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We propose a method to fully determine the transverse beam matrix using a simple setup consisting of
two steering magnets, an octupole field and a screen. This works in principle for any multipole field, i.e.,
sextupole, octupole magnet or a radio frequency structure with a multipole field. We have experimentally
verified the method at the Compact Linear Collider Test Facility 3 at CERN using a Compact Linear
Collider accelerating structure, which has an octupole component of the radio frequency fields. By
observing the position shifts of the beam centroid together with changes in transverse beam size on a
screen, we determined the full transverse beam matrix, with all correlations.
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I. INTRODUCTION

In charged particle accelerators the knowledge of the
transverse beam size is of paramount importance to
guarantee the performance and operational reliability of
the machine. In single pass accelerators, such as linear
accelerators or transfer lines, often screens or wire scanners
in conjunction with a quadrupole are used to determine the
beam matrix and Twiss parameters [1] by correlating the
observed beam size on the screen with the quadrupole
gradient while scanning its excitation [2–6]. Typically, by
varying the excitation of a single upright quadrupole, either
the horizontal or vertical beam parameters are determined,
but in special cases even the coupling degrees of freedom in
the sigma matrix are found [7,8] if skew quadrupoles are
available and the screen or wire scanner permit measuring
of the correlation between horizontal and vertical beam
size σxy ¼ σ13 in standard TRANSPORT [9] or MADX [10]
notation.
In this paper we suggest to use a single octupole in

conjunction with two horizontal or vertical steering mag-
nets instead of the quadrupole. We scan the beam position
in the octupole and as long as the beam size in the octupole
is small compared to its aperture, the beam experiences
predominantly the local gradient of the octupolar field. In
this way we effectively change the strength of a linear,
quadrupole-like field by steering the beam to different
positions in the octupole. At the different scan locations we
record the horizontal and vertical beam size and the

correlation σxy on the screen. We show that in this way
the full coupled beam matrix of the incoming beam can be
determined.
Incidently, we accidentally discovered this method when

scanning the beam in the probe beam in the two-beam test
stand, in the Compact Linear Collider (CLIC) Test Facility
3, across the aperture of an X-band accelerating structure
(ACS) for the CLIC [11,12] and observed that the beam
size on a downstream screen changed. It was actually
expected, from observation and simulation [13,14], that the
radio frequency (rf) fields in the CLIC structure have an
octupolar component 90° out of phase of the main accel-
erating field. Recording and analyzing these data led to the
realization that octupoles can be used to determine sigma
matrices.
In the remainder of this paper we first discuss the method

in general and derive the necessary equations for the
analysis, then show that the method works reliably for
simulated data and finally apply it to the recorded data from
the two-beam test stand followed by conclusions.

II. METHOD

Here we derive the necessary equations and explain the
method we have used. A particle can be characterized by
the six-dimensional vector x ¼ ðx; x0; y; y0; z; δÞT where z is
the longitudinal position with respect to the centroid of the
beam and δ the relative momentum deviation. The hori-
zontal position is given by x and x0 is the transverse
momentum normalized with respect to the longitudinal
momentum according to x0 ¼ px

pz
. If we only consider

transverse beam dynamics we have x ¼ ðx; x0; y; y0ÞT as
a sufficient description of the particle. In linear systems
propagating a particle from one position to another can be
described by a multiplication with a transfer matrix x̂ ¼ Rx.
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A distribution of particles, i.e., a beam, can be charac-
terized by the beam matrix, also referred to as the sigma
matrix, σ4D, where the elements are defined as σij ¼
hðxi − XiÞðxj − XjÞi where xi ¼ fx; x0; y; y0g for
i ¼ 1; 2; 3; 4. Capital letters indicate the first moments
Xi ¼ hxii. Since the beam matrix is symmetric,
i.e., σij ¼ σji, we have ten independent elements.
Propagating the beam matrix from one longitudinal posi-
tion to another can be done with the transfer matrix
according to σ̂4D ¼ Rσ4DRT .

A. Octupole kicks

We express the multipole expansion of a magnetic field
by By þ iBx ¼ Cn−1ðxþ iyÞn−1 and by inserting n ¼ 4 we
obtain the octupole field

Bx ¼ C3ð3x2y − y3Þ ð1aÞ

By ¼ −C3ð3xy2 − x3Þ; ð1bÞ

where C3 indicates the octupole field strength in units
of T=m3. A kick from a general transverse magnetic field
can be calculated through the Lorentz force. In the thin
lens approximation an electron traveling in the negative
z-direction experiences the following kicks:

Δx0 ¼ px

pz
¼ −evByl

pzv
¼ −

Byl

ðBρÞ ð2aÞ

Δy0 ¼ py

pz
¼ evBxl

pzv
¼ Bxl

ðBρÞ ; ð2bÞ

where ðBρÞ is the beam rigidity and l the length of the
octupole. Assuming the octupole is followed by a drift of
length L we can calculate the horizontal position shift for a
single particle,

x̂ − x ¼ LΔx0 ¼ C3l
ðBρÞLð3xy

2 − x3Þ: ð3Þ

The shift of the centroid of the beam distribution can be
calculated by taking the expectation of (3) and we obtain

X̂−X¼
�

C3l
ðBρÞð3xy

2−x3Þ
�
¼ C3l
ðBρÞ½3hxy

2i−hx3i�: ð4Þ

If we assume a Gaussian beam the expectation values can
be calculated analytically, see Appendix A, and we get

X̂ − X ¼ KL
�
XðY2 þ σ2y − σ2xÞ −

X3

3
þ 2Yσxy

�
; ð5Þ

where we have defined K ¼ 3C3l=ðBρÞ. Similarly, we
obtain vertical position shift

Ŷ − Y ¼ KL

�
YðX2 þ σ2x − σ2yÞ −

Y3

3
þ 2Xσxy

�
: ð6Þ

In Eqs. (5) and (6) we have the position shifts on a screen of
the centroid of the beam as a function of the incoming beam
transverse position and beam size inside the octupole field.
This will later be used for determining the integrated
octupole strength C3l.

B. Octupole focusing in thin lens approximation

Locally a small beam in a multipole field experiences a
linear gradient similar to a quadrupole. Since the gradient is
dependent on position we will get the same information
from a position scan inside an octupole field as in the case
of a quadrupole scan. In linear optics the gradient is often
expressed as inverse focal length

1

fxx
¼ −

l
ðBρÞ

∂By

∂x ; ð7Þ

where l is the length of the magnetic element. Here we use
two indices, the first index indicates that we have focusing
in the horizontal plane and the second index indicates that
the effect comes from a deviation in x. Since we have in
general By ¼ Byðx; yÞ we also have horizontal focusing

due to a deviation in y as 1
fxy

¼ − l
ðBρÞ

∂By

∂y . Similarly, we have

focusing in the vertical plane and as a consequence from
Maxwell’s equations we note that the inverse focal lengths
for vertical focusing are related to the horizontal inverse
focal lengths as 1

fyy
¼ − 1

fxx
and 1

fxy
¼ 1

fyx
.

Now we can express the single particle transfer matrix
from octupole to screen as x̂ ¼ Rx, where x is the incoming
particle and x̂ the particle on the screen. The transfer matrix
R consists of an octupole focusing element followed by a
drift of length L and can be written as

R ¼

2
6664
1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

3
7775

2
666664

1 0 0 0
1
fxx

1 1
fxy

0

0 0 1 0

1
fyx

0 1
fyy

1

3
777775

¼

2
666664

1þ L
fxx

L L
fxy

0

1
fxx

1 1
fxy

0

L
fyx

0 1þ L
fyy

L

1
fyx

0 1
fyy

1

3
777775
: ð8Þ

Now we can calculate the corresponding position depen-
dent inverse focal lengths for an octupole:
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1

fxx
¼ −l

ðBρÞ
∂By

∂x
����
x¼X
y¼Y

¼ KðY2 − X2Þ ð9aÞ

1

fxy
¼ −l

ðBρÞ
∂By

∂y
����
x¼X
y¼Y

¼ 2KXY ð9bÞ

1

fyy
¼ l

ðBρÞ
∂Bx

∂y
����
x¼X
y¼Y

¼ KðX2 − Y2Þ ð9cÞ

1

fyx
¼ l

ðBρÞ
∂Bx

∂x
����
x¼X
y¼Y

¼ 2KXY; ð9dÞ

where we have the same constant as beforeK ¼ 3C3l
ðBρÞ and the

derivatives are evaluated at ðx ¼ X; y ¼ YÞ where again
capital letters indicate first moments X ¼ hxi, in other
words, in this linear approximation, the focusing effect on
the beam depends on the transverse position of the centroid
of the beam.
Inserting (9) into (8) and mapping the beam matrix

according to σ̂ ¼ RσRT together with the fact that the
horizontal beam size on the screen is σ̂2x ¼ σ̂ð1; 1Þ and the
vertical beam size σ̂2y ¼ σ̂ð3; 3Þ we can express the trans-
verse beam size on the screen as a function of the transverse
position of the centroid of the beam as

σ̂2x ¼ ½KLðX2 − Y2Þ − 1�2σ11 þ 2L½1þ KLðY2 − X2Þ�σ12
þ 4KLXY½1þ KLðY2 − X2Þ�σ13
þ L2½σ22 þ 4KXYðσ23 þ KXYσ33Þ� ð10Þ

and

σ̂2y ¼ ½1þ KLðX2 − Y2Þ�2σ33 þ 2L½1þ KLðX2 − Y2Þ�σ34
þ 4KLXY½1þ KLðX2 − Y2Þ�σ13
þ L2½σ44 þ 4KXYðσ14 þ KXYσ11Þ�: ð11Þ

We also consider the correlation term σ̂xy ¼ σ̂ð1; 3Þ, this
gives

σ̂xy ¼ ½1þ 6K2L2X2Y2 −K2L2ðX4 þ Y4Þ�σ13
þ 2KLXY½ð1−KLðX2 − Y2ÞÞσ11
þ ð1þKLðX2 − Y2ÞÞσ33�
þL½ð1−KLðX2 − Y2ÞÞσ14 þ ð1þKLðX2 − Y2ÞÞσ23�
þL2½σ24 þ 2KXYðσ12 þ σ34Þ�: ð12Þ

Thus we have the beam size on the screen σ̂2x, σ̂2y and σ̂xy as
functions of the transverse position inside the octupole field
and the beam matrix of the incoming beam. When we
derived the equations of octupole focusing we assumed that
locally the beam only experiences a linear gradient. This
approximation is reasonable provided that the beam trans-
verse size is small compared to the curvature of the
octupole field. Nonetheless, for a Gaussian distribution
we do not need to make such an approximation but can
calculate analytically how the beam size will change for a
given incoming beam distribution. In Appendix A we
derive these full analytical equations by taking the expect-
ation values of a single particle position after an octupole
and drift space. These equations are nonlinear in terms of
beam matrix elements σij.

C. Procedure

With two steering magnets we scan the beam trans-
versely (horizontally or vertically) but parallel to the beam
axis. A schematic of the setup is shown in Fig. 1. In Fig. 2
we show a schematic of a cross section of the ACS and the
beam positions at different scan steps. The beam does not
need to be centered in order to perform the scan. In fact,
for a vertical scan it is better to have the beam slightly of
center horizontally since this will yield a quadratic position
dependent horizontal kicks, cf. X ¼ 0 in (5).
The procedure is then as follows. For each scan step

(transverse position) acquire images of the beam on the
screen with and without the octupole field active. Then
perform 2D Gaussian fits of the images on the screen in
order to extract the beam centroid transverse position and
beam size.
By comparing beam centroid position with and without

octupole field active we can determine the integrated
octupole field strength by performing simultaneous least
square fits to (5) and (6). Then from the beam size on the

FIG. 1. Schematic of the setup where the beam travels from right to left. Quadrupoles are used for focusing the beam onto the screen
and keep a small beam inside the octupole field. The two steering magnets are used to transversely scan the beam inside the octupole
field. By observing how the beam changes on the screen at different positions we can deduce information about the beam matrix right
before the octupole.
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screen together with the integrated octupole strength we
can fit for the ten elements of the beam matrix of the
incoming beam, i.e., simultaneous least squares fit of
Eqs. (10), (11) and (12).

D. Simulation

We set up a multiparticle simulation model in MATLAB

[15] in order to numerically verify the equations and test the
procedure. The simulation model consisted of a simple
particle tracking code that transported particles from a
defined 4D distribution through a thin octupole followed by
a drift. We simulated for similar parameters to those in the
CLIC Test Facility 3 setup: integrated octupole strength of
15 kTm=m3, beam energy of 190 MeV, distance from
octupole to screen 5.5 m. We simulated for a distribution
of 105 number of particles generated from given beam
matrices.
In Appendix B we present a parametrization, inspired by

[7] and [16], of the beam matrix that we will use throughout
the paper. This parametrization uses the regular Twiss
parameters for the horizontal and vertical 2 × 2 blocks and
parameters r; κ;ψ ;ϕ to describe the correlation terms. The
parameter ϕ can be thought of as the coupling angle and for
ϕ ¼ 0 we would have no x-y correlation. This parametri-
zation is positive definite by construction which will be
very useful later when we will perform a fit to the beam
matrix elements of the matrix at the position just before the
octupole.
We simulated for two different beam distributions: first a

well-behaved beam, i.e., a small beam without x-y corre-
lations and aspect ratio 1; then we simulated a beam with
x-y correlations and aspect ratio different from unity. In
both cases we chose beam distributions in such a way that a
propagation through a drift space yielded a transverse beam
size at the location of the screen comparable to the
measured beam without rf. The parameters used are listed
in Table I. In both cases, the vertical position was scanned
from −1.4 to 1.4 mm and the horizontal offset was kept at

0.1 mm. In Fig. 3 we show the position shifts together with
plots of the analytical expressions (5) and (6). As expected
we see a third order behavior of vertical shifts ∝ Y3 and
second order in horizontal shifts ∝ Y2. In Fig. 4 we have
plotted σ2x, σ2y and σxy at different vertical positions together
with the full analytical expressions for a 4D Gaussian beam
from Appendix A and the linear expressions from (10)–(12).
The maximum difference between the predictions of the

full analytical equations and the linear equations, for the
simulation of a beam with x-y correlations, was roughly
30%. The effect of the octupole was considerably smaller
for the well-behaved beam and thus was also the difference
between the linear equations or the full analytical
equations.
We fitted the simulated data to the equations for position

shifts and octupole focusing and we could reconstruct both
the octupole strength and the beam matrix just upstream of
the octupole. The fitting of the beam matrix was carried
out in two steps, first fitting for the linear expressions and

FIG. 2. A cross section of the aperture of the ACS and the beam
is scanned vertically with a horizontal offset with blue x’s
showing the scan positions.

TABLE I. Transverse beam distributions used in simulation.
The beam matrix can be generated according to the parametriza-
tion presented in Appendix B.

Parameter Well-behaved beam Beam with x-y correlations

εx 0.003 mm-mrad 0.005 mm-mrad
εy 0.003 mm-mrad 0.006 mm-mrad
αx 3 5
αy 3 6
βx 25 m 45 m
βy 25 m 50 m
r � � � 2
κ � � � 1
ψ � � � 0.2
ϕ 0 0.7
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FIG. 3. Simulation of a vertical scan across the octupole field.
The plots show the horizontal and vertical position shifts of the
beam centroid due to octupole kicks and the fit of the analytical
equations (5) and (6).
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then using these results as start values fitting for the full
analytical expressions.
We conclude that if the beam has x-y correlations

the linear approximation will introduce errors and,

if possible, we should use the full analytical
equations.

III. MEASUREMENT USING A CLIC
ACCELERATING STRUCTURE

At the two-beam test stand [12] we used the method
described in the previous section by using a CLIC ACS
which has an octupole component of the rf fields. The
octupole component was found earlier in simulations [13]
and observation [14]. The octupole component lags the
main accelerating field by 90° so in order to have a
maximum octupole kick of the beam we put the single
bunch beam on the zero crossing of the main accelerating
field. We used quadrupoles to maintain a small beam inside
the ACS and two steering magnets upstream of the ACS to
scan the beam vertically. The beam was scanned parallel to
the beam axis by exciting the two identical-style steering
magnets with currents of the same magnitude but with
opposite signs. The experimental parameters are listed in
Table II.
The electron beam was operated at twice the repetition

rate of the rf source so every other image collected was
for a beam passing through the octupole field and every
other was for a beam experiencing no octupole fields.
This had the additional benefit of reducing the impact of
drifting parameters. At each scan step we collected a
total of 16 images (eight with and eight without rf kicks)
and then we calculated the averages at each scan step.
The center-of-mass position on the screen for different
vertical positions are shown in Fig. 5. In Fig. 6 we have
plotted σ2x, σ2y and σxy respectively, for different vertical
positions. We can clearly see kicks and the focusing
effect at different transverse positions due to the octu-
pole field. The error bars shows the standard deviation of
the values at each scan step because the shot-to-shot
difference varied more than the uncertainties from the
2D Gaussian fits. See the Supplemental Material [17] for
a video sample of the raw screen images for the scan
showing images of the beam with and without the
octupole field.

FIG. 4. Simulation of a beam with correlations. Plots show the
beamwidths σ2x (top), σ2y (middle) and correlation term σxy (bottom)
on the screen for different vertical positions inside the octupole
field. Also plotted are the corresponding linear expressions
(10)–(12) and the full analytical expressions (A11)–(A13). By per-
forming fits we can determine the beammatrix just upstream of the
octupole. However, using the linear equations will introduce errors.

TABLE II. Experimental parameters.

Parameter Value Unit

Energy 194 MeV
Repetition rate electron beam 1.667 Hz
Repetition rate rf pulse 0.833 Hz
On-crest energy gain, ΔE 5.1 MeV
Relativistic factor, γ 380 No unit
rf frequency 12 GHz
Length of ACS, l 230 mm
Distance from center of ACS to screen, L 5615 mm
Resolution of screen (estimated) 60 μm
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A. Position shifts

Now we look at the position shifts, i.e., the difference
between the centroid position on the screen with and
without rf in the ACS. We define a χ2 as a sum over all
scan steps n for the position shifts as

χ2shifts ¼
Xn
i¼1

�ðX̂i − XiÞmeas − ðX̂i − XiÞtheo
ΔðX̂i − XiÞ

�
2

þ
Xn
i¼1

�ðŶi − YiÞmeas − ðŶi − YiÞtheo
ΔðŶi − YiÞ

�
2

; ð13Þ

where ðX̂ − XÞmeas is the measured horizontal position shift
on the screen, i.e., the difference between the horizontal
position of the beam with rf and without rf, cf. Fig. 5, and
similarly for ðŶ − YÞmeas. ΔðX̂i − XiÞ note the standard
deviation of the position shift at each scan step. The
theoretical expressions ðX̂i − XiÞtheo and ðŶi − YiÞtheo come
from (5) and (6) and are functions of the integrated octupole

strength, transverse position and beam size inside the
octupole, which are all unknown. However, we know
the transverse position of the beam on the screen when
no rf fields are present in the ACS. We can assume that the
position on the screen is related to the position in the ACS

FIG. 5. Horizontal (top) and vertical (bottom) position of beam
centroid on the screen for different vertical positions. Plots show
both beam with and without rf inside the ACS. We can clearly see
the position shifts due to the octupole field.

FIG. 6. Horizontal width (top), vertical width (middle) and
correlation term (bottom) on screen for different vertical posi-
tions. Plots show both beam with and without rf inside the ACS.
The octupole field has a strong effect on the beam size on the
screen.
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by some systematic offsets b and c. Thus, from (5) we
make the following ansatz:

ðX̂i − XiÞtheo ¼ a

�
ðX þ bÞððY þ cÞ2 þ σ2y − σ2xÞ

−
ðX þ bÞ3

3
þ 2ðY þ cÞσxy

�
þ d; ð14Þ

where a ¼ KL and d represents a horizontal bias, i.e., a
constant offset. Initially we do not know the beam size
inside the ACS so we use the beam size on the screen for
the beam without rf in ACS as an educated guess. We
expect this approximation to be reasonable since the
distance from quadrupoles is more than 10 m and since
we put a focus on the screen we should have a slowly
converging beam. From (6) we get a similar ansatz for the
vertical shifts including the same parameters a; b; c and a
parameter e for the vertical bias. We include these small
bias terms since we are mainly interested in the second and
third order dependence, i.e., the effect of the octupole field.
The small horizontal and vertical biases could be due to
small dipole kicks due to a slight misalignment.
The resulting fits are shown in Fig. 7 where we have

plotted position shifts at different vertical positions.
The numerical values of the fit parameters are listed in
Table III. As an estimation of the error bars of the fit
parameters we give a change of a parameter that doubles
χ2shifts, one parameter is changed at the time while all other
parameters are kept constant. The value of integrated
octupole component C3l ¼ 14� 2 kTm=m3 is comparable
to 16.4 kTm=m3, which for an accelerating field Vz ¼
5.1 MV is consistent with simulations [13,18]. If the errors
in the measurement are correctly assessed then χ2 per
degrees of freedom should equal 1. In our case χ2 per
degrees of freedom is smaller than 1 which implies an
overestimation of the errors of the measured position
shifts, likely due to random jitter in beam position that
averaged out.

B. Beam matrix

For the horizontal beam size we define

χ2σxx ¼
Xn
i¼1

�
σmeas
xx − σtheoxx ðεx; βx; αx; εy; βy; αy; r; κ;ψ ;ϕÞ

Δσixx

�
;

ð15Þ

where σmeas
xx ¼ σ̂2x, i.e., the beam width on the screen when

rf fields are present in the ACS. From (10) we get an
expression for σmeas

xx as a function of the beam matrix just
upstream of the octupole parametrized according to
Appendix B. Similarly, using (11) and (12) we define
χ2σyy and χ2σxy respectively. Finally, we perform a fitting

procedure to minimize χ2focus ¼ χ2σxx þ χ2σyy þ χ2σxy to

determine the beam matrix elements. A direct fit for the
beam matrix elements without the parametrization yielded
nonpositive definite beam matrices and thus complex
emittances, i.e., nonphysical solutions.
The parametrization of the beam matrix has the great

advantage of yielding only physical solutions but it also
makes convergence more difficult. Some of the parameters
are strongly correlated and this makes the numerical

FIG. 7. Horizontal (top) and vertical (bottom) position shifts at
different vertical positions. The position shifts are calculated from
the difference between beam centroid position with and without rf
in Fig. 5. We can see the second order behavior in horizontal
shifts [cf. Eq. (5)] and third order behavior in vertical shifts
[cf. Eq. (6)] as expected from a vertical scan.

TABLE III. Fit results for position shifts.

Parameter Symbol Value Unit

χ2 per degrees of freedom χ2N 0.28 No unit
Integrated octupole strength C3l 14� 2 kTm=m3

Horizontal offset b −0.47� 0.05 mm
Vertical offset c −0.25� 0.08 mm
Horizontal bias d 0.09� 0.02 mm
Vertical bias e 0.06� 0.03 mm
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problem worse conditioned. Furthermore, the problem of
minimizing χ2focus has a high number of degrees of freedom
and is sensitive to start value.
In order to find convergence we used a random seed to

generate start values εx; βx; αx; εy, βy; αy; r; κ;ψ ;ϕ and then
applied the minimization routine for χ2focus. We iterated this
100 times and among the convergent solutions found the
solution yielding the minimal χ2focus. We obtained the same
minimum χ2focus when repeating this procedure several
times. However, as we found similar values for the
eigenemittances in each optimum solution the other param-
eters (αx, βx, etc.) varied significantly, however, always
yielding the same beam matrix.
Furthermore, from the simulations in Sec. II D we

found that the linear approximation gives a systematic
error so we attempted fitting the full analytical equations
from Appendix A to the data in search of an even better fit.
However, these equations become highly nonlinear in terms
of the beam matrix parameters εx; αx; βx etc. and we could
not find convergent solutions without good start values.
Therefore, we used the beam matrix found from the linear
approximation plus a small random seed as start values and
then fitted the full analytical equations without paramet-
rization of the beam matrix, i.e., fitting for beam matrix
elements σij directly. This procedure gave a slight improve-
ment. The results from the fits of both the linear and the full
analytical equations for beam size on the screen are shown
in Fig. 8.
By taking the determinant of the 2 × 2 blocks on the

diagonal we could also calculate the projected horizontal
and vertical emittances, respectively. The results are sum-
marized in Table IV. Since position was measured in mm
and angles expressed in mrad we have that the elements of

FIG. 8. The horizontal beam size (top), vertical beam size
(middle) and correlation term (bottom) at different vertical
positions and the fit of the linear expressions in (10)–(12)
and the full analytical expressions (A11)–(A13). From
the fits we retrieve the full transverse beam matrix just
upstream the octupole, including all correlations. Further-
more, we can see a slight improvement using the full
analytical expressions.

TABLE IV. Fit results beam matrix.

Parameter Symbol Value Unit

χ2 per DOF χ2N 7.0 No unit
Beam matrix elements σx 0.59� 0.01 mm

σxx0 −0.050� 0.01 mm-mrad
σx0 0.085� 0.002 mrad
σy 0.28� 0.02 mm
σyy0 −0.016� 0.001 mm-mrad
σy0 0.067� 0.004 mrad
σxy −0.034� 0.008 mm2

σxy0 0.026� 0.001 mm-mrad
σx0y 0.005� 0.001 mm-mrad
σx0y0 −0.0038� 0.0003 mrad2

Eigenemittances ε1;norm 4.0 mm-mrad
ε2;norm 0.8 mm-mrad

Projected emittances εx;norm 2.5 mm-mrad
εy;norm 3.6 mm-mrad
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the beam matrix have units of ½σ2x� ¼ mm2, ½σxx0 � ¼
mm-mrad and ½σ2x0 � ¼ mrad2 etc. Since χ2 per degrees of
freedom is larger than 1 this implies that either we have
underestimated the errors in the measured beam widths on
the screen or there is some systematic error. We removed
the systematic error due to the linearization by fitting for the
full analytical equations. However, this had small impact on
the fit results. The beam matrix elements in Table IV
are from the fit of the full analytical equations. The error
bars are estimated by changing one parameter at the time
keeping all others constant and finding changes yielding an
increase of χ2 by a factor of 4. We used a factor of 4 instead
of 2 in this case since we have twice as many fit parameters
compared to the position shifts in Sec. III A.
As a cross-check we compared the average measured

rms beam size on the screen for the beam without rf in
the ACS with the (1,1), (3,3) and (1,3) elements of the
propagated beam matrix σ̂ ¼ RDσfitRT

D where RD is the
4 × 4 transfer matrix for a drift. The result was (measured/
propagated): σx ¼ 0.11=0.13 mm, σy ¼ 0.23=0.20 mm
and σxy ¼ 0.009=0.021 mm2.

IV. CONCLUSIONS

Performing transverse position scans, parallel to the
beam axis, inside an electric or magnetic octupole field
results in both position shifts and position-dependent
focusing providing information similar to that of a quadru-
pole scan, i.e., the transverse beam matrix. We were able
to test this method utilizing the octupole component of
the rf fields in a CLIC accelerating structure and we could
determine the integrated octupole strength and reconstruct
the beam matrix including all correlations. The benefit of
this method is that all the information comes from one scan.
Although the data processing and fitting procedure is not
trivial, the necessary data can be retrieved quickly. The data
for our scan was acquired in about 8 minutes and the image
processing could be done online and then about 5 minutes
for the rest of the analysis.
From the fits of the position shifts we also obtained, as

a bonus, the electromagnetic center of the structure.
This information could potentially be used to align the
beam in the center of the many accelerating structures in

the CLIC main linac with no additional equipment
required.
We believe that our method will be useful in situations

beyond the scenario discussed in this paper. It provides a
beam diagnostics tool complementary to the conventional
quadrupole scan technique, in particular if octupoles are
already present for other reasons, such as for aberration
control in final focus systems. Furthermore, if informa-
tion about the complete beam matrix, including all
coupling degrees of freedom, needs to be determined
skew quadrupoles are normally needed. In our method a
single octupole replaces both quadrupoles and skew
quadrupoles.
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APPENDIX A: ANALYTICAL EXPRESSIONS
OF OCTUPOLE FOCUSING

The transverse position on a screen ðx̂; ŷÞ for a single
particle traveling through a thin octupole followed by a drift
of length L can be expressed as

x̂¼xþLx0 þLΔx0 ¼xþLx0 þ K̂Lð3xy2−x3Þ
ŷ¼yþLy0 þLΔy0 ¼yþLy0 þ K̂Lð3x2 y−y3Þ; ðA1Þ

where K̂ ¼ C3l
ðBρÞ. The beam size can be calculated as

σ2x̂ ¼ hx̂2i − hx̂i2
σ2ŷ ¼ hŷ2i − hŷi2
σx̂ ŷ ¼ hx̂ ŷi − hx̂ihŷi: ðA2Þ

Inserting (A1) into the first line in (A2) we obtain
an analytical expression for the horizontal width on the
screen as

σ2x̂ ¼ hðxþ Lx0 þ K̂Lð3xy2 − x3ÞÞ2i − hxþ Lx0 þ K̂Lð3xy2 − x3Þi2
¼ hx2i − 2K̂Lhx4i þ K̂2L2hx6i þ 2Lhxx0i − 2K̂L2hx3x0i þ L2hx02i þ 6K̂Lhx2y2i − 6K̂2L2hx4y2i þ 6K̂L2hxx0y2i
þ 9K̂2L2hx2y4i − ½hxi þ Lhx0i þ 3K̂Lhxy2i − K̂Lhx3i�2: ðA3Þ
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A general expectation value of an N dimensional Gaussian distribution is defined as

hxm1

1 xm2

2 � � � xmN
N i ¼ 1

ð2πÞN=2
ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

dNxðxm1

1 xm2

2 � � � xmN
N Þ exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ

�
; ðA4Þ

where Einstein’s summation convention is implied, σij is the covariance matrix and Xi ¼ hxii. We let
KN ¼ 1

ð2πÞN=2
ffiffiffiffiffiffiffi
det σ

p and rewrite the right-hand expression in the following manner:

¼ KN

Z
dNxðxm1

1 xm2

2 � � � xmN
N Þ exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ

�

¼ KN

Z
dNxðxm1

1 xm2

2 � � � xmN
N Þ exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ þ bixi

�����
bi¼0

¼ KN

Z
dNx

� ∂m1

∂bm1

1

∂m2

∂bm2

2

� � � ∂
mN

∂bmN
N

	
exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ þ bixi

�����
bi¼0

¼
� ∂m1

∂bm1

1

∂m2

∂bm2

2

� � � ∂
mN

∂bmN
N

	
KN

Z
dNx exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ þ bixi

�����
bi¼0

¼
� ∂m1

∂bm1

1

∂m2

∂bm2

2

� � � ∂
mN

∂bmN
N

	
exp ½biXi�KN

Z
dNx exp

�
−
1

2
ðxi − XiÞσ−1ij ðxj − XjÞ þ biðxi − XiÞ

�����
bi¼0

¼
� ∂m1

∂bm1

1

∂m2

∂bm2

2

� � � ∂
mN

∂bmN
N

	
exp ½biXi�KN

Z
dNy exp

�
−
1

2
yiσ−1ij yj þ biyi

�����
bi¼0

; ðA5Þ

where in the last step we performed the variable substitu-
tion yi ¼ xi − Xi. The integral in the last line can be
expressed as a product of one-dimensional integrals.
Since σ is a symmetric, positively definite matrix an
orthogonal linear transformation O exists such that
Oσ−1OT ¼ diagðλiÞ is a diagonal matrix. Since detO ¼
1 the determinant of the Jacobian of the transformation
equals to unity. The new variable is z ¼ Oy or O−1z ¼
OTz ¼ y and we also note zT ¼ yTOT , which gives
zTðOTÞ−1 ¼ zTO ¼ yT . We get

I ¼ KN

Z
dNy exp

�
−
1

2
yTσ−1yþ bTy

�

¼ KN

Z
dNy exp

�
−
1

2
yTOTOσ−1OTOyþ bTOTOy

�

¼ KN

Z
dNz

���� ∂ðz1 � � � zNÞ∂ðy1 � � � yNÞ
���� exp

�
−
1

2
zTdiagðλiÞzþ ~bz

�

¼ KN

Z
dNz exp

�
−
1

2
λiz2i þ ~bizi

�
; ðA6Þ

where we have used ~b ¼ Ob for brevity. The last line in the
above expression is simply a product of one-dimensional
integrals on the form

Z
dx exp ½−ax2 þ bx� ¼ exp

�
b2

4a

� ffiffiffi
π

a

r
ðA7Þ

which can easily be shown by completing the square
followed by a variable substitution. Finally, the product
of all square root factors will cancel with the normalization
factor KN and thus the integral in (A6) is simply

I ¼ exp

�
1

2
~bTdiagðλiÞ−1 ~b

�

¼ exp

�
1

2
bTOTdiagðλiÞ−1Ob

�

¼ exp

�
1

2
bTσb

�
¼ exp

�
1

2
biσijbj

�
; ðA8Þ

where we have used that σ−1 ¼ OTdiagðλiÞO and hence
σ ¼ OTdiagðλiÞ−1O. We insert this into (A5) and conclude
that a general expectation value of a Gaussian distribution
can be calculated by taking successive derivatives of a
generating function according to

hxm1

1 xm2

2 � � � xmN
N i ¼

� ∂m1

∂bm1

1

∂m2

∂bm2

2

� � � ∂
mN

∂bmN
N

	

× exp
�
1

2
biσijbj þ biXi

�����
bi¼0

: ðA9Þ

Using (A9) we can easily evaluate the expectation
values needed in (A3). If we assume X2 ¼ X0 ¼ 0 and
X4 ¼ Y 0 ¼ 0, X1 ¼ X and X3 ¼ Y we get
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hx2i ¼ X2 þ σ11

hx4i ¼ X4 þ 6X2σ11 þ 3σ211

hx6i ¼ X6 þ 15X4σ11 þ 45X2σ211 þ 15σ311

hx3x0i ¼ 3X2σ12 þ 3σ11σ12 ðA10Þ

and so on. The final analytical expression for the horizontal beam size on the screen is

σ2x̂ ¼ σ11 þ Lð2σ12 þ Lσ22Þ þ 6K̂L½2σ213 þ 2Lσ13σ23 þ 2XYðσ13 þ Lσ23Þ
þ Y2ðσ11 þ Lσ12Þ − ðX2 − σ33 þ σ11Þðσ11 þ Lσ12Þ�
þ 3K̂2L2½12XY3σ13 þ 36σ33σ

2
13 þ 3σ11ðX4 þ Y4Þ þ 9σ11σ

2
33 − 24σ11σ

2
13 − 6σ211σ33 þ 5σ311

− 12XYσ13ðX2 − 5σ33 þ 3σ11Þ þ 6Y2ð4σ213 þ X2ð2σ33 − σ11Þ þ 3σ11σ33 − σ211Þ
þ 6X2ðσ233 − 4σ213 − σ11σ33 þ 2σ211Þ�: ðA11Þ

In the same manner we derive the analytical expressions for the vertical beam size on the screen, σ2ŷ, and correlation term,
σx̂ ŷ, as

σ2ŷ ¼ σ33 þ Lð2σ34 þ Lσ44Þ þ 6K̂L½2σ213 þ 2Lσ13σ14 þ 2XYðσ13 þ Lσ14Þ
þX2ðσ33 þ Lσ34Þ − ðY2 − σ11 þ σ33Þðσ33 þ Lσ34Þ�
þ 3K̂2L2½12X3Yσ13 þ 36σ11σ

2
13 þ 3σ33ðX4 þ Y4Þ þ 9σ211σ33 − 24σ213σ33 − 6σ11σ

2
33 þ 5σ333

−12XYσ13ðY2 − 5σ11 þ 3σ33Þ þ 6X2ð4σ213 þ Y2ð2σ11 − σ33Þ þ 3σ11σ33 − σ233Þ
þ6Y2ðσ211 − 4σ213 − σ11σ33 þ 2σ233Þ� ðA12Þ

and

σx̂ ŷ ¼ σ13 þ Lðσ14 þ σ23 þ Lσ24Þ þ 3K̂L½2σ13ðσ11 þ σ33 þ Lðσ12 þ σ34ÞÞ
þLðσ23 − σ14Þðσ11 − σ33 þ X2 − Y2Þ þ 2XYðσ11 þ σ33 þ Lðσ12 þ σ34ÞÞ�
− 3K̂2L2½3σ13ðX4 þ Y4Þ þ 6ðσ11 − σ33ÞðX3Y − XY3Þ − 18σ13X2Y2

þ24σ13ðσ11 − σ33ÞðX2 − Y2Þ þ 12XYðσ211 − 4σ213 − 2σ11σ33 þ σ233Þ
þ5σ13ð3σ211 − 4σ213 − 6σ11σ33 þ 3σ233Þ�: ðA13Þ

APPENDIX B: PARAMETRIZATION OF
TRANSFER AND BEAM MATRICES

In Ref. [16] Edwards and Teng present a rather intuitive
parametrization of coupled transfer matrices R in the
following form:

R ¼ T −1A−1OAT ; ðB1Þ

where T ; A;O are symplectic 4 × 4 matrices. In particular
they are defined in the following way:

A¼
�
A1 0

0 A2

	
with A1¼

�
1=

ffiffiffiffiffi
β1

p
0

α1=
ffiffiffiffiffi
β1

p ffiffiffiffiffi
β1

p
	

ðB2Þ

and a corresponding equation forA2. Here the parameters α
and β correspond to the conventional Twiss parameters in
the case the transfer matrix R is uncoupled. O is a matrix
that contains 2 × 2 rotation matrices with the eigentunes on
the diagonal and T is defined as follows:

T ¼
�
I cosϕ −D−1 sinϕ

D sinϕ I cosϕ

	
with D ¼

�
a b

c d

	

ðB3Þ
and detD ¼ ad − bc ¼ 1. The parameter ϕ is often termed
coupling angle and may serve as a measure of the
magnitude of the coupling.
The interpretation of (B1) is straightforward. We con-

sider a state vector ðx; x0; y; y0Þ onto which the matrix R
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operates. First the matrix T removes the coupling degrees
of freedom and A maps the remaining uncoupled state
vector into normalized phase space where the rotation
matrix propagates the mapped vector with the phase
advance corresponding to the eigentunes. After that oper-
ation the matrices A−1 maps back from normalized phase
space to uncoupled real space and T −1 maps back to
ðx; x0; y; y0Þ.
We will now use this parametrization for the transfer

matrix to find a corresponding representation of the beam
or sigma matrix. If the beam matrix is uncoupled we can
write the horizontal beam matrix σx as

σx ¼ εxBxBt
x with Bx ¼

� ffiffiffiffiffi
βx

p
0

−αx=
ffiffiffiffiffi
βx

p
1=

ffiffiffiffiffi
βx

p
	
¼A−1

x ;

ðB4Þ

where εx is the horizontal emittance of the beam and we
note that the matrix B is just the inverse of A that appeared
above in (B2). This allows us to write the horizontal beam
matrix as

σx ¼ εxA−1
x ðA−1

x Þt ¼ A−1
x

�
εx 0

0 εx

	
ðA−1

x Þt: ðB5Þ

We now generalize this representation to the coupled case
by replacing the matrix Ax in the case with uncoupled
beams by AT and ensure that the matrices with the
emittances in (B5) contain the eigenemittances on the
diagonal. Using this guideline we write the 4 × 4 beam
matrix as

σ ¼ ðATÞ−1

0
BBB@

ε1 0 0 0

0 ε1 0 0

0 0 ε2 0

0 0 0 ε2

1
CCCAððATÞ−1Þt

¼ T −1A−1

0
BBB@

ε1 0 0 0

0 ε1 0 0

0 0 ε2 0

0 0 0 ε2

1
CCCAðA−1ÞtðT −1Þt ðB6Þ

with A and T defined in (B2) and (B3), respectively. We
note that

A−1 ¼

0
BBBBBB@

ffiffiffiffiffi
βx

p
0 0 0

−αxffiffiffiffi
βx

p 1ffiffiffiffi
βx

p 0 0

0 0
ffiffiffiffiffi
βy

p
0

0 0
−αyffiffiffiffi
βy

p 1ffiffiffiffi
βx

p

1
CCCCCCA

and

T −1 ¼
�

I cosϕ D−1 sinϕ

−D sinϕ I cosϕ

�
ðB7Þ

and if we set ϕ ¼ 0 we retrieve the standard Twiss para-
metrization of the beam matrix.
Furthermore, we can simplify the representation of the

matrix D in (B3) and remove the additional constraint to
make the detD ¼ 1 by explicitly choosing a representation
that always fulfills that constraint. We notice that the
requirement that the determinant is unity makes D a
symplectic 2 × 2 matrix and we can use the conventional
parametrization of 2 × 2 transfer matrices in terms of phase
advance and Twiss parameters. We thus write

D¼
� ffiffiffi

r
p

0

−κ=
ffiffiffi
r

p
1=

ffiffiffi
r

p
	�

cosψ sinψ

− sinψ cosψ

	�
1=

ffiffiffi
r

p
0

κ=
ffiffiffi
r

p ffiffiffi
r

p
	

ðB8Þ

with parameters r; κ and ψ . Note that the parameter r
resembles the beta function, κ resembles the α function and
ψ the phase advance.
By using this parametrization forDwe have expressed T

through the coupling angle ϕ and the three parameters
r; κ;ψ for D. The matrix A depends on the four Twiss
parameters αi; βi for the eigenmodes i ¼ 1; 2. The eigene-
mittances ε1; ε2 are already obvious in (B6) and we
therefore have parametrized the beam matrix σ through
ten independent parameters that already ensure that σ is
always positive definite, which is useful in numerical fitting
problems to avoid handling of additional constraints.
Finally we note that the above parametrizations for the

transfer matrix R sigma matrix σ are consistent in the sense
that we can show that

RσRt ¼ ½T −1A−1OAT �T −1A−1EðA−1ÞtðT −1Þt
× ½T tAtOtðA−1ÞtðT −1Þt�

¼ T −1A−1OEðOÞtðA−1ÞtðT −1Þt
¼ T −1A−1EðA−1ÞtðT −1Þt
¼ σ; ðB9Þ

where we introduced the matrix E to be that containing
the eigenemittances on the diagonal in (B6). Note that
the matrices O and E are block diagonal and that the
2 × 2 blocks of E are proportional to the 2 × 2 unit matrix
whence O and E commute. Overall (B9) shows that the
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Edwards-Teng parametrization for the transfer matrices R
and the above parametrization for σ are consistent.
Moreover the parametrization for the sigma matrix is
manifestly positive definite. Note also that the parametri-
zation for the sigma matrix bears a close relation to the one
used in Ref. [7].
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