
rationale for the precise values of σr and σr0 shortly. Before
that, we define the scaled frequency ν≡ k=kr and the
dimensionless frequency detuning from resonance
δν ≡ πNuðν − 1Þ, in terms of which the undulator field

~E0
kðϕ; 0Þ ¼

eK½JJ�Lu

8πϵ0γrcλ2
e−iδνsinc

�
π

4
ϕ̂2 þ δν

�
: ð12Þ

Finally, we introduce the dimensionless paraxial field
produced by the reference electron as

E0
νðϕ̂; 0Þ≡ 8πϵ0γrcλ2

eK½JJ�Lu
eiδν ~E0

k ¼ sinc

�
π

4
ϕ̂2 þ δν

�
: ð13Þ

We now comment on the chosen values of the rms size
(11) and divergence (10), which depend on how one fits the
undulator field (13) to a Gaussian. If we were to match the
maximum of E0

ν and integrated flux
R
dϕ̂jEðϕ̂Þj2, we would

find that σð1Þr ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Luλ1

p
=4π and σð1Þr0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ1=2Lu

p
; this was

first derived in [17], from which the effective Rayleigh
range of undulator radiation was determined to be

Zð1Þ
R ¼ σð1Þr =σð1Þr0 ¼ Lu=2π. However, in the spatial domain

this approximation results in a Gaussian peak intensity that
is four times higher than that obtained from Fourier
transforming (13). On the other hand, if we chose our
Gaussian to match the flux and the peak of the spatial field

we would find that σð2Þr0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1=8Lu

p
, σð2Þr ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2λ1Lu
p

=2π

and Zð2Þ
R ¼ 2Lu=π. The choice for the rms field size and

divergence in Eqs. (10) and (11) splits the difference
between the two predictions described above, so that the
corresponding Gaussian approximation has the same flux
but twice the peak intensity of the undulator radiation in
both angular and spatial representations. The resulting
effective Rayleigh range of the undulator field is
ZR ¼ σr=σr0 ¼ Lu=π.
The reference field in (13) applies to the reference

electron whose initial phase space coordinates
ðx̂j; x̂0j; tj; ηjÞ are all identically zero. Nevertheless, E0

ν

can be simply related to the field Eν from a generic electron
by considering how the source terms in the paraxial
equation change for nonzero initial coordinates
ðxj; x0j; ηj; tjÞ. We find that [18]

Eνðϕ̂; 0Þ ¼ eicktje−iϕ̂·x̂jE0
ν−2ηjðϕ̂ − x̂0j; 0Þ; ð14Þ

where x̂j ≡ x
ffiffiffi
2

p
=σr and x̂0j ≡ x0j

ffiffiffi
2

p
=σr0 . The result (14)

reflects the fact that an initial offset in x̂j (x̂0j) effectively
displaces the optical axis in position (angle), while different
values of tj and ηj give rise to shifts in the time and
resonance condition.
As indicated by (14), the total radiation field produced

by a collection of electrons will depend on the particle
microdistribution in phase space. Since we only directly
know certain statistical properties regarding the coordinates
(typically the first and second moments of a nearly
Gaussian distribution), it is appropriate to describe undu-
lator radiation using the formalism of statistical optics. In
the next section we review some of the relevant physics as
applied to synchrotron emission.
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B. Undulator coherence: Cross spectral density,
mutual coherence, brightness, and all that

The statistics of undulator radiation are those of a
Gaussian random process as explained in [19], so that
all field correlations can be derived from the second order
correlation function (see [20] for some more general
discussion). The two-point spectral-angular correlation
function of the electric field is

~Cðϕ̂1; ν1; ϕ̂2; ν2; zÞ ∝ hEν1ðϕ̂1; zÞEν2ðϕ̂2; zÞ�i; ð15Þ

where the angular brackets denote an ensemble average
over the initial positions, angles, energies, and arrival times
of the radiating electrons. For typical parameters of storage
rings, ~C is separable into its spectral and spatial parts [19].
In particular, if we assume that the electron bunch is
Gaussian with temporal width στ that is much longer than
the undulator field coherence time, στ ≫ Nuλr=c, then the
spectral coherence is dictated by the electron beam; for
typical storage rings στ ≳ 10 ps and Nu ≲ 300, which
restricts the wavelengths of interest to λr ≪ 10 μm.
Hence, for x rays we can write

~C ≈ e−½cστkrðν1−ν2Þ�2=2 ~Wνðϕ̂1; ϕ̂2; zÞ; ð16Þ

where the average scaled frequency ν ¼ ðν1 þ ν2Þ=2 ≈
ν1 ≈ ν2, and we have separated out the cross-spectral
density ~Wν; at the source point this is given by

~Wνðϕ̂1; ϕ̂2; 0Þ≡
�

F 1

ð4πÞ2
XNe

j¼1

Eνðϕ̂1; 0ÞEνðϕ̂2; 0Þ�
�

þ
�X

j≠l
eickrνðtj−tlÞ½� � ��

�
: ð17Þ

Here, the total number of electrons is Ne, and we have
introduced the single electron resonant flux F i. In terms of
the fine structure constant α≡ e2=ð4πϵ0ℏcÞ (ℏ is Planck’s
constant divided by 2π) and the averaging time T, the single
electron resonant flux is

F 1 ≡ παNu

2T
K2½JJ�2

ð1þ K2=2Þ : ð18Þ

In addition, we have normalized (17) such that for a
monoenergetic beam the first line comprises the flux

NeF ν ¼
Z

dϕ̂ ~Wνðϕ̂; ϕ̂; zÞ

¼ NeF 1

	
1 −

2

π

�
SiðδνÞ −

sin2ðδν=2Þ
δν=2

�

; ð19Þ

where SiðxÞ≡ R x0 dt sin t=t is the sine integral of x.

We can neglect the second line from the cross-spectral
density (17) if the electron beam does not have significant
Fourier content (bunching) at the wavelength of interest, in
which case the sum over random phases gives a negligibly
small contribution. For our Gaussian electron bunch drop-
ping the second line in (17) is valid for wavelengths shorter
than the bunch length λ < cστ, which is automatically
satisfied under the condition λ ≪ cστ=Nu that was assumed
to separate the correlation function according to (16).
We compute the ensemble average associated with the

cross-spectral density (17) using the single particle prob-
ability function feðx̂j; x̂0j; ηjÞ assuming that the particle
coordinates are uncorrelated and independent. We normal-
ize fe such that integrating over all coordinates is unity, and
further assume that this distribution is separable into its
energy and transverse parts, feðx̂j; x̂0j; ηjÞ ¼ gðηjÞfðx̂j; x̂0jÞ.
In this case, the cross-spectral density can be written as

~Wνðϕ̂1; ϕ̂2; 0Þ ¼
NeF 1

ð4πÞ3
Z

dηgðηÞWν−2ηðϕ̂1; ϕ̂2; zÞ ð20Þ

with

Wνðϕ̂1; ϕ̂2; 0Þ ¼
Z

dx̂dx̂0
fðx̂; x̂0Þ
2π

e−iðϕ̂1−ϕ̂2Þ·x̂

× E0
νðϕ̂1 − x̂0; 0ÞE0

νðϕ̂2 − x̂0; 0Þ�: ð21Þ

Note that
R
dϕWνðϕ;ϕ; 0Þ ¼ F ν=F 1.

We have shown that at the source ~Wνðϕ̂1; ϕ̂2; 0Þ can be
written as a convolution of the electron energy distribution
with the reduced cross-spectral density Wν. In addition,
beam lines composed of optical elements that treat each
frequency component separately preserve the division
shown in (20) and (21) to the output plane. Most x-ray
optical elements work this way, including apertures, free
space propagation, reflection and transmission from mir-
rors and lenses with or without abberations, and most x-ray
crystal optics such as monochromators based on Bragg or
Laue diffraction. Hence, if one can find a way to propagate
the relevant frequency components of Wν through the
beam line, in most situations the final cross-spectral density
can be found by convolvingWν at the output plane with the
electron beam energy distribution. The primary goal of this
paper is to discuss a simple method by which Wν can be
transported through an optical system.
In principle one can write down evolution operators for

Wν itself. As long as the propagation is not described
statistically (asmight be the case for somemodels of element
vibrations or mirror surface microroughness), the evolution
of Wν derives directly from the evolution of the field
Eν. However, computing and then manipulating the four-
dimensional Wν is a nontrivial computational task.
Moreover, there has been considerable effort and progress
in developing wave optics simulation codes designed to
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propagate coherent fields down realistic beam lines (see,
e.g., [21–23]). It would be nice if one could use such
simulation tools to also propagate partially coherent light
such as undulator radiation. The next section will discuss
how one can construct certain “coherent mode” representa-
tions of Wν that can be propagated in just such a manner.
Before doing that, we want to mention a few other

quantities from statistical optics that we will find useful.
First, while it is simplest to describe the propagation ofWν,
it is often convenient to visualize the coherence function in
terms of the average coordinate ϕ̂≡ ðϕ̂1 þ ϕ̂2Þ=2 and the
coordinate difference ξ̂≡ ϕ̂1 − ϕ̂2. This defines the cross-
correlation function via

~Γνðϕ; ξ; zÞ ¼ Wν

�
ϕþ 1

2
ξ;ϕ −

1

2
ξ; z

�
: ð22Þ

Next, we will want some straightforward methods to
characterize the source strength and coherence. The latter
can be done using the degree of spectral coherence
γνðx̂1; x̂2Þ. As our notation suggests, the normalized coher-
ence function γν is most naturally defined in the spatial
domain, since it is directly related to the visibility of
coherence fringes from two pinholes placed at x̂1 and x̂2.
The degree of spectral coherence is defined as

γνðx̂1; x̂2; zÞ≡ Γνðx̂1; x̂2; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iνðx̂1; zÞIνðx̂2; zÞ

p ; ð23Þ

where the intensity Iνðx̂; zÞ≡ Γνðx̂; 0̂; zÞ, and we hope to
make clear that here Γν is evaluated in physical space by
keeping the arguments x̂1;2. The definition (23) implies
that fully coherent light has jγνðx̂1; x̂2; zÞj ¼ 1 for all pairs
ðx̂1; x̂2Þ, while γν ¼ 0 describes a complete lack of coher-
ence with no interference fringes.
Finally, our discussion would not be complete without

mentioning the brightness function Bνðϕ̂; x̂Þ, which plays
the role of a (quasi)distribution function for the radiation
on the angle-position phase space. Bν is defined as the
ensemble averaged Wigner function associated with Eν,
which can be shown to equal the Fourier transform of the
cross-correlation function:

Bνðϕ̂; x̂; zÞ≡ 1

ð2πÞ2
Z

dξ̂eiξ̂·x̂ ~Γνðϕ; ξ; zÞ: ð24Þ

For ideal optical elements, the brightness function as
defined in Eq. (24) transforms in the same manner as does
the phase space distribution of geometrical optics [18].
Hence, the brightness is a physically appealing represen-
tation of second-order coherence, and it has recently
received renewed interest [24–26].
The brightness can be used to define the source strength

and purity in a number of ways. For example, Bastiaans

[27] advocates using the informational or Shannon entropy
to characterize coherence, which was more deeply
described in [28]; another definition for the degree of
coherence or mode purity expresses the number of trans-
verse modes MT by

1

MT
¼
R
dϕ̂dx̂½2πBνðϕ̂; x̂Þ�2

½R dϕ̂dx̂Bðϕ̂; x̂; zÞ�2 : ð25Þ

Yet another metric characterizing the source strength
employs the value of the brightness along the optical axis
[17]; Bνð0; 0; zÞ is conserved by propagation through free
space and ideal thin lenses and mirrors, and represents the
maximum “photon density.” Dividing the brightness at the
origin by the total flux gives another measure of the mode
purity,

ℬ0 ≡ π2F 1

F ν
Bνð0; 0; zÞ

¼ F 1

4F ν

Z
dξ̂Wν

�
1

2
ξ̂;−

1

2
ξ̂; z

�
: ð26Þ

It can be shown that 0 ≤ ℬ0 ≤ 1, and that whenℬ0 is unity
the source is largely coherent; in terms of the pinhole
experiment, ℬ0 ¼ 1 implies that pinholes placed symmet-
rically about the optical axis will observe interference
fringes with maximal visibility, γνðx;−xÞ ¼ 1.

III. REPRESENTING THE CROSS-SPECTRAL
DENSITY WITH COHERENT MODES

Suppose that we can represent Wν at the source point as
a weighted “incoherent sum” of the cross-spectral densities
associated with the fields ψn,

Wνðϕ̂1; ϕ̂2; 0Þ ¼
X
n

κnψnðϕ̂1; 0Þψnðϕ̂2; 0Þ�; ð27Þ

where the constant weights κn are determined by Wν and
the field set fψg. Then, as long as the evolution of the
electric field commutes with the ensemble average, we
can propagate the (coherent) fields ψn using standard wave
optics to the output plane, at which point the cross-spectral
density Wν can be constructed by summing the fields in a
manner similar to that of (27). To be more concrete, if the
field propagation can be written as a general linear operator
EνðzÞ ¼ U½Eνð0Þ� with the property that hU½E�i ¼ U½hEi�,
then it follows from Eq. (27) that

Wνðϕ̂1; ϕ̂2; zÞ ¼
X
n

κnU½ψnðϕ̂1; 0Þ�U½ψnðϕ̂2; 0Þ��

¼
X
n

κnψnðϕ̂1; zÞψnðϕ̂2; zÞ�: ð28Þ

In other words, the cross-spectral density at the output
plane can be found by separately transporting each
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coherent field using standard wave optics methods and
forming the sum above.
If the fields fψg form an orthonomal set, then we have

“the” coherent mode expansion [20]. We distinguish the
orthonormal coherent modes using Ψn, and it is straight-
forward to show that at z ¼ 0 these modes obey the
following integral eigenvalue-type equation:

Z
dϕ̂2Wνðϕ̂1; ϕ̂2; 0ÞΨnðϕ̂2; 0Þ ¼ κnΨnðϕ̂1; 0Þ: ð29Þ

In what follows we will present methods by which we
can represent the undulator cross-spectral density as a
coherent mode expansion (27) without solving the full
problem (29). We begin in the limit that the electron beam
emittance in both planes is much larger than the natural
radiation emittance, εx;y ≫ εr ≡ λ=4π. For this highly
incoherent field there exist standard analytic solutions
for both the cross-spectral density and the orthogonal
coherent mode expansion [20]. Next, we consider the case
typical to third-generation light sources, where only one
emittance is large, εx ≫ εr, while εy is arbitrary. Under
these conditions Ref. [19] showed that the 4D Wν can be
divided into a product of the cross-spectral density in x and
y; the former again has an analytic expression, while the
latter can be solved numerically with standard matrix
eigensolvers. Finally, we discuss the general situation when
no assumptions are made regarding the electron beam
emittance. Rather than solving the full 4D eigenvalue
problem, we show an alternative way to develop a coherent
mode expansion that does not result in orthogonal modes.
While this representation of Wν in terms of ψn is not as
compact, there are some situations in which it may be more
computationally efficient than constructing an orthonormal
set of modes. In any event, since our expansion is related to
evaluating the 4D integration over the phase space coor-
dinates, it will at least find use as an efficient means for
determining Wν from which the problem (29) can be
solved.
To be concrete, we will assume that the electron

distribution function f is Gaussian in both position and
angle, and that the electron beam comes to a waist at the
undulator middle:

fðx̂; x̂0Þ ¼
exp

h
− x̂2

σ̂2x
− ŷ2

σ̂2y

i
πσ̂xσ̂y

exp
h
− x̂02

σ̂2px
− ŷ02

σ̂2py

i
πσ̂px

σ̂py

; ð30Þ

where the scaled rms beam sizes and divergences are
σ̂x;y ≡ σx;y=σr and σ̂px;y

≡ σpx;y
=σr0 , and there is no factor

of 1=2 in the exponential due to our definition x̂ ¼ ffiffiffi
2

p
x=σr,

etc. Then we can rewrite Eq. (21) as

Wνðϕ̂1; ϕ̂2; 0Þ ¼
1

2π
e−½σ̂

2
xðϕ̂1−ϕ̂2Þ2xþσ̂2yðϕ̂1−ϕ̂2Þ2y�=4

×
Z

dx̂0
exp

h
− x02

σ̂2px
− y02

σ̂2py

i
πσ̂xσ̂px

× E0
νðϕ̂1 − x̂0; 0ÞE0

νðϕ̂2 − x̂0; 0Þ�: ð31Þ

A. Incoherent emission: εx;y ≫ λ=4π

When the electron beam physical and angular widths are
much larger than the natural size and divergence of the
undulator field, σx=σr ¼ σ̂x ≫ 1 and σpx

=σr0 ¼ σ̂px
≫ 1,

then the generated radiation is composed of many distinct
coherent regions. The predominantly incoherent field can
then be characterized transversely as having of order
ε̂xε̂y ¼ ½εx=ðλr=4πÞ�½εy=ðλr=4πÞ� ≫ 1 independent modes.
In this case many usual results of incoherent source theory
may be applied including the van Cittert-Zernike theorem,
and the cross-spectral density can be approximated using
the Gaussian-Schell model. This incoherent limit has been
studied extensively in the literature, and what we present
here is mostly for review and to compare with the analysis
in the next two sections.
Rather than use a more mathematical derivation of the

incoherent limit as was done in, e.g., [19], we choose to
base our results on physical arguments that are more in the
spirit of Ref. [17]. The functional form of the ensemble
averaged cross-spectral density is dominated by the particle
phase space if εx;y ≫ λ=4π, in which case the precise shape
of the coherent undulator mode becomes relatively unim-
portant when calculating Wν. Hence, we can approximate
(31) by replacing the expression for E0

ν in (13) with any
convenient single-peaked function that has the same flux
and whose scaled width is of order unity. A simple choice
that results in nice, closed-form analytic expressions uses a
Gaussian approximation, with

E0;G
ν ðϕÞ ∝ e−ϕ

2=4σ2
r0 ⇒ E0;G

ν ðϕ̂Þ ¼
ffiffiffiffiffiffiffiffiffi
2F ν

F 1

s
e−ϕ̂

2=2: ð32Þ

As alluded to earlier, the prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F ν=F 1

p
insures that

E0;G
ν has the correct flux.
Armed with the Gaussian field (32), we can now

analytically compute an approximation to the cross-spectral
density that is accurate provided σ̂x; σ̂y; σ̂px

; σ̂py
≫ 1; the

resulting Wν is a separable function of x and y, and in fact
corresponds to the Gaussian-Schell model of undulator
radiation. We have

Wνðϕ̂1; ϕ̂2Þ → WGS
ν ðϕ̂1; ϕ̂2Þ

¼ WGS
ν;xðϕ̂1;x; ϕ̂2;xÞWGS

ν;yðϕ̂1;y; ϕ̂2;yÞ; ð33Þ

where the cross-spectral density along x has the same
functional form as that along y. Hence, we will only
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explicitly write out WGS
ν;x . To simplify the expression we

define the scaled convolved width Σx and divergence Σϕx
;

the former is given by the normalized e-beam width σ̂x ≡
σx=σr added in quadrature with the natural, unit radiation
width, while the latter equals a similar sum of the
normalized e-beam angular spread σ̂x0 ≡ σx0=σr0 and the
scaled (unit) radiation divergence:

Σx;y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂2x;y

q
; Σϕx;y

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂2x0;y0

q
: ð34Þ

In terms of these, the Gaussian-Schell cross-spectral
density along x is

WGS;x ¼
F ν=F 1ffiffiffi
π

p
Σϕx

exp

�
−
ϕ̂2
1;x þ ϕ̂2

2;x

2Σ2
ϕx

�

× exp

�
−
Σ̂2
xΣ̂2

ϕx
− 1

4Σ̂2
ϕx

ðϕ̂1;x − ϕ̂2;xÞ2
�
; ð35Þ

with a similar expression in y. Note that while Eq. (35)
makes mathematical sense for arbitrary electron beam
parameters, the Gaussian approximation differs from the
trueWν for undulator radiation in certain important ways as
the beam emittance becomes small, i.e., as Σx and/or Σϕx

approach unity. We will explore some of these differences
in the following sections.
Before turning to the coherent mode expansion, we

plot the Gaussian-Schell cross-correlation function ~Γν;y ¼
Wνðϕ1þξx=2;ϕ1−ξy=2Þ in Fig. 1. Here we explicitly see
that the rms width along physical angle ϕx ¼ ðϕ1 þ ϕ2Þx=2
is σr0Σy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r0 þ σ2x0

q
, which also equals the rms width of

the intensity in the angular representation. In addition, the
correlation length in angle is directly proportional to the rms
width along the difference coordinate ðϕ1 − ϕ2Þx which
equals 2σr=Σx ¼ 2σr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2x

p
.

The orthogonal, coherent modes associated with the
Gaussian-Schell model have convenient analytic expres-
sions first derived in Ref. [29] (see also, e.g., [20,30]). If we
write WGS

ν;x ¼
P

nκ
GS
n ΨGS

n , the coherent modes ΨGS
n are

Hermite-Gauss functions

ΨGS
n ðϕ̂xÞ ¼

ðΣϕx
=ΣxÞ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
2nn!

p Hn

 ffiffiffiffiffiffiffi
Σϕx

Σx

s
ϕ̂x

!

× exp

�
−

Σϕ

2Σx
ϕ̂2
x

�
; ð36Þ

where HnðxÞ is the Hermite polynomial of order n, while
the eigenvalue weight is

κGSn ≡ 2F ν=F 1

Σϕx
Σx þ 1

�
Σϕx

Σx − 1

Σϕx
Σx þ 1

�
n
: ð37Þ

The Gaussian-Schell model of undulator radiation has
been discussed in many previous papers (see, e.g., [17,31]),
while its coherent mode decomposition (36) and (37) was
applied to study the propagation of x rays for both
synchrotron light sources and FEL applications in
Ref. [32]. Hence, we will only mention a few items.
First, the orthogonal coherent mode representation permits
simple expressions for the inverse number of modes 1=MT
and the source strength ℬ0 via

1

MT
¼
X
n

κ2n; ð38Þ

ℬ0 ¼
X
n

ð−1Þpnκn; ð39Þ

where the parity pn is 0 if Ψn is symmetric and þ1 if Ψn is
antisymmetric. Since our normalization is

P
nκn ¼ 1 with

κn ≥ 0, (38) clearly shows that MT ≥ 1 with equality
holding if and only if there is only one mode and all other
κn vanish. While Eqs. (38) and (39) are true at z ¼ 0 and
remain valid for propagation through free space and ideal
lenses and mirrors, they do not apply after apertures or
imperfect optical elements. This is because apertures,
mirror slope errors, and the like typically involve trans-
formations that do not preserve the orthogonality of theΨn.
Calculating MT when the Ψn are not orthogonal requires
computing the full 4D brightness function, so that in what
follows we will for the most part use the simpler one to
calculate ℬ0 to characterize the source strength.
As an example of how one might use the coherent

mode expansion (36) and (37) to transport the undulator
field coherence, we consider the example of free-space
propagation to an aperture, which is used in many x-ray
beam lines to improve the coherence. This simple situation
was discussed at some length in terms of the coherent
modes in Ref. [32], and is actually amenable to analytic

FIG. 1. Gaussian-Schell model cross-correlation function
~Γν;y ¼ Wνðϕ1 þ ξx=2;ϕ1 − ξx=2Þ given by (35). The rms width
in the average coordinate ϕ̂x is of order the total divergence Σϕx

,
while the correlation length along the difference coordinate
ξ̂x is ∼1=Σx.
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treatments. Nevertheless, we will characterize the improve-
ment in coherence and loss of flux somewhat differently,
in that we will show how both the flux F and the source
strengthℬ0 varies as one changes the slit widths ax and ay
in both planes.
For this example we use parameters relevent to present

operation at the Advanced Photon Source (APS) listed in
Table I, which correspond to the nominal electron beam
size and divergence for undulator A operating at 1 Å.
Figure 2 plots the output scaled flux and source strength

after being passed through an aperture that is located at
z ¼ 8Lu ≈ 18.5 m downstream and whose scaled widths in
x and y are ax=σr and ay=σr, respectively. To achieve
significant coherence requires reducing the flux to ∼0.1%
of its initial value, since 1=ðε̂xε̂yÞ ∼ 10−3. Note that since
the y emittance is not large, ε̂y ≈ 3, we expect that the
Gaussian-Schell model used here will display some
differences from the true undulator field. We will return
to this example in the next section, where we will quantify
the observed difference.

B. Coherent mode expansion for third-generation
sources: εx ≫ λ=4π with εy arbitrary

The equilibrium emittance in a storage ring results from a
balance between the damping and diffusive effects of
synchrotron emission. The natural horizontal emittance
εx is bounded from below according to the number and
strength of bending magnets used to form a closed orbit,
while in practice the equilibrium vertical emittance εy is
determined by the amount of coupling between the x and y
directions. Modern third-generation storage rings typically
operate with a vertical emittance 2–3 orders of magnitude
smaller than the horizontal emittance. As a result, there is a
significant spectral range where εx ≫ λ=4π but εy is of the
order of the radiation emittance λ=4π, in which case we
expect that the Gaussian-Schell model will not adequately
capture all the physics. In this section we discuss
the coherent mode expansion most relevant for third-
generation storage rings.
Reference [19] first derived an expression for the

undulator radiation cross-spectral density in the limit that
σ̂x; σ̂px

≫ 1 but for arbitrary σ̂y, σ̂py
. Their argument

essentially went as follows: consider Eq. (31) for Wν

under the substitution x̂0 ¼ qþ ðϕ̂1 þ ϕ̂2Þx=2 and ŷ0 ¼ p,

Wν ¼
1

2π
e−½σ̂

2
xðϕ̂1−ϕ̂2Þ2xþσ̂2yðϕ̂1−ϕ̂2Þ2y�=4

×
Z

dqdp
exp

n
− ½qþðϕ̂1þϕ̂2Þx=2�2

σ̂2px
− p2

σ̂2py

o
πσ̂xσ̂px

× E0
ν

�
1

2
ðϕ̂1 − ϕ̂2Þx − q; ϕ̂1;y − p

�

× E0
ν

�
1

2
ðϕ̂2 − ϕ̂1Þx − q; ϕ̂2;y − p

��
: ð40Þ

The exponential prefactor implies that Wν is negligible
unless ðϕ̂1 − ϕ̂2Þ2x ≲ 1=σ̂2x ≪ 1. Since the field E0

ν varies
over a scale of order unity, we can therefore approximately
set ðϕ̂1 − ϕ̂2Þx to zero in its argument. In addition, σ̂2px

≫ 1

means that the exponential in the integrand varies much
more slowly than E0

ν, so that we can set q → 0 there.
Under these approximations the x and y dependencies

factor, and in fact the cross-spectral density along x can be

TABLE I. Nominal source and e-beam parameters for undu-
lator A at the Advanced Photon Source.

Parameter Symbol Value

Wavelength λr 1 Å
Undulator length Lu 2.31 m
Radiation rms size σr 2.4 μm
Radiation rms divergence σr0 3.3 μrad
E-beam sizes σx 70 μm

σy 8.4 μm
E-beam emittances εx 2.5 nm

εy 0.025 nm
Scaled emittances ε̂x 310

ε̂y 3.1

FIG. 2. Effect of a square slit of sizeax×ay in the transverse plane
on the Gaussian-Schell model of undulator radiation using the
parameters in Table I. (a) plots how the flux decreases with slit size,
while (b) gives the coherent fractionℬ0. To achieve 50%coherence
one sacrifices nearly 99.9% of the flux since 1=ðε̂xε̂yÞ∼10−3.
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recognized as the Gaussian-Schell model of Eq. (35) with
the replacement ðΣx;Σpx

Þ → ðσ̂x; σ̂px
Þ. Hence, we find that

Wνðϕ̂1; ϕ̂2Þ → WGS
ν;xðϕ̂1;y; ϕ̂2;xÞWν;yðϕ̂1;y; ϕ̂2;yÞ; ð41Þ

where the cross-spectral density along y is

Wν;y ¼
1

2π
exp

�
−
σ̂2y
4
ðϕ̂1;y − ϕ̂2;yÞ2

�

×
Z

dpdq
e−p

2=σ̂2pyffiffiffi
π

p
σ̂py

E0
νðq; ϕ̂1;y − pÞ

× E0
νðq; ϕ̂2;y − pÞ�: ð42Þ

As mentioned previously, the undulator cross-spectral
density for ε̂x ≫ 1 and ε̂y arbitrary was previously derived
by Geloni et al. in Ref. [19]. Here, we present the first
analysis of (42) in terms of its coherent modes.
The cross-spectral density Wν;y is two dimensional,

meaning that we can approximate the eigenequationZ
dϕ̂1;yWν;yðϕ̂1;y; ϕ̂2;yÞΨnðϕ̂1;yÞ ¼ κnΨnðϕ̂2;yÞ ð43Þ

with a discrete matrix equation that can be solved with a
standard matrix eigensolver. Since Wν;yðϕ1;ϕ2Þ at the
source point is real and symmetric, we have used the
easily implemented Jacobi eigenvalue algorithm to solve
(43) with Wν;yðϕ1;ϕ2Þ given by (42). Additionally, we
choose to order the modesΨn such that the weights κn are a
monotonically decreasing function of n.
Given the more accurate but more computationally

intensive expressions (42) and (43), it is natural to ask
when we need them. Said another way, at what electron
beam size and divergence is the Gaussian-Schell model
sufficient to model undulator coherence? In Fig. 3 we graph
three measures quantifying the difference in the cross-
spectral density between the valid for arbitrary y-emittance
Eq. (42) and the Gaussian-Schell model (35) assuming that
σ̂y ¼ σ̂y0 . The red solid line plots the normalized difference
in the inverse number of modes 1=MT , while the green
dashed line plots the computed difference of the source
strengthℬ0. The Gaussian-Schell model overestimates the
level of coherence, thereby underestimating the number of
modes. The difference is particularly pronounced at small
but nonzero values of the emittance ε̂y: the Gaussian-Schell
model overestimates the degree of coherence by ∼40%
when εy ≈ λ=4π. The discrepancy in 1=MT is 35% and
13% when ε̂y ¼ 0.25 and ε̂y ¼ 0, respectively, while the
same numbers for ℬ0 are 27% and 0%. The difference
between the two model predictions decreases when ε̂y ≳ 1,
and the agreement becomes better than 10% when ε̂y > 25.
In addition, the blue dotted line in Fig. 3 plots the

integrated rms difference in Wν defined via

Δ2 ¼
R
dϕ̂1dϕ̂2½Wν;yðϕ̂1; ϕ̂2Þ −WGS

ν;yðϕ̂1; ϕ̂2Þ�2
½R dϕ̂1dϕ̂2Wν;yðϕ̂1; ϕ̂2Þ�2

: ð44Þ

In contrast to the coherence metrics 1=MT and ℬ0, the
difference Δ is a monotonically decreasing function of the
emittance. As ε̂y increases to 4 the rms difference quickly
drops from 38% to 11%, after which Δ decreases rather
slowly. This behavior reflects the fact that the undulator
coherence functions are highly non-Gaussian when the
emittance is small. In terms of the brightness, the undulator
B has negative regions when ε̂y < 1 but is strictly positive
for ε̂y ≥ 1. Hence, when ε̂y ≥ 1 we expect the field to look
reasonably Gaussian, although with a different peak inten-
sity and width as indicated by the coherence predictions
of Fig. 3.
We show the degree to which the correlation function

~Γν;y can differ from a Gaussian function in Fig. 4(a). Here,

we plot the predicted ~Γν;y in the limit ε̂y → 0, which shows
that there are significant oscillatory regions that are
qualitatively different from the Gaussian-Schell model of
Fig. 1. The central peak of the undulator field ~Γ is also
much more diamond shaped, although its widths along the
two dimensions are of the same order as the Gaussian-
Schell model.
It is also interesting to consider the spectral degree of

coherence γν as the vertical emittance approaches zero. We
plot the far field jγνðŷ1; ŷ2; z → ∞Þj in Fig. 4(b), whose
functional form is given by ~γν in the angular representation
at z ¼ 0. Here, we see that the field is not completely
coherent even as ε̂y → 0. This fact was first described in

FIG. 3. Convergence of the mode representation toward the
Gaussian-Schell model. The red solid line and green dashed line
graph the normalized difference of two measures of coherence,
the number of modes MT from Eq. (25) and the peak brightness
divided by the fluxℬ0 from Eq. (26). In both cases the Gaussian-
Schell model underestimates the number of modes (overestimates
the coherence). The blue dashed line quantifies the rms error Δ
[Eq. (44)] when approximating Wν;y given by (42) with WGS

ν;y
from Eq. (35).
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Ref. [19], where it was attributed to the fact that the
undulator field Eν is not a separable function of x0 and y0, so
that the large ε̂x does have an effect on Wν;y; mathemati-
cally this is evidenced by the integral over q in Eq. (42).
While the lack of complete coherence can in principle be

measured, we argue that it will be a rather small effect. In
terms of the coherent modes, we find that the lowest order
weight κ0 → 0.93 as ε̂y → 0, meaning that approximately
93% of the flux is contained within the (non-Gaussian)
lowest order mode Ψ0. The modal purity along y is
≈0.87%, so that there are in some sense only MT ≈ 1.15
y modes. This implies that the beam is largely coherent. In
terms of the ŷ1-ŷ2 plane of Fig. 4(b), pinhole pair locations
for which the degree of coherence jγνj ≈ 0 also have a small
intensity at one or both of the pinholes. In addition, we see
that pinholes placed symmetrically about the optical axis
lead to fringes of maximal visibility, and ℬ0 ¼ 1.
We can also investigate the undulator cross-spectral

density Wν;y from Eq. (42) using its expansion into the
coherent modes Ψn. For example, in Fig. 5(a) we plot the
lowest order, fundamental mode Ψ0 for four different

FIG. 4. Coherence functions in the limit ε̂ → 0. Panel (a) plots
~Γν;y ¼ Wνðϕ1 þ ξy=2;ϕ1 − ξy=2Þ from (42). Panel (b) plots the
magnitude of the spectral degree of coherence jγνj in the far field
where z → ∞. Since γν in the far field is essentially the Fourier
transform of the near field γν, (a) and (b) can be directly
compared.

FIG. 5. Coherent mode expansion obtained by solving
(42) and (43). (a) plots the lowest order mode Ψ0 for four
different values of the emittance. When εy → 0 the mode
is quite different than a Gaussian, but is nearly indistin-
guishable from the Gaussian prediction when ε̂y ≳ 4. (b) plots
the eighth-order mode Ψ7 for three different y emittances.
The Gaussian-Schell model would lie almost exactly on the line
given by ε̂y ¼ 9. Panel (c) shows how the required number of
coherent modes varies with the emittance ε̂y for three different
levels of total flux contained: the solid red, dashed green, and
dotted blue lines have the minimum number of modes to contain
95%, 98%, and 99% of the flux, respectively.
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values of the emittance ε̂y. The mode Ψ0 exhibits slowly
decaying, oscillatory tails when the emittance vanishes, as
one might expect from the corresponding oscillations in the
coherence function seen in Fig. 4(a). As the emittance
increases the oscillatory part of Ψ0 quickly becomes quite
small, and when ε̂y ≳ 4 the lowest order mode is nearly
indistinguishable from the Gaussian-Schell model ΨGS

0 .
Panel (b) makes a similar comparison with the mode Ψ7.
When the y emittance equals the radiation emittance,
ε̂y ¼ 1, the solid red line ofΨ7 shows significant qualitative
differences from the corresponding Hermite-Gauss func-
tion; while the power in the mode is small (κ7 ≈ 7 × 10−3),
it does need to be included if you want to capture more than
95% of the flux. As the emittance increases the modes more
closely resemble their Hermite-Gauss counterparts particu-
larly at small to moderate ~ϕy, as shown by the ε̂y ¼ 2 green
dashed line; when ε̂y ≳ 9 the undulator Ψ7 is essentially
indistinguishable from its Gaussian-Schell counterpart.
Recalling that we have ordered the modes such that κn

decays with n, another natural question is “how many
coherent modes are required to adequately represent the
cross-spectral density Wν?” We quantify this in Fig. 5(c),
where we plot the number of modes per unit ε̂x required to
contain a certain fraction of the flux as a function the ε̂y.
The red solid, green dashed, and blue dotted lines show
how many modes are needed to capture 95%, 98%, and
99% of the flux, respectively (note that to get the total
number of modes in x and y we must multiply by ε̂x ≫ 1).
We find that the number of modes grows quickly at small
ε̂y ≲ 5, after which it grows linearly with the y emittance.
It turns out that the slope of this linear part is the same as
the Gaussian-Schell model at the same flux, although the
Gaussian-Schell model consistently requires fewer modes
to capture a given flux. In fact, if we were to include the
corresponding Gaussian-Schell model lines in Fig. 5(c), the
95%, 98%, and 99% flux lines would be parallel to those in
Fig. 5(c), but the number of modes required for ε̂y ¼ 25

would be about 73, 112, and 145 per unit ε̂x, respectively,
as compared to 86, 139, 197 from the figure. This indicates
that the higher order modes associated with the undulator
field (42) decay much more slowly than do their Gaussian-
Schell counterparts, so that representing Wν;y to higher
accuracy becomes an increasingly intensive computational
proposition.
Finally, we conclude this section by reproducing Fig. 2

of the previous section, but this time we use the more
accurate undulator model of Wν;y to compute the flux and
brightness through the aperture. Again, we use the
APS-style parameters at 1 Å listed in Table I, and propagate
the field 8Lu downstream to a rectangular aperture
with dimensions ax × ay. We show the resulting flux F ν

and source strength ℬ0 in Figs. 6(a) and 6(b). The
predicted reduction in flux and increase in coherence is
qualitatively quite similar from what we predicted with the

Gaussian-Schell model in Figs. 2(a) and 2(b): at this
propagation distance significant coherence requires a slit
of width ∼σr in each direction, in which case the flux is
reduced to ∼1=ðε̂xε̂yÞ ∼ 10−3 of its initial value.

FIG. 6. Effect of a square slit of size ax × ay in the transverse
plane on undulator radiation. The aperture is located downstream
at z ¼ 8Lu, and the undulator field is produced by a beam whose
parameters are given in Table I. (a) plots how the flux decreases
with slit size, while (b) gives the coherent fractionℬ0. To achieve
a highly coherent beam with ℬ0 > 0.5 requires a very small
slit that sacrifices all but ∼1=ðε̂xε̂yÞ ∼ 10−3 of the flux F .
Panel (c) compares the result here that decomposes the field
using the more accurate (42) with the Gaussian-Schell model of
the previous section. We see that the Gaussian-Schell model
overestimates the flux and source strength, but that the agreement
is reasonably good for the very small apertures required to
produce highly coherent x rays.
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In Fig. 6(c) we plot the difference in the source strength
ℬ0 and the total flux F between the undulator model
shown here and the Gaussian-Schell result from the
previous section. Here, the discrepancy depends only on
the slit width in y, since both models use the Gaussian-
Schell approximation along x appropriate for ε̂x ≫ 1.
Figure 6(c) indicates that the Gaussian-Schell model
approximates the flux through the slit to better than 4%,
while the accuracy of the predicted source strength depends
on the slit width; for small slits and high degrees of y
coherence the Gaussian-Schell model is quite accurate,
while when ay > σr and ℬ0 < 0.5 it overestimates the
source strength by 15%–18%.

C. A coherent mode representation for arbitrary
electron beam emittance

In the previous two sections we have discussed the
coherent mode expansion of undulator radiation when at
least one of the e-beam emittances is large, εx ≫ λ=4π.
While this limit typically applies to the current generation
of storage rings, future plans call for light sources whose
emittance satisfies εx;y ≲ λ=4π over a significant x-ray
spectral range. So-called diffraction-limited storage rings
(or, more colloquially, “ultimate” storage rings) based on
multibend achromats (MBAs) are currently in the construc-
tion or design phase at several locations around the globe,
with the hopes of opening up entirely new avenues of
coherent x-ray imaging. In this section we discuss a coherent
mode representation applicable for arbitrary x-y emittances.
The previous discussion relied on the fact that when

ε̂x ≫ 1 the cross-spectral density Wν becomes a separable
function of ϕx and ϕy. In this case the resulting Wν;x was
describable in terms of the Gaussian-Schell model, while
Wν;y was either also Gaussian-Schell if ε̂y ≫ 1, or more
generally could be decomposed numerically into coherent
modes using a standard matrix eigensolver.
When the emittance in both planes is small, however, the

coherent modes are nonseparable functions of both ϕx and
ϕy. Hence, obtaining the 2D orthogonal coherent modes
requires solving the eigenequation (29) of the 4D fieldWν.
We have decided that such a procedure is beyond the scope
of this paper, and instead we look for another coherent
mode representation that can be constructed without ever
having to directly deal with a 4D field. The decomposition
we present is essentially related to numerically integrating
the expression for the cross-spectral density Eq. (21).
Hence, some of our analysis will be applicable to the full
coherent mode eigenproblem, as solving (29) requires first
determining Wν from either (21) or (31).
To begin our discussion, consider the numerical

quadratureZ
dygðx1; yÞgðx2; yÞ� ≈

X
n

wngðx1; ynÞgðx2; ynÞ�; ð45Þ

where the weights wn and points xn depend on the
integration scheme, and the number of terms in the sum
is chosen to give reasonable accuracy. Applying this to the
cross-spectral density (21), we write

Wνðϕ̂1; ϕ̂2; 0Þ

≈
X
n

wn
fðx̂n; x̂0nÞ

2π
½e−iϕ̂1·x̂nE0

νðϕ̂1 − x̂0n; 0Þ�

× ½e−iϕ̂2·x̂nE0
νðϕ̂2 − x̂0n; 0Þ� � : ð46Þ

Equation (46) is a coherent mode expansion of the form
given by Eq. (27) if we identify ψn with the quantity in
square brackets,

ψnðϕ̂1; 0Þ ¼ e−iϕ̂1·x̂nE0
νðϕ̂1 − x̂0n; 0Þ; ð47Þ

while the mode expansion coefficient is proportional to the
product of the distribution function and the quadrature
weight, κn ¼ wnfðx̂n; x̂0nÞ=2π. We must stress that while
this representation looks similar to those of the previous
two sections, the modes ψn need not be orthogonal and
hence the representation (46) will typically require more
terms. Nevertheless, since our discussion regarding the
propagation of Wν via ψn did not require the modes to be
orthogonal, Eq. (46) is a completely valid coherent mode
representation suitable for our purposes. In particular, as we
showed with the propagation result (28), the cross-spectral
density at the end of an optical transport line can be found
by propagating the coherent modes (47) through the beam
line elements and then forming the sum

Wνðϕ̂1; ϕ̂2; zÞ ¼
X
n

wnψnðϕ̂1; zÞψnðϕ̂2; zÞ� ð48Þ

at the output plane. Hence, the second-order coherence
anywhere along the transport line is known once we choose
an appropriate set of coordinates ðx̂n; x̂0nÞ and correspond-
ing weights wn.
There are many choices of ðx̂n; x̂0n; wnÞ that will encode

the cross-spectral density as in (48), and our goal is to find
the most efficient such representation. Since Wν is deter-
mined at the source, this task is equivalent to finding the
most efficient way to compute Eq. (46). In other words,
what numerical integration scheme leads to an acceptable
level of accuracy with the smallest number of points? We
began by trying several standard quadrature rules, includ-
ing the usual Gaussian quadrature, a modified Gaussian
quadrature in which the distribution f is expanded in terms
of Hermite functions, Clenshaw-Curtis quadrature, and
several Newton-Cotes methods. Of these methods, we
found that the most accurate and compact representation
of (46) used the simple trapezoidal rule. The basic reason
for this is that integrating an analytic function by the
composite trapezoidal rule results in two types of errors: the
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first is a discretization error that decreases exponentially
with the number of points, while the second is a boundary
error that is proportional to the discontinuity of the function
(or its derivatives) at the endpoints. Hence, numerically
integrating periodic, analytic functions with the trapezoidal
rule enjoys exponential convergence with the number of
points. In our case, the integrand is analytic but not
periodic, but the error terms at the boundary can be made
exponentially small since f in the integrand involves a
Gaussian function (for much more on this topic see the
recent review [33] and references therein).
Nevertheless, using the composite trapezoidal rule to

define the coherent mode representation is very inefficient.
In fact, we found that getting reasonable accuracy required
∼50 modes for every λ=4π units of emittance in both x and
y, beyond which the convergence was quite rapid. In other
words, describing the radiation produced by an e-beam
with scaled emittances ε̂x;y ¼ εx;y=ðλ=4πÞ requires a total of
∼ð50ε̂xÞð50ε̂yÞ ¼ 2500ε̂xε̂y modes; for comparison, the
orthogonal mode decompositions discussed previously
would need ∼400 times fewer modes.
It is perhaps not surprising that usual quadrature schemes

require so many points for the 4D integral (21), since such
deterministic methods have computational requirements
that scale exponentially with the number of dimensions. To
try and circumvent this “curse of dimensionality,” next we
tried applying Monte Carlo integration techniques to
evaluate Wν. Since the integral already contains the
electron probability distribution function f, the cross-
spectral density is most naturally computed using the
importance sampling method of Monte Carlo integration
(see, e.g., [34]). In this case, an estimate of the expected
value is given by the sum

Wνðϕ̂1; ϕ̂2; 0Þ

≈
1

2πN

XN
n¼1

½e−iϕ̂1·x̂nE0
νðϕ̂1 − x̂0n; 0Þ�

× ½e−iϕ̂2·x̂nE0
νðϕ̂2 − x̂0n; 0Þ��; ð49Þ

where the electron phase space coordinates ðx̂n; x̂0nÞ are
Gaussian distributed according to f.
We can think of (49) as an approximation of Wν that is

constructed from the sum over the cross-spectral densities
produced by a representative population of N electrons,
with N ≪ Ne. The representation (49) will in general
converge to the cross-spectral density Wν as we increase
the number of sampled electrons N, but the rate of
convergence will depend on how we select the coordinates
x̂n and x̂0n.
Perhaps the simplest way to construct the electron

population employs Gaussian random numbers to generate
the particle positions and angles. While this random
sampling Monte Carlo method is vastly superior to the
composite trapezoidal rule mentioned earlier, it can be

further improved by more uniformly sampling the electron
phase space.
The reason that random sampling is not optimal is

because it tends to be too “clumpy,” exhibiting relative
fluctuation levels ∼1=

ffiffiffiffi
N

p
that are much larger than those

of the actual system. Similar difficulties arise in any
simulation that models a many-body system with a rela-
tively small number of particles, and the basic solution is to
try to find a way to more uniformly distribute the sample
coordinates. We can meet this objective by replacing the
random samples for ðx̂n; x̂0nÞ with four low discrepancy
Halton sequences [35]. In short, Halton sequences are a
family of deterministic sequences that fill the unit interval
more uniformly for a given finite N than do random
sequences. Each Halton sequence is constructed by sub-
dividing the unit interval by successive powers of a prime
base, so that the first four prime numbers can be used for
the 4D phase space.
Since the Halton sequence uniformly spans the unit

interval, we can use the standard Box-Muller transform
(without rejection sampling) [36] to convert these points
into Gaussian distributed numbers appropriate for the phase
space coordinates. For example, we can smoothly fill the
2D phase space ðx̂n; x̂0nÞ with a random-looking set of
Gaussian distributed points by pairing the transformed
Halton sequence of base 2 with that of base 3.
Figure 7 compares the performance of using

Monte Carlo integration with randomly distributed points
in panel (a) with that using the low-discrepancy Halton
sequence in panel (b). Here, both graphs plot the measured
error as a function of the number of coherent modes
simulated per unit scaled emittance product ε̂xε̂y. To make
this plot, we chose a variety of emittances such that
1 ≤ ε̂x;y ≤ 24, and each point is the average of 25 separate
trials using either a distinct random seed or a different
portion of the Halton sequence.
The first thing that should be evident from Fig. 7(a) is

that the Monte Carlo sampling method is far more efficient
at determining Wν than are classical numerical integration
techniques: a 5% accuracy is achieved here with more than
an order of magnitude fewer fields than that required by the
trapezoidal method. In addition, the error in source strength
ℬ0 scales roughly as 1=

ffiffiffiffi
N

p
(as we might naively guess),

while the rms error Δ converges somewhat more slowly.
Although the usual random Monte Carlo sampling

performs rather well, the quasirandom Monte Carlo algo-
rithm employing low-discrepancy sequences does almost a
factor of 10 better. For the same 5% level of error, this
method only requires about 15 modes per scaled emittance
product ε̂xε̂y. This number is beginning to be competitive
with the orthogonal mode expansions of the previous
sections, being only a factor of 4–5 more modes.
Now that we can construct the cross-spectral density for

arbitrary emittance, we can investigate its properties. While
in this paper we only look at the cross-spectral density at

COMPACT REPRESENTATIONS OF PARTIALLY … Phys. Rev. ST Accel. Beams 18, 090702 (2015)

090702-13



the source, it is important to recognize thatWν at any point
down the beam line can be constructed by propagating the
coherent fields ψn and summing as in (48). We will
consider parameters that can be achieved with advanced
diffraction-limited storage rings based on MBAs, for which
εy ≤ εx ≲ λ. As mentioned earlier, in a storage ring the
emittance along x is dictated by the balance between
damping and diffusion provided by the stochastic emission
of synchrotron radiation, while εy is set by the coupling. In
particular, if the damping along x and y are the same, the
emittances are given by

εx ¼
1

1þ r
ε0; εy ¼

r
1þ r

ε0;

where the natural emittance ε0 is determined by the
magnetic lattice, and the emittance ratio r≡ εy=εx satisfies
0 ≤ r ≤ 1.
In diffraction-limited storage rings the natural emittance

ε0 is small enough that one can consider nearly round
beams; in fact, to reduce Coulomb scattering that can both
degrade the emittance and reduce the lifetime, the typical
operating point of an MBA has r≳ 0.1. In Fig. 8(a) we
show how changing the electron beam focusing affects the
x-ray coherence for such a ring, plotting the coherence
metric ℬ0 as a function of the electron beam βx ¼ σ2x=εx
at the undulator middle, assuming βy ¼ Lu=π. Here, we
also include several different values of the emittance
ratio assuming that the natural emittance ε0 ¼ λ=2π
(i.e., ε̂0 ¼ 2).
Figure 8(a) shows that the coherence is maximized when

βx ≈ Lu=π (or β̂x ≈ 1), which indicates that the “natural”
Rayleigh range of undulator radiation ZR ≈ βx ≈ Lu=π.
Unfortunately, it is nearly impossible for lattice designers to
make the beta functions in both x and y be simultaneously
that small, and typically βx > 3Lu=π.

Finally, we conclude this section by showing a few
examples of the dominant coherent eigenmode Ψ0, i.e., the
orthogonal mode with highest weight κ0. We extract the
dominant coherent eigenmode using power iteration. Power
iteration gives successive approximations to the dominant
mode; for our particular application the ðkþ 1Þth iteration
is related to the kth approximation by

Ψkþ1
0 ðϕ̂Þ ¼

R
dϕ̂0Wðϕ̂; ϕ̂0ÞΨk

0ðϕ̂0Þ
½R dϕ̂dϕ̂0Wðϕ̂; ϕ̂0ÞΨk

0ðϕ̂0Þ�1=2 ; ð50Þ

and the first guess Ψk¼0
0 can be chosen to be the field

produced by a single electron, Eq. (13). The power iteration
method converges very quickly to the lowest order mode,
typically requiring of order 5–10 iterations to obtain a
reasonably accurate result when the undulator field (13) is
used for the first guess Ψk¼0

0 . One way to test the
convergence is to track the change in rms value of the
field after successive iterations. In the cases we have
checked the integrated rms error drops below the 1% level
after a few iterations, and differences in successive approx-
imations become < 10−4 after 5–6 iterations.
We plot profiles along y and x of dominant eigenmode

in Figs. 8(b) and 8(c), where again we take ε0 ¼ λ=2π. In
the limit εy → 0 the profile along y approaches that
produced by a single electron, while Ψ0ðϕyÞ is reasonably
well approximated by a Gaussian ∝ exp−ϕ̂2

y=2 when
εy ¼ εx ¼ λ=4π. We note that at different values of the
electron beam focusing βx these profiles are qualitatively
very similar: the profiles when βx is increased by a factor of
16 can be approximately obtained by multiplying those in
Fig. 8(b) by 1.3. Figure 8(c) plots the profiles along x as we
vary βx. Each plot is approximately Gaussian, and we see
that the angular spread decreases as βx increases. More
careful inspection shows that the width of the angular

FIG. 7. Dependence of two measures of the error in the coherence function as a function of the number of simulated modes per unit
phase space area. As shown in (a), distributing the electrons randomly results in rather slow convergence, requiring ∼150 modes per
transverse area ε̂xε̂y to achieve≲5% accuracy. On the other hand, panel (b) demonstrates that employing a low-discrepancy sequence to
distribute the electrons significantly reduces the required number of electrons; here, about 15 modes per ε̂xε̂y are sufficient to attain an
error of ≲5%. This number is a little more than 4 times the number of modes required for the orthogonal expansion valid when ε̂x ≫ 1,
and about 5 times more than the Gaussian-Schell model prediction.
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intensity scales as 1=
ffiffiffiffiffi
βx

p
, which in turn implies that the

Rayleigh range of the dominant coherent eigenmode is
directly proportional to βx. Hence, we conclude that the
focusing parameters of Ψ0 roughly match those of the
electron beam when the emittance εx ≳ λ=4π. For smaller
emittances similar scalings may apply, but in this case the
dominant coherent mode is not Gaussian-like.

IV. CONCLUSIONS

In this paper we have described three different coherent
mode representations of partially coherent undulator radi-
ation. We began with the well-known Gaussian-Schell
decomposition in terms of Gauss-Hermite modes, which
is valid provided the electron beam emittance is much
larger than the natural radiation emittance λ=4π. In this
largely incoherent case the specifics of the single-electron
undulator field are unimportant. We then refined our
analysis to include the situation when the electron beam
emittance εy in one direction is arbitrary, and found that
the modes along y are determined by solving a matrix
eigenproblem. These coherent mode profiles can differ in
important ways from the Gaussian-Schell case, particularly
when εy < λ=4π or when one considers higher order
modes. Finally, we found that when the emittance in both
planes is small, the mode profiles are inherently 2D. Rather
than solve the associated 4D eigenproblem, we showed
how to construct a set of coherent modes using a
Monte Carlo approach that samples the electron phase
space using low-discrepancy sequences. While not as
elegant as the other methods, it still provides a rather
compact representation of the partially coherent x rays
suitable for propagation using standard wave optics codes.

ACKNOWLEDGMENTS

We would like to thank our colleagues Ruben Reininger,
Xianbo Shi, and Lahsen Asoufid from the X-ray Sciences
Division for useful discussions. This work was supported
by the U.S. Department of Energy Office of Science under
Contract No. DE-AC02-06CH11357.

[1] M. Eriksson, J. F. van der Veen, and C. Quitmann,
J. Synchrotron Radiat. 21, 837 (2014).

[2] R. Hettel, J. Synchrotron Radiat. 21, 843 (2014).
[3] D. Einfeld, M. Plesko, and J. Schaper, J. Synchrotron

Radiat. 21, 856 (2014).
[4] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and

A. Xiao, J. Synchrotron Radiat. 21, 912 (2014).
[5] G. Grübel, A. Madsen, and A. Robert, in Soft

Matter Characterization (Springer, New York, 2008)
pp. 953–995.

[6] O. G. Shpyrk, J. Synchrotron Radiat. 21, 1057 (2014).
[7] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature

(London) 400, 342 (1999).
[8] L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine,

R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele, E.
Balaur, and I. McNulty, Phys. Rev. Lett. 103, 243902
(2009).

[9] P. Thibault, M. Guizar-Sicairos, and A. Menzel,
J. Synchrotron Radiat. 21, 1011 (2014).

[10] C. G. Schroer and G. Falkenberg, J. Synchrotron Radiat.
21, 996 (2014).

FIG. 8. (a) Coherence metric ℬ0 as a function of the
e-beam focusing for various emittance ratios. (b) Field profile
along y of the lowest order coherent eigenmode for different
emittance ratios when βx ¼ Lu=π. Ψ0ðϕyÞ is qualitatively the
same at different βx. (c) Ψ0ðϕxÞ for various e-beam focusing
when εy ¼ 0; this profile is nearly independent of the emittance
ratio when ε0 ¼ λ=2π.

COMPACT REPRESENTATIONS OF PARTIALLY … Phys. Rev. ST Accel. Beams 18, 090702 (2015)

090702-15

http://dx.doi.org/10.1107/S1600577514019286
http://dx.doi.org/10.1107/S1600577514011515
http://dx.doi.org/10.1107/S160057751401193X
http://dx.doi.org/10.1107/S160057751401193X
http://dx.doi.org/10.1107/S1600577514015203
http://dx.doi.org/10.1107/S1600577514018232
http://dx.doi.org/10.1038/22498
http://dx.doi.org/10.1038/22498
http://dx.doi.org/10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1107/S1600577514015343
http://dx.doi.org/10.1107/S1600577514016269
http://dx.doi.org/10.1107/S1600577514016269


[11] M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen,
J. Synchrotron Radiat. 21, 1031 (2014).

[12] O. Chubar, L. Berman, Y. S. Chu, A. Fluerasu, S. Hulbert,
M. Idir, K. Kaznatcheev, D. Shapiro, Q. Shen, and J.
Baltser, Proc. SPIE Int. Soc. Opt. Eng. 8141, 814107
(2011).

[13] A. Singer and I. A. Vartanyants, Proc. SPIE Int. Soc. Opt.
Eng. 8141, 814106 (2011).

[14] M. Idir, M. Cywiak, A. Morales, and M. H. Modi, Opt.
Express 19, 19050 (2011).

[15] A. Prodi, E. Knudsen, P. Willendrup, and S. Schmitt, Proc.
SPIE Int. Soc. Opt. Eng. 8141, 814108 (2011).

[16] X. Shi, R. Reininger, M. S. del Rio, and L. Assoufid,
J. Synchrotron Radiat. 21, 669 (2014).

[17] K.-J. Kim, AIP Conf. Proc. 184, 565 (1989).
[18] K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A

246, 71 (1986).
[19] G. Geloni, E. Saldin, E. Schneldmiller, and M. Yurkov,

Nucl. Instrum. Methods Phys. Res., Sect. A 588, 463
(2008).

[20] L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, England,
1995).

[21] J. Bahrdt, Phys. Rev. STAccel. Beams 10, 060701 (2007).
[22] O. Chubar, P. Elleaume, S. Kuznetsov, and A. Snigirev,

in Optical Design and Analysis Software II, edited by

R. C. Juergens, Proceedings of SPIE 4769, 145 (2002),
http://dx.doi.org/10.1117/12.481182.

[23] O. Chubar, Infrared Phys. Technol. 49, 96 (2006).
[24] I. V. Bazarov, Phys. Rev. ST Accel. Beams 15, 050703

(2012).
[25] T. Tanaka, Phys. Rev. ST Accel. Beams 17, 060702

(2014).
[26] G. Geloni, V. Kocharyan, and E. Saldin, arXiv:1407.4591.
[27] M. J. Bastiaans, J. Opt. Soc. Am. A 3, 1227 (1986).
[28] K.-J. Kim and R. G. Littlejohn, in Proceedings of the

Particle Accelerator Conference, Dallas, TX, 1995 (IEEE,
New York, 1996), p. 3358.

[29] F. Gori, Opt. Commun. 34, 301 (1980).
[30] A. Starikov and E. Wolf, J. Opt. Soc. Am. 72, 923 (1982).
[31] R. Coisson and S. Marchesini, J. Synchrotron Radiat. 4,

263 (1997).
[32] I. A. Vartanyants and A. Singer, New J. Phys. 12, 035004

(2010).
[33] L. N. Trefethen and J. A. C. Weideman, SIAM Rev. 56, 385

(2014).
[34] B. Y. Rubinstein, Simulation and the Monte Carlo Method

(Wiley & Sons, New York, 1981).
[35] J. Halton, Commun. Assoc. Comput. Machinery 7, 701

(1964).
[36] G. E. P. Box and M. E. Muller, Ann. Math. Stat. 29, 610

(1958).

RYAN R LINDBERG AND KWANG-JE KIM Phys. Rev. ST Accel. Beams 18, 090702 (2015)

090702-16

http://dx.doi.org/10.1107/S160057751401621X
http://dx.doi.org/10.1117/12.892812
http://dx.doi.org/10.1117/12.892812
http://dx.doi.org/10.1117/12.893618
http://dx.doi.org/10.1117/12.893618
http://dx.doi.org/10.1364/OE.19.019050
http://dx.doi.org/10.1364/OE.19.019050
http://dx.doi.org/10.1117/12.894520
http://dx.doi.org/10.1117/12.894520
http://dx.doi.org/10.1107/S160057751400650X
http://dx.doi.org/10.1063/1.38046
http://dx.doi.org/10.1016/0168-9002(86)90048-3
http://dx.doi.org/10.1016/0168-9002(86)90048-3
http://dx.doi.org/10.1016/j.nima.2008.01.089
http://dx.doi.org/10.1016/j.nima.2008.01.089
http://dx.doi.org/10.1103/PhysRevSTAB.10.060701
http://dx.doi.org/10.1117/12.481182
http://dx.doi.org/10.1117/12.481182
http://dx.doi.org/10.1117/12.481182
http://dx.doi.org/10.1117/12.481182
http://dx.doi.org/10.1117/12.481182
http://dx.doi.org/10.1016/j.infrared.2006.01.010
http://dx.doi.org/10.1103/PhysRevSTAB.15.050703
http://dx.doi.org/10.1103/PhysRevSTAB.15.050703
http://dx.doi.org/10.1103/PhysRevSTAB.17.060702
http://dx.doi.org/10.1103/PhysRevSTAB.17.060702
http://arXiv.org/abs/1407.4591
http://dx.doi.org/10.1364/JOSAA.3.001227
http://dx.doi.org/10.1016/0030-4018(80)90382-X
http://dx.doi.org/10.1364/JOSA.72.000923
http://dx.doi.org/10.1107/S0909049597008169
http://dx.doi.org/10.1107/S0909049597008169
http://dx.doi.org/10.1088/1367-2630/12/3/035004
http://dx.doi.org/10.1088/1367-2630/12/3/035004
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1145/355588.365104
http://dx.doi.org/10.1145/355588.365104
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1214/aoms/1177706645

