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We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on
compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the
strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first
perturbative order and on the possibility of using independent power supplies in the sextupole magnets,
which is nowadays present in many synchrotron light sources. Such freedom allows the definition of “smart
sextupole knobs” attacking each resonance separately. The compensation scheme has been tested at the
Diamond light source and proved to be effective in opening up the betatron tune space, resonance free,
available to the electron beam and to improve the beam lifetime.
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I. INTRODUCTION

The control of the nonlinear dynamics for circular
accelerators dates back to the first synchrotrons [1].
Long term stability issues in colliders, and dynamics and
momentum aperture enhancement in synchrotron light
sources, have stimulated the development of a wealth of
techniques to analyze and correct the nonlinear dynamics in
storage rings [2–8].
Alongside this, the progress of high level instrumenta-

tion, such as high resolution turn-by-turn beam position
monitors (BPMs) and single-turn kickers, has allowed
significant steps forward to be made in the experimental
characterization of the nonlinear beam dynamics [5–15].
However the on-line correction of nonlinear resonance
remains a delicate exercise and alternative, possibly simpler
strategies are still sought for and constitute an active
research topic, both theoretically and experimentally.
In this paper we present the proof of principle of a new

method for the on-line control of resonance driving terms
based on the construction of a response matrix relating the
driving terms with the sextupole families in the ring. This
approach is underpinned by the identification of “smart
sextupole knobs,” i.e., combinations of sextupoles which

effectively attack only a single given resonance driving
term. Issues related to the degeneracy of the matrix are
solved by introducing new sextupole families which
remove the degeneracy. The correction of the individual
driving terms is then uniquely based on the model response
matrix and on the measurement of beam losses as the
resonance is approached in the betatron tune space. The
Diamond storage ring is an ideal test bed for such a
technique since it is equipped with a highly performing
system of diagnostics and instrumentation. In particular, the
method proposed takes full profit of the independent power
supplies for each sextupole, which allows for maximal
freedom in the definition of the sextupole families.
A prerequisite for systematic beam studies of the non-

linear dynamics is that the linear optics have been under-
stood. In particular, the beta-beating and phase advance
beat, the (local) linear coupling have been corrected to
satisfactory levels, and the linear optics model has been
calibrated. In fact, such corrections have become routine
operation for synchrotron light sources thanks to Safranek’s
and Portmann’s interactive linear optics from closed orbits
(LOCO) tool [16].
The paper is organized as follows. The theory of the

resonance driving terms and the details of the correction
method proposed are reviewed in Sec. II. In Sec. III we
describe the basic properties of the Diamond storage ring.
In Sec. IV we present the results of a campaign of
experimental tests in which this technique was applied
to the Diamond storage ring lattice. The results show that
the technique was capable of improving the beam lifetime
by 10% over its initial value. This result is in line with
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previous investigations over the same lattice [6]. However,
it accomplishes a much more straightforward correction as
it is entirely based on a response matrix computed from the
model and on the measurement of beam losses. The
correction is fast and robust, does not require lengthy
optimization computer runs and can be used as an on-line
tool in the control room. Conclusions are drawn in Sec. V.

II. THEORETICAL BACKGROUND

In order to explain the correction method and to
introduce the nomenclature, we briefly review the reso-
nance driving terms theory. We then give the detailed
strategy devised for the on-line control of the nonlinear
beam dynamics referring in particular to resonances excited
by sextupole.

A. The resonance driving terms

The resonance driving terms can be introduced within
different equivalent theoretical frameworks: we use the Lie
series formalism to write the Poincaré map ℳ of the
accelerator as a formal Lie series

ℳ ¼ A−1eLhðϕ̄;J̄ÞRA;

where ½ϕ̄; J̄�≡ ½ϕx;ϕy; Jx; Jy� are the action-angle variables
for the linear transverse dynamics, A a linear transforma-
tion to Floquet space [17], and R ¼ expðL−2πv̄·J̄Þ a phase-
space rotation. The Lie derivative ℒhðϕ̄;J̄Þ is the usual
Poisson bracket defined in Hamiltonian dynamics

Lfðϕ̄;J̄Þgðϕ̄; J̄Þ
≡X

k

½∂ϕkfðϕ̄; J̄Þ∂Jkgðϕ̄; J̄Þ − ∂Jkfðϕ̄; J̄Þ∂ϕkgðϕ̄; J̄Þ�:

In the case of midplane symmetry, the matrix represen-
tation for A is

A ¼
2
4

ffiffiffiffiffi
βx

p
0

− αxffiffiffiffi
βx

p 1ffiffiffiffi
βx

p

3
5; A−1 ¼

2
64

1ffiffiffiffi
βx

p 0

αxffiffiffiffi
βx

p ffiffiffiffiffi
βx

p

3
75;

where βx and αx are the usual Twiss functions. Similar
relations hold for the y plane. In the case of nonzero
dispersion, there is also a δ-dependent translation of the fix
point (x̄ ¼ ½x; y; px; py�)

x̄cod → x̄cod þ η̄δ;

where η̄ is the dispersion. Notice that we have considered
here the evolution of the particle coordinates in the 4D
transverse phase space, using the energy deviation δ ¼
ðE − E0Þ=E0 as an adiabatic parameter. The formalism can
be easily extended to the full 6D case.
The generator hðϕ̄; J̄Þ is given by

hðϕ̄; J̄Þ ¼ − q
p0

ZC

0

AðsÞAsð~x; ~y; sÞds;

where Asðx; y; sÞ is the longitudinal component of the
vector potential, q the charge of the particle, p0 the
momentum of a reference particle, C the circumference,
and ½~x; ~y� the linear solution in Floquet space

~x ¼
ffiffiffiffiffiffiffi
2Jx

p
cosðϕxÞ ¼

ffiffiffiffiffi
Jx
2

r
ðeiϕx þ e−iϕxÞ

and similarly for y. The generator hðϕ̄; J̄Þ has the form

hðϕ̄; J̄Þ ¼
X
Ī

hĪJx
ði1þi2Þ=2Jyði3þi4Þ=2δi5ei½ði1−i2Þϕxþði3−i4Þϕy�

Ī ≡ ½i1; i2; i3; i4; i5�;
jĪj ¼ i1 þ i2 þ � � � þ i5

and the coefficients hĪ are the resonant driving terms. By
introducing the multipole expansion of the vector potential

q
p0

Asðx; y; sÞ ¼ −Re
�X∞

n¼1

1

n
½ianðsÞ þ bnðsÞ�ðxþ iyÞn

�
;

AxðsÞ ¼ AyðsÞ ¼ 0;

we obtain for the driving terms

hĪ ¼
1

n2n

�
n

i1 þ i2

�ZC

0

�
bnðsÞ
anðsÞ

�
½2βxðsÞ�mx=2½2βyðsÞ�my=2ηi5x ei½nxμxðsÞþnyμyðsÞ�ds

mx ¼ i1 þ i2; my ¼ i3 þ i4; nx ¼ i1 − i2; ny ¼ i3 − i4; n ¼ jĪj − i5;

where μx and μy are the horizontal and vertical phase advances respectively. The resonance driving terms depend on the
global properties of the lattice and appear in complex conjugate pairs

hi1i2i3i4i5 ¼ h�i2i1i4i3i5 :
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To summarize, by introducing the Lie series representa-
tion of the Poincaré map for Hamiltonian flow in action-
angle variables and using the multipole expansion to model
the magnets, the Lie derivative can be expressed as a sum of
driving terms. We observe that, although the driving terms
are computed at a particular section along the ring, the
resulting Poincaré map is used to describe the dynamics
over many turns and its optimization will reflect the
optimization of the global properties of the lattice. In the
next section we will outline an effective approach to
address the related control problem, by explicitly solving
the “inverse problem” for the driving terms.

B. The sextupole response matrix

We now show how to build a strategy for the control of
the driving terms excited by the sextupoles. The leading
order driving terms from (normal) sextupoles

q
p0

AsðsÞ ¼ −b3ðsÞ 1
3
ðx3 þ 3xy2Þ;

i.e., that are linear in the sextupole strengths b3, are [18]

h̄ ¼ ½h11001;h00111;h21000;h10110;h30000;h10200;h10020;h20001;h00201;h10002�:

The first two are real (driving linear chromaticity), but
the other eight have both sine and cosine terms, so there is a
total of 18 terms. The effects on the dynamics are
summarized in Table I. The driving terms for the second
order dispersion, h10002 is weak for the Diamond lattice so it
was not included in the compensation procedure.
We introduce the sextupole response matrix (SRM) S by

Δh ¼ ∂h̄
∂b3Δb3 ≡ SΔb3;

i.e., the Jacobian of the system. The matrix S can be
inverted e.g., by singular value decomposition (SVD) [19]

Δb3 ¼ S−1Δh:

Hence, if we (i) compute S from the (linear) optics
model, (ii) compute the (pseudo)inverse S−1 by SVD,
(iii) we can implement S−1 on-line as a set of “smart
sextupole knobs,” where the “smart sextupole knobs” will
move the sextupole families in a combination that is
responsible for the excitation, or the correction, of only
a defined driving term, leaving the others untouched in first
order. In this way we have an effective method to control
the individual driving terms, without affecting the others.

C. Choice of the sextupole configuration

While the ideal lattice is mirror symmetric at the center
of the straight sections, i.e., the sine terms of the driving
terms are zero at these points, the symmetry is slightly
broken for a real lattice due to engineering tolerances,

e.g., mechanical alignment and random magnetic multipole
errors. So, to control both the sine and cosine terms, the
mirror symmetry of the original eight sextupole families
must be broken. A trivial choice is to e.g., split the lattice/
sextupole families into a left half and a right half, therefore
doubling the number of families to 16. However, this
choice still maintained the sixfold symmetry of the lattice
and did not remove the degeneracy in the SRM: the singular
values structure still prevented an effective decoupling of
the correction. We eventually divided the six super periods
of the lattice sextupole families into three sections for a
total of 24 families to remove the SRM degeneracy.

III. DIAMOND LATTICE PROPERTIES

Diamond is a state of the art, medium energy synchro-
tron light source [20] in operation since January 2007 [21].
The natural horizontal emittance is 2.7 nm·rad, the energy
3 GeV, and the circumference 561.6 m. The lattice is based
on a 24 cells double bend structure with sixfold periodicity
and dispersion in the straights. The linear optics is shown in
Fig. 1. The nominal working point and (linear) chroma-
ticity are

ν̄ ¼ ½27.205; 12.360�; ξ̄ð1Þ ¼ ½1.8; 1.8�:

The sextupoles are combined function magnets that inte-
grate the dipole correctors (to control the orbit) and skew
quadrupoles (to control the linear coupling). While all the
sextupole magnets have independent power supplies, they
are typically powered as eight families, maintaining the
sixfold symmetry of the linear lattice.

TABLE I. Effects on the dynamics due to the first order sextupolar driving terms.

Driving term h11001;h00111 h21000;h10110 h30000 h10200 h10020 h20001;h00201 h10002

Effect ξð1Þx;y
∂Jxβx 3νx νx þ 2νy νx − 2νy ∂δβx;y ∂δxcod
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The detuning with amplitude and the tune footprint are
shown in Fig. 2 and the dynamic aperture (for the bare
lattice) in Fig. 3.
The beam is injected at −8.3 mm from the injection orbit

bump. However the bunch length from the Diamond
booster is 26 mm and this lead to about (−3%, þ2%)
energy oscillation with −8.3 mm horizontal betatron oscil-
lations. While neither the on- or off-momentum aperture is
a concern (i.e., the injection efficiency is 80%–90% and the
Touschek lifetime [22] is ∼25 hrs with 1% emittance
coupling, with 0.3 mA per bunch), there remains potential
for improvement with further suppression of the leading
order sextupolar driving terms to make the injection

process more robust. Diamond is therefore a perfect “test
bench” for our method.
Being in operation since 2007, the linear optics of the

machine is well understood and the experimental results
obtained with the calibration of the linear model will not be
reported here [23]. Figure 4 shows how the measured
Touschek lifetime varies as a function of rf cavity voltage.
Even though the lifetime is satisfactory, the maximum
value is reached at about 2.5 MV showing that it is limited
by the off-momentum dynamic aperture, rather than the rf
bucket.
In fact, 4 MV of rf voltage is available and a naive

estimate of the corresponding rf bucket height, reported in
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Fig. 5, shows that the momentum aperture should extend to
more than �5%, were it is dependent only on the rf
aperture. Given the tune footprint of Fig. 2, it is clear that to
improve the momentum aperture substantially, the leading
order sextupolar resonances must be crossed. In particular,
νx þ 2νy ¼ 52 and 3νx ¼ 82 are crossed for positive
momentum deviation (1.5%) and negative momentum
deviation (−4%) respectively. The remaining, i.e.,
νx − 2νy ¼ 3, can be ignored since it is on the opposite
side of the linear coupling resonance νx − νy ¼ 15 which
we assume cannot be crossed. On the other hand the
resonance 3νy ¼ 37 is also crossed at negative momentum
deviation (−1.4%) and would require skew sextupole
correctors knobs.
Further complications with the Diamond lattice appear

due to a large second order momentum compaction factor.

The plot of the single particle trajectories in the longitudinal
phase space reported in Fig. 6 shows clearly that the
dynamics is quite distorted as compared to the traditional
“rf bucket,” due to nonlinear effects; also known as alpha
buckets [24], and these effects have to be properly taken
into account when assessing the available momentum
aperture.
Indeed, it turns out that for high performance Double

Bend lattices, i.e., with dispersion in the straights, αð1Þ tends
to become small, so the effect of αð2Þ on the dynamics
becomes significant. In particular, the Hamiltonian for the
longitudinal motion to fifth order in the energy deviation is

Hðϕ; δÞ ¼ 1

2
hαð1Þc δ2 þ 1

3
hαð2Þc δ3 þ 1

4
hαð3Þc δ4

þ qVRF

2πE0

½cosðϕþ ϕ0Þ þ ϕ sinðϕ0Þ� þOðδ5Þ;

where ϕ0 ¼ −asinðU0=VrfÞ, and the power series for the
phase slip factor αc defined as

αc ≡ αð1Þc þ αð2Þc δþ αð3Þc δ2 þ…:
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The equations of motion are

δ0 ¼ −∂ϕH ¼ qVRF

2πE0

½sinðϕþ ϕ0Þ þ sinðϕ0Þ� þOðδ4Þ

ϕ0 ¼ ∂δH ¼ hαð1Þc δþ hαð2Þc δ2 þ hαð3Þc δ3 þOðδ4Þ

with the fix points

δ0 ¼ 0; δ1;2 ¼ − αð2Þc

2αð3Þc

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αð1Þc αð3Þc

ðαð2Þc Þ2

vuut
1
CA:

For Diamond we obtain a fixed point at δ0 ¼ 0 and the
next closest stable fixed point at δ1 ¼ −8.9%. In conclu-
sion, it appears that currently the off-momentum aperture is
limited to ∼3.5% mainly due to the crossing of leading
order sextupolar resonances in the betatron tune space. So,
by correcting these resonances, in particular νx þ 2νy ¼ 52

and 3νx ¼ 82, we expect to be able to improve the
momentum aperture to ∼4.0%, limited by the alpha bucket,
and correspondingly, increase the Touschek lifetime
significantly.

IV. EXPERIMENTAL TECHNIQUE AND RESULTS

Driving terms can be analyzed with the measurement of
the frequency content of the turn-by-turn data. However
some care is required in order to extract significant
information from next to leading spectral lines, often
buried in the noise of the turn-by-turn data. The measure-
ments are preferably done with a small linear chromaticity
in order to reduce the decay of the signal due to phase space
filamentation, possibly far from the operational condition
of the machine. In order to obtain a reasonable signal, the
working point must often be moved close to each individual
resonance. Although the turn-by-turn beam quality can be
improved, and indeed meaningful information on the
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driving terms can be extracted [6–8,11–15], we opted for
the use of the observed beam loss on a beam current
monitor as the main signal, indicating the strength of a
resonance. We progressively moved the working point
closer to the resonance, using quadrupoles, and adjusted
the cosine- and sine terms of the corresponding resonant
driving term with the inverted SRM tool and monitored the
beam losses. As the betatron tunes get closer to the
resonance, the initial beam losses were progressively
decreased by adjusting the corresponding “smart sextu-
poles knob,” until we are able to sit on the resonance
without losses at all and with no perturbation on the stored
beam. We found this approach to be much simpler,
straightforward, robust and equally effective in improving
the machine performance compared to the more delicate
analysis of turn-by-turn data. The aforementioned splitting
of the sextupoles in 24 families is illustrated in Fig. 7.

The procedure can tackle more than one resonance
simultaneously. While the compensation of a particular
resonance is straightforward, the associated (minor) change
of linear optics brought about by shifting the working point
using quadrupoles was enough to undo the compensation
of a previous resonance when moving on to the next. We
therefore introduced a suitable linear chromaticity and
moved the working point by changing the energy, i.e.,
by adjusting the rf frequency, instead. By this approach, we
could then compensate both νx þ 2νy ¼ 52 and 3νx ¼ 82,
without any beam loss, as shown in Figs. 8 and 9.
Having identified an effective procedure for applying the

driving term corrections, further trials of the method were
performed at the nominal user operating tune point and
linear chromaticity. After again applying small corrections
of less than 0.2% to the sextupole strengths using the
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inverted SRM tool (see Fig. 10), the νx þ 2νy ¼ 52
resonance could be compensated and beam losses previ-
ously observed when approaching this line could be
completely eliminated. As anticipated, this led to a sub-
stantial increase in the off-momentum aperture available to
the beam in the positive direction from −1.0%=þ 1.4% to
−1.0%=þ 2.8% (see Fig. 11). As a result we increased the
stable area available to the beam in the betatron tunes plane
and eventually improved the Touschek lifetime. The
resulting improvement in the beam lifetime is shown in
Fig. 12 and amounts to a 10% increase at 2.5 MV. At
present, further improvements to the beam lifetime are
limited by the 3νy ¼ 37 resonance, hit for negative
momentum deviation at −1.4%. This resonance is driven
by skew sextupole fields in first order, for which there is no
effective handle in the Diamond lattice.

V. CONCLUSIONS

A technique for on-line control of the leading-order
sextupole driving terms in the one-turn map has been
described. By using the accelerator model, the response of
each driving term to small changes in the sextupole strength
can be determined, allowing a sextupole response matrix to
be constructed. This can then be inverted and used for
individual control of the driving term amplitudes through a
suitable adjustment of sextupole strengths.
Experiments with this technique using the Diamond

storage ring have demonstrated the effectiveness of the
method, in particular by increasing the positive momentum
aperture available to the beam and hence the beam lifetime.
While it has been demonstrated that it is possible to
compensate any particular resonance by moving the work-
ing point using a change to the quadrupole gradients, it was

found that the resulting small changes to the linear optics
undid the compensation of any previously optimized
resonances.
The most robust method was found to be via shifting the

working point close to the resonance of interest by a
suitable change in the beam energy by altering the rf
frequency and linear chromaticity.
In this case study we have focused on the effects of

normal sextupoles to the first perturbative order. However,
the method is not limited to this, i.e., it can easily be
generalized to the control of resonances excited at higher
perturbative order by sextupoles and also for arbitrary
normal or skew multipole driving terms (assuming such
trims are available). In fact, the method has the potential to
provide a framework for complete, on-line control of the
nonlinear beam dynamics.
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