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In this paper, a detailed discussion of the rf-related beam dynamics in rf guns and accelerating cavities is
presented. Other rf-gun-related aspects such as space charge and cathode physics are not treated. An
effective start phase is introduced in order to yield a better description for the synchronous phase, the
energy gain, and the bunch compression factor in gun cavities. Energy spread and longitudinal emittance
are treated in a form applicable to guns as well as to accelerating cavities. Discussions on the transverse
emittance include the chromatic emittance variation at high emission phases and effects of field
asymmetries and combined solenoid-cavity sections.
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I. INTRODUCTION

Photocathode rf guns are the electron sources of choice
for many modern accelerators requiring high brightness
beams, such as, for example, free electron lasers. There are
two key aspects to these sources: electron generation by
means of photoemission and direct acceleration in an rf
cavity. Photoemission not only allows for the generation of
higher current densities [1] than achievable with thermionic
cathodes, but it also gives a better control over the trans-
verse and longitudinal electron pulse distribution and
dimension. Generation inside an rf cavity [2] provides
higher fields at the cathode and a higher total accelerating
voltage than a dc gun, both important aspects to control
space-charge-induced emittance growth. However, the
beam dynamics in an rf cavity is complex, and the rf fields
themselves can contribute to the emittance of the beam.
This report concentrates on rf-related dynamics; other
aspects such as space charge and cathode physics are
not discussed.
A first study of rf-related beam dynamics in rf guns has

been presented by Kim [3], and reviews and some extensions
are found in Refs. [4,5], while other publications discuss
special topics in detail, e.g., Refs. [6–8]. The following
report builds upon these earlier works and extends them in a
number of aspects. It is intended to serve as an overview,
e.g., for students as well as a reference for experts.
The beam dynamics in rf guns is characterized by two

unique characteristics: the particles start inside an rf cavity,
and the phase changes rapidly at the very beginning of the
acceleration process. In order to model the varying phase, an
effective start phase is introduced in Sec. V which is the basis

for improved relations describing the energy gain.
Discussions of the bunch compression (Sec. VI), the effect
of an elongated half-cell (Sec. VIII), and the field balance
(Sec. IX) are presented before the longitudinal dynamics is
concluded with the calculation of the induced energy spread
and the longitudinal emittance in Sec. X. The detailed
discussion of the transverse dynamics in Secs. XI–XVIII
includes a model for the chromatic emittance variation
(Sec. XIII) and different methods to correct the rf-induced
emittance in Sec. XIV. Distortions of the emittance oscil-
lations in an rf cell due to coupler asymmetries as well as due
to external solenoids are covered in Secs. XVI and XVII.
The paper concludes with a discussion of spherical aberra-
tions (Sec. XVIII) and a summary.

II. RF FIELD DESCRIPTION

Cylindrically symmetric electromagnetic fields can be
described in the form of polynomial expansions in the
radius r, which is especially useful for analytical calcu-
lations. For transverse magnetic rf modes (TM modes), the
field is expressed to third order in r as
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where Ez, Er, and Bθ are the field components in a
cylindrical coordinate system (all other components are
zero) and Ez;0; E0

z; E00
z , and E000

z describe the spatial on-axis
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dependence of the field and its first to third on-axis
derivative, respectively. The angular frequency and phase
of the wave are given by ω and ϕ, respectively, and c is the
speed of light. Noting that for the fundamental spatial
harmonics E00

z ¼ −k2Ez;0, E000 ¼ −k2E0
z, andω=c ¼ k it can

be seen that all nonlinear terms in r are zero for a pure
cosinelike on-axis field distribution.
Equation (1) can also be applied to static electric fields

by setting ω ¼ 0 and ϕ ¼ 90°. Nonlinearities in r are then
directly related to the appearance of higher derivatives of
the on-axis field.
Equation (1) complies with Maxwell’s equations except

for the condition ∇ × E ¼ − _B, which is only approxi-
mately fulfilled if a limited number of higher-order spatial
harmonics is taken into account. Without higher-order
spatial harmonics and in the limit of an infinite sum of
harmonics, Maxwell’s equations are fulfilled without
restriction. Thus, for a pure cosinelike on-axis field the
exact solution is written as

Ezðz; t;ϕÞ ¼ E0 cos kz sinðωtþ ϕÞ;
Erðz; r; t;ϕÞ ¼

r
2
E0k sin kz sinðωtþ ϕÞ;

Bθðz; r; t;ϕÞ ¼
r
2

E0

c
k cos kz cosðωtþ ϕÞ: ð2Þ

In a cavity, the electric field lines have to end
perpendicular to the cavity walls. In order to find a cavity
form which allows only the fundamental spatial harmonics
to appear, the inner surface of the cavity has to be shaped
such that it is perpendicular to the field lines as described
by Eq. (2). This condition is fulfilled for a cavity shape
following

rcðzÞ2 ¼ a2 −
4

k2
lnðsin kzÞ; ð3Þ

where rcðzÞ is the inner radius of the cylindrical cavity wall
and a is a constant [9]. Equation (3) is divergent in the
middle of the cells, i.e., at sin kz ¼ 0. Thus, no finite cavity
shape can support a pure cosinelike field. However, the
cavity shape at the ends of the cell, i.e., at the irises, has a
much stronger influence on the field near the axis than the
cavity shape in the middle of the cell. Here, Eq. (3) shows a
hyperbolic behavior, and a is identified as the radius of the
iris hole. For a simple cavity consisting of cylindrical cells
and irises of constant thickness with a half-spherical
rounding in the iris hole, Eq. (3) suggests a ratio of iris
hole radius to iris thickness of one as best fit near to
kz ¼ π=2. In the following, a linear field containing only
the fundamental spatial harmonics is considered first.
Higher-order spatial harmonics are discussed separately.

III. LONGITUDINAL SINGLE
PARTICLE DYNAMICS

A peculiarity of rf guns is that the electrons are generated
inside a cavity. The cavity field is thus described by Eq. (2)
with the cathode being located at z ¼ 0. For electrons
starting at t ¼ 0, the longitudinal field equation yields the
highest gradient at the cathode for a start phase ϕ0 of 90°;
i.e., ϕ0 ¼ 0° marks the phase where the field on the cathode
changes its sign. This is the commonly used phase definition
for rf guns, while for standard accelerating cavities the on-
crest phase, i.e., the phase which yields the maximum energy
gain, is often defined as the zero phase.
The first equation of Eqs. (2) can be rewritten in the form

Ezðz; tÞ ¼
1

2
E0½sinðωt − kzþ ϕ0Þ þ sinðωtþ kzþ ϕ0Þ�:

ð4Þ
The position of a particle traveling with the speed of light
through the cavity is given by z ¼ z0 þ ct. Since ω and k
are related via ω ¼ ck, the term ωt − kz introduces a
variation of the accelerating phase at low particle velocities
but becomes constant when the particles reach relativistic
energies. This constant phase is called the synchronous
phase. For relativistic particles, the second term in Eq. (4)
describes the variation of the field amplitude inside a cell.
It becomes constant (modulo 2π) when equivalent positions
(i.e., separated by λ=2) are compared. (The periodicity is
λ=2 because both position and time change accordingly.)
By redefining the phase of the rf field as

ϕðz; tÞ ¼ ωt − kzþ ϕ0; ð5Þ
Eq. (4) is expressed as

Ezðz;ϕÞ ¼
1

2
E0½sinϕþ sinðϕþ 2kzÞ�: ð6Þ

Since a standing wave can be described as a superposition
of a forward and a backward traveling wave, the two sine
terms in Eq. (6) can be understood as these two waves. A
particle traveling synchronously with the forward wave at
the speed of light experiences a constant force from the
forward wave but an oscillating force from the backward
wave. The doubling of the oscillating frequency of the
backward wave as seen by the particle is the result of the
counterpropagation of the particle and wave. This second
term does not appear in a traveling wave structure. As a basis
for the following discussions, analytic approximations for
the energy gain, the variation of the phase, and the bunch
compression factor in the rf gun cavity will now be derived.

IV. ENERGY GAIN

The variation of the energy introduced by the rf field in
terms of γ, i.e., in terms of the ratio of the particle energy to
its energy at rest, is given by
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dγ
dz

¼ eE0

2mec2
½sinϕþ sinðϕþ 2kzÞ�; ð7Þ

where e is the elementary charge andme is the electron rest
mass. In an rf gun, the phase depends on the position, but
we will follow an approach where the total energy gain is
determined as a sum of contributions with a piecewise
constant phase. By defining

α ¼ eE0

2mec2k
; ð8Þ

the energy gain for a constant phase in a section of length
Δz ¼ z2 − z1 is described as

Δγ ¼
�
αkΔz sinϕ−

1

2
½cosðϕþ 2kz2Þ − cosðϕþ 2kz1Þ�

�
;

ð9Þ
or for the first section

γðzÞ ¼ 1þ α

�
kz sinϕþ 1

2
½cosϕ − cosðϕþ 2kzÞ�

�
;

ð10Þ
where the integration constant has been chosen such that
γ ¼ 1 is fulfilled for all phases at z ¼ 0.
The second term in Eq. (9) is zero when the energy gain

for a complete cell Δz ¼ λ=2 is considered, and thus the
energy gain is maximal at ϕ ¼ 90° for full cells. In contrast,
at the end of the half-cell where kz ¼ π=2, setting
dγ=dϕ ¼ 0 in Eq. (10) yields a maximum energy gain
when tanϕ ¼ π=2.
Noting that cosðϕþ2kzÞ¼ cos2kzcosϕ− sin2kzsinϕ≅

cosϕ−2kzsinϕ, an approximation for small z is found as

~γðzÞ ¼ 1þ 2kzα sinϕ: ð11Þ
The dimensionless parameter α represents the strength of
the accelerating field [3]. To define α, the average accel-
erating field E0=2 is employed in the case of a standing
wave field (because 1

π

R
π
0 sin2φdφ ¼ 1

2
), while for a traveling

wave the amplitude E0 would be used, and is understood as
the normalized vector potential A of a wave: α ¼ eA=mec.
For α ≥ 1, the particle dynamics shows relativistic effects
within one period of the wave. Describing the dynamics in
terms of α allows us to generalize the results to a large
extent. It has to be noted, however, that important
differences exist in the dynamics in standing waves as
compared to traveling waves. The parameter α refers to the
average gradient, i.e., half the amplitude in the case of
standing waves. Thus, the mean energy gain (for example)
is described for both standing wave and traveling wave
fields by α. But for the dynamics near the cathode a factor
of 2 arises in Eq. (11), effectively doubling α near the

cathode for a standing wave field, which has important
consequences as will be seen below.
Most guns operate nowadays at L-band (1.3 GHz)

or S-band (3 GHz) frequencies, with gradients of
40–60 MV=m (L band) and 100–120 MV=m (S band),
respectively. Hence, α is typically 1.5–2.0. It is instructive
to make a rough estimate of the energy gain in the vicinity
of the cathode in the gun. With α ¼ 2 and sinϕ ¼ 0.5, we
find that the electrons already reach 90% of the velocity of
light after a distance of about 0.2λ, i.e., within the half-cell
of the cavity. Therefore, the phase slippage essentially takes
place in the half-cell in close vicinity to the cathode. This
justifies using the same phase, i.e., the synchronous phase,
for all cells but the half-cell. In order to take the phase
slippage in the half-cell into account, the acceleration will
be described in the following by a constant effective phase
ϕeff ¼ ϕ0 þ Δϕwith ϕ0 being the start phase andΔϕ being
a yet to be determined phase shift.

V. PHASE VARIATION AND
SYNCHRONOUS PHASE

We use Eq. (11) in order to find an approximation
for the variation of the phase ϕ. With ω ¼ ck and
dt ¼ 1

cβ dz ¼ γ

c
ffiffiffiffiffiffiffi
γ2−1

p dz, Eq. (5) is rewritten as

ϕðzÞ ¼ k
Z

z

0

�
γffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p − 1

�
dzþ ϕ0; ð12Þ

which can be integrated after substituting Eq. (11) for γ
(with ϕ ¼ ϕeff ) to yield

ϕð~γÞ ¼ 1

2α sinϕeff

� ffiffiffiffiffiffiffiffiffiffiffiffi
~γ2 − 1

q
− ð~γ − 1Þ

�
þ ϕ0: ð13Þ

The asymptotic value of the phase for ~γ ≫ 1, i.e., the
synchronous phase, is found from Eq. (13) to be

ϕsync ¼
1

2α sinϕeff
þ ϕ0: ð14Þ

VI. BUNCH COMPRESSION

The synchronous phase depends on the start phase in a
nonlinear manner. If we observe two particles, representing
the head and the tail of an electron bunch and therefore
starting at slightly different phases ϕ0 and ϕ0 þ Δϕ0, we
will find the phase difference changing as the particles
travel through the cavity. The difference of the synchronous
phases of these two particles divided by the difference of
the start phases describes the ratio of the final temporal
distance to the initial temporal difference, a quantity
referred to as the bunch compression factor. (The bunch
compression factor can also be understood as a compres-
sion factor for an incoming timing or phase jitter.) It is
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calculated by the derivative of the synchronous phase with
respect to the start phase as

Δϕsync

Δϕ0

¼ 1 −
cosϕeff

2αsin2ϕeff
: ð15Þ

Figure 1 illustrates the acceleration process of two
electrons in an arbitrary field by plotting position versus
time z − t. The electrons start at the same position but with
a temporal differenceΔt. Figure 1 shows the case of a static
field; i.e., the second (tail) electron is accelerated in the
sameway as the first (head) electron and its trajectory in the
z − t diagram is only a parallel shifted copy of the trajectory
of the head electron. At any time, the spatial bunch length is
given by the difference of the positions of the two electrons.
The distance is very small at the time of emission of
the second electron, in nonrelativistic approximationΔz0 ¼
e

2me
Eðϕ0ÞΔt2, where Eðϕ0Þ represents the longitudinal

gradient at the emission phase. However, since the particles
reach relativistic energies, the derivative of the trajectories
in the z − t diagram approaches the speed of light and the
bunch length becomes Δz ¼ cΔt. Any difference in the
acceleration process of the two particles will lead to a
variation of the final bunch length. With a stronger
acceleration of the tail electron (higher phase), it will reach
the speed of light earlier, and hence the bunch length will
become shorter, while a reduced acceleration will lead to
a longer bunch. While the temporal extension of the bunch
is increased or decreased due to the phase difference of
the acceleration process, the bunch starts spatially in any
case much shorter than the final bunch length, and the

differences in the acceleration lead only to a suppression or
promotion of the “natural” bunch expansion.
We still have to find a relation to determine the effective

phase ϕeff . In order to do so, we consider the bunch
compression process for different start phases in an rf gun
for a short bunch. Short means that the bunch extends only
over a few degrees in the rf phase. When the start phase is
close to zero, the phase slips considerably when the
electrons are still at low energy, i.e., in the half-cell of
the cavity. The synchronous phase will, however, stay
below 90°. A particle starting in the tail of the bunch will
hence travel from the cathode up to the end of the cavity on
a higher phase than a particle in the head of the bunch; i.e.,
it will be more rapidly accelerated, leading to a significant
bunch compression. If the start phase, on the other hand,
gets closer to 90°, the synchronous phase will become
larger than 90°, the tail particle will receive a smaller
acceleration, and the bunch will be decompressed. In
between must be a phase where the bunch compression
factor is equal to one. This phase is close to the case where
the synchronous phase is 90° as will be shown below. From
Eq. (15), the condition of a unit bunch compression factor
is given as

Δϕsync

Δϕ0

≔ 1; −
cosϕeff

2αsin2ϕeff
¼ 0; ð16Þ

which is achieved with ϕeff ¼ π
2
. Setting ϕeff ¼ ϕsync ¼ π

2

into Eq. (14) yields the start phase for which the synchro-
nous phase will become π

2
:

ϕ0 ¼
π

2
−

1

2α
: ð17Þ

The definition of the effective phase ϕeff ¼ ϕ0 þ Δϕ leads
to the generalized conclusion

ϕeff ¼ ϕ0 þ
1

2α
: ð18Þ

The beauty of the derivation above is that it leads to a
formulation of the effective start phase. The effective start
phase is an important parameter for the description of the
beam dynamics in the half-cell of an rf gun. Historically,
the longitudinal particle dynamics in standard cavity
sections has been studied first by Slater [10], and it is
found in different context in many other publications
[6,11,12]. The approach in these publications, which can
also be applied to rf guns, differs from the derivation above
and leads to more accurate relations for the synchronous
phase and the bunch compression factor. The result turns
out to be independent of how the acceleration of the
particles develops in detail; it depends only on the start
phase and on α.
Differential forms of Eq. (11), i.e., d~γdz, and Eq. (12), i.e.,

dϕ
dz, can be directly combined to yield

z

ttime

noitisop

z = c
.

t

t

z = c t

z0

FIG. 1. Schematic illustration of the acceleration of two
electrons in a static field. The spatial distance of the electrons
expands during the acceleration and approaches the value
Δz ¼ cΔt.
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k

�
~γffiffiffiffiffiffiffiffiffiffiffiffi

~γ2 − 1
p − 1

�
d~γ ¼ 2kα sinϕdϕ: ð19Þ

Equation (19) can be integrated on both sides. Addition of
an integration constant leads in the limit ~γ ≫ 1 to a
synchronous phase and a bunch compression factor of
the form

cosϕsync ¼ cosϕ0 −
1

2α
;

Δϕsync

Δϕ0

¼ sinϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðcosϕ0 − 1

2αÞ2
q

¼ sinϕ0

sinϕsync
: ð20Þ

Note that the term 1
2α relates to the acceleration with the

peak gradient of a standing wave at the cathode
[cf. Eq. (11)] while only 1

α would appear if the average
gradient (or a traveling wave) were assumed.
From Eq. (20), it follows that a bunch compression factor

of 1 is reached at a synchronous phase of cosϕsync ¼ − 1
4α,

which converges to 90° with large α as assumed above.

VII. COMPARISON WITH
NUMERICAL RESULTS

In Figs. 2–5, analytical results for the synchronous
phase, the bunch compression factor, and the energy gain
in the half- and following full cell of an rf gun are compared
to exact numerical integration results. At high start phases,
the condition ~γ ≫ 1 which is used for deriving the
analytical results is not fulfilled (Fig. 5); thus, the analytical
predictions deviate considerably from the numerical
results, while a good agreement is achieved at lower start

phases. The improved relations for the synchronous phase
and the bunch compression factor [Eq. (20)] yield better
results than the relations Eqs. (14) and (15), especially at
start phases below ≈20°.
To determine the energy gain in the half-cell of the gun,

the effective phase ϕeff is inserted into Eq. (10). The
comparison of the analytical result with the exact solution
in Fig. 4 reveals a good agreement, except for phases below
≈20°, where the phase shift is underestimated. The energy
gain in the full cells is determined by the synchronous
phase [Eq. (20)] introduced into Eq. (9). Figure 5 shows
the total energy of a 1 1

2
cell cavity. As consequence of the

reduced precision of the analytical synchronous phase, the
energy gain at high start phases is overestimated.
Note that the maximum energy gain in the half-cell is

found from Eq. (10) at an effective phase of tanϕeff ¼ π=2
corresponding to a start phase of ≈42°, while the maximum
energy gain in the full cell is reached at a start phase of

0

50

100

150

200

0 20 40 60 80 100 120 140 160

esahp suonorhcnys
cnys

]eerged[

start phase 0 [degree]

FIG. 2. Synchronous phase versus start phase for α ¼ 1.8. The
solid line shows the exact, numerical solution. The broken line
corresponds to Eq. (20), and the dotted line follows Eq. (14). Both
analytical approximations deviate from the exact solution at high
phases [Eq. (20) has no solution for ϕ0 > 136°], because the
condition ~γ ≫ 1 is not fulfilled.
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0.5
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0 20 40 60 80 100 120 140 160

rotcaf noisserp
moc hcnub

cnys
/

0

start phase 0 [degree]

FIG. 3. Bunch compression factor versus start phase for
α ¼ 1.8. The solid line shows the exact, numerical solution,
the dashed line follows Eq. (20), and the dotted line corresponds
to Eq. (15).
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0 20 40 60 80 100 120 140

ygrene

start phase 0 [degree]

FIG. 4. Energy gain in the half-cell of an rf gun cavity versus
start phase for α ¼ 1.8. The solid line shows the result of a
numerical integration, while the dashed line corresponds to
Eq. (10). The effective phase Eq. (18) has been used. The peak
appearing in the numerical result at≈130° will be discussed below.
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π
2
− 1

2α ¼∧ 74°. The maximum energy gain for the 1 1
2
cell

cavity is hence found at ≈60°. Since the phase is practically
constant already at the exit of the half-cell, an extension to
the case of cavities with more than one full cell is
straightforward. Each full cell contributes to the energy
in the same way as the first full cell. Hence, the phase of
maximum energy gain shifts towards 74°.
High emission phases (>90°) are, in general, not well

suited for the generation of high-quality beams. From the
operational point of view, the beam dynamics at the high
emission phases is nevertheless of great importance,
because phenomena such as electron back bombardment,
dark current emission, and multipacting are related to the
dynamics at high phases.
The decreasing energy gain at high start phases indicates

that the electrons slip onto a decelerating phase and thus
lose energy. Eventually, the electrons are stopped and are
accelerated back toward the cathode. While at very high
start phases the electrons simply turn around and hit the
cathode, electrons can move on chaotic trajectories in an
intermediate phase range. Here the electrons move back
and forth in the gun cavity several times before they either
hit the cathode or leave the cavity in forward direction.
(This corresponds to the divergent behavior of the syn-
chronous phase and the bunch compression factor.) The
peaks shown in Figs. 4 and 5 are related to such electron
trajectories. Figure 6 corresponds to Fig. 5 but concentrates
on the high emission phases. The first peak at about 125° is
related to electron trajectories with two turning points
within the full cell of the cavity. The second peak at about
128° is related to trajectories with one turning point in the
beginning of the full cell and one in the half-cell, respec-
tively. With increasing phase, the turning points shift
towards the cathode, resulting in an increasing energy
gain. At 128.6°, the second turning point reaches the

cathode plane, so that no electrons can be emitted at higher
phases. The lines above the lower and below the upper peak
reveal self-similar patterns, when plotted with higher
resolution, corresponding to electron trajectories with an
increasing number of turning points. The phase range in
which this chaotic behavior is found decreases with
increasing α, while the phase range in which electrons
are accelerated in an ordered fashion increases.
While high-energy electrons hitting the cathode primarily

heat it [13] by penetrating deep into the cathode body, low-
energy electrons will deposit a large fraction of their energy
close to the cathode surface. Besides heating of the cathode,
surface-related phenomena such as desorption of surface
adsorbates leading to a cleaning of the cathode surface can
occur [14]. Another effect is the emission of secondary
electrons [15]. The secondary emission yield depends on the
energy of the impinging electrons and on the material
properties. The physics of photoemission and secondary
emission show great similarities, and photocathodes with
high quantum efficiency are, in general, found to also be
good secondary emitters. Thus, a maximum secondary
emission yield above ten secondary electrons per incoming
electron for energies in the range of a few keV is not unusual
for semiconductor cathodes, while the secondary emission
yield of metals typically only slightly exceeds 1 at primary
electron energies of a few hundred eV.
The electrons starting somewhat above 128.6° (for

example, dark current electrons) hit the cathode with low
enough energies to produce secondary electrons with high
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0 20 40 60 80 100 120 140

ygrene

start phase 0 [degree]

FIG. 5. Energy gain for a 1 1
2
cell rf gun cavity versus start phase

for α ¼ 1.8. The solid line shows the result of a numerical
integration. The analytical result, shown as a broken line, is the
sum of the energy gain in the half-cell as in Fig. 4 and the energy
gain in the full cell according to Eq. (9), where the synchronous
phase [Eq. (20)] has been introduced. The peaks appearing in the
numerical result at ≈130° will be discussed below.
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FIG. 6. Energy of electrons leaving a 1 1
2
cell rf gun cavity for

start phases between 120° and 130°. Self-similar structures reveal
a chaotic behavior of the electron trajectories.
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efficiency. In addition, the secondary electrons are accel-
erated, because the phase corresponds to an accelerating
phase at this point in time. They will either leave the gun
cavity or move again back to the cathode to produce even
more secondary electrons. This process can appear in a
resonant fashion with an exponentially increasing number
of involved electrons, if both the energy of the impinging
electrons and the start phase of the created secondary
electrons match, in which case we talk about multipacting.
Multipacting occurs predominantly at low rf field levels, for
example, during the rising or falling edge of a pulsed rf
field, and is enhanced by external solenoid fields which act
as magnetic mirrors for low-energy electrons [16].

VIII. ELONGATION OF THE HALF-CELL

Many but not all rf gun cavities have an elongated half-
cell. In general, this is the result of a sophisticated
numerical optimization procedure which includes space
charge forces [17]. The modifications of the beam dynam-
ics caused by an elongated half-cell can hence not be
expressed in all details in terms of analytical expressions.
In the following, the effect on the phase-dependent energy
gain will be discussed with the aim to gain a general
understanding of the underlying dynamics. We can assume
that the longitudinal component of the electric field in the
cavity can be described by Eq. (1) but with different wave
numbers for the half- and the following full cells. This leads
to a discontinuity in the derivative of the field at the first
zero crossing which can, however, be ignored at this point.
Denoting all quantities in the half-cell with a tilde, the
wavelength in the half-cell is defined as ~λ ¼ λð1þ εÞ,
where λ is the wavelength in vacuum and in the full
cells and ε is a parameter to describe the elongation of the
half-cell. We find ~k reduced and ~α increased compared to
the nonelongated case, which results from the fact that
the acceleration in the half-cell takes place over a longer
distance. Noting that at the exit of the half-cell ~k ~z ¼
kz ¼ π

2
, the energy gain follows as

γðzÞ ¼ 1þ ~α

�
kz sin ~ϕeff þ

1

2
½cos ~ϕeff − cosð ~ϕeff þ 2kzÞ�

�

ð21Þ
for the half-cell and

Δγ ¼ α

�
kΔz sin ~ϕ −

1

2
½cosð ~ϕþ 2kz2Þ − cosð ~ϕþ 2kz1Þ�

�

ð22Þ
for the full cells. In the case of an elongated half-cell, the
synchronous phase is not defined, since due to the mis-
match of wavelength and frequency the phase can never
become constant. In order to estimate the phase shift
introduced by the additional cell length, it can be treated

as an additional length which the electrons have to travel
at the speed of light. The phase shift is hence given by
Δϕel ¼ 2π

4
ε, where the division by 4 takes into account that

only a quarter of a period is elongated. Since the accel-
eration close to the cathode is not changed significantly by
the elongation of the half-cell, the phase in the full cells can
be estimated as

~ϕ ¼ 1

2α sinϕeff
þ ϕ0 − Δϕel: ð23Þ

Since the largest phase slippage takes place near the cathode,
where the acceleration appears to be not significantly altered
by the elongated half-cell, the effective phase may be
introduced into Eq. (21) as ϕeff ¼ ϕ0 þ 1

2α [Eq. (18)] as
in the previous section. This approach underestimates the
phase shift by ignoring the effect of the elongation on the
effective phase completely. If we apply the arguments made
before concerning the bunch compression factor to Eq. (23)
to find a new effective phase, we find

~ϕeff ¼ ϕ0 þ
1

2α
− Δϕel: ð24Þ

Equation (24) ignores that the frequency is not matched to
the elongated cell length and hence overestimates the
introduced phase shift. A plausible but not stringent choice
is the average of Eqs. (18) and (24), which results in a phase
shift of − Δϕel

2
and which indeed gives a good match to

numerical results as shown in Figs. 7 and 8.
Comparing the results for the elongated half-cell with

Figs. 4 and 5, we can conclude that an elongated half-cell
results in an increased energy gain in the half-cell and in a
phase shift towards lower start phases. Since the phase shift
has a stronger effect in the full cell than in the half-cell, the
phases of maximum energy gain in the half- and the full
cells shift towards each other, so that the energy gain is
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FIG. 7. Energy gain in an elongated half-cell versus start phase,
α ¼ 1.8; ε ¼ 0.2. The dashed line shows the analytical result
[Eq. (21) with ~ϕeff ¼ ϕ0 þ 1

2α −
Δϕel
2
], while the exact solution is

shown as a solid line.
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further optimized. Note, however, that, while the total
energy gain is increased, the gradient on the cathode during
emission is reduced due to the lower start phases.

IX. FIELD BALANCE IN THE
RF GUN CAVITY

The field profile defined in Eq. (1) yields the same field
amplitude in all cells of the rf gun. In practice, it is,
however, possible to adjust the field amplitude in each cell
and, thus, the field balance defined as the ratio of the
amplitude in the half-cell to the amplitude in the first full
cell Eh=Ef during the tuning of the cavity. In order to cope
with the space charge effects in the half-cell, one might
want to increase the field in the half-cell at the expense of
the field in the full cell. As in the case of the elongated
half-cell, numerical optimization procedures are required
if space charge effects are included [18]. Since we have
described the total energy gain of the rf gun as the sum of the
energy gained in the individual cells, the field flatness can be
included in our considerations if we allow for different values
of α in the equations describing the energy gain.
The phase difference between start phase ϕ0 and effective

phase ϕeff becomes smaller with increasing α in the half-cell
[Eq. (18)], and hence the maximum energy gain in the
half-cell, which occurs at tanϕeff ¼ π=2, shifts towards
higher start phases. The synchronous phase, i.e., the phase
in the full cells, shifts for phases around ϕeff ¼ 90° with the
same functional dependence as the effective phase itself
[Eq. (14)]. Hence, the maximum energy gain in the full cells
shifts by the same amount as in the half-cell towards higher
start phases.
Both an elongated half-cell and a field balance larger

than one lead to an increased energy gain in the half-cell.
While the elongated half-cell shifts the phase of maximum
energy gain towards lower phases, the phase of maximum

energy gain is shifted with an increasing field balance
toward higher phases.

X. RF-INDUCED ENERGY SPREAD
AND LONGITUDINAL EMITTANCE

The development of the beam parameters does not stop
at the exit of the rf gun. It is therefore useful to generalize a
little before calculating the rf-induced energy spread and
longitudinal emittance. We recall Eq. (9):

Δγ ¼
�
αkΔz sinϕ−

1

2
½cosðϕþ 2kz2Þ − cosðϕþ 2kz1Þ�

�
;

ð25Þ

which will be multiplied by the rest energy in the following
to obtain practical units. We are interested in the total
energy that a particle gains in a complete rf cell and set
z2 ¼ z1 þ λ

2
, i.e., 2kz2 ¼ 2kz1 þ 2π and kΔz ¼ π. The

oscillating terms yield zero; i.e., the coupling of the
electrons to the backward propagating wave in a standing
wave structure yields no net energy gain (in contrast to the
half-cell of an rf gun).
It is straightforward to extend the field description of

Eq. (1) to higher spatial harmonics. As a result, additional
trigonometric terms with a phase given by ϕ − ðn − 1Þkz
for the forward wave and ϕþ ðnþ 1Þkz for the backward
wave with n being the harmonics number will appear. In the
integral over a complete cell, these terms all yield zero;
thus, only the fundamental harmonics contributes to the
energy gain in a cavity. Note, however, that the amplitude
of the fundamental harmonics is, in general, larger than the
peak field (sum of all harmonics considering position and
phase) if higher-order spatial harmonics are significant.
The kinetic energy gain of a chain of cells is given as

ΔE ¼ mec2π
X

αi sinϕi: ð26Þ

The superposition of sine waves (of equal wavelength)
leads again to a sinelike function, which can be written in
terms of an energy amplitude Ê and a phase ϕ as

ΔE ¼ Ê sinϕ: ð27Þ

Equation (27) determines the energy spread and the
longitudinal emittance of the beam. Since the energy spread
depends on the weighted sum phase ϕ only, it appears that
the phase in the rf gun can be chosen without consideration
of the energy spread, because the induced energy spread
can be compensated in the subsequent rf sections (with the
exception of the case where the beam is used directly after
the gun). This argument is not quite true, however, due to
the dependence of the bunch length on the phase, as will be
seen below.
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FIG. 8. Energy gain of a 1 1
2
cell rf gun cavity with elongated

half-cell versus start phase. The analytical result (dashed line) is
the sum of the energy gain in the half-cell (as in Fig. 7) and the
energy gain in the full cell according to Eq. (22), where a phase
according to Eq. (23) has been introduced. The exact solution is
shown as a solid line for comparison.
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It is instructive to expand Eq. (27) in a Taylor series as

ΔE ¼ Ê

�
sinϕþ cosϕΔϕ −

sinϕ
2

Δϕ2 þ � � �
�
: ð28Þ

The first term in the series yields to leading order the
average energy gain, the second term yields the linearly
correlated energy spread, and the third term is the first
contribution to the nonlinear energy spread and the longi-
tudinal emittance. Higher-order terms can be ignored as
long as the bunch length does not get too long.
In the following, a bunch of uniform current or line

charge density ρwithin the phase interval ½−ϕm;ϕm�will be
considered. A normalized distribution simplifies the deri-
vations; thus,

ρ ¼
� 1

2ϕm
for − ϕm < ϕ < ϕm;

0 elsewhere:
ð29Þ

For a uniform distribution, the ratio of the half-width ϕm to
the rms width σϕ is given by ϕm ¼ ffiffiffi

3
p

σϕ. A phase interval
Δϕ translates into a spatial interval Δz by the wave number
as Δϕ ¼ kΔz, and thus ϕm ¼ ffiffiffi

3
p

kσz.
Odd terms in Δϕ in the Taylor series do not contribute to

the average energy or the longitudinal emittance, while
even terms do. (This is not the case if an asymmetric
particle distribution is considered.) The contribution of the
second-order term to the average energy is small and can,
in general, be ignored but needs to be taken into account in
the calculation of the longitudinal emittance. The average
energy gain of a bunch is hence found as

ΔĒ ¼
Z

ϕm

−ϕm

ΔEρdΔϕ ¼ Ê sinϕ

�
1 −

1

6
ϕ2
m

�

¼ Ê sinϕ

�
1 −

1

2
k2σ2z

�
: ð30Þ

The calculation of the rms value of the nonlinear energy
spread can be facilitated by subtracting Ê sinϕ from
Eqs. (28) and (30). In addition, the linearly correlated term
can be taken out of Eq. (28). The rms value of the nonlinear
energy spread is thus found as

ΔEnonlin
rms ¼ Ê sinϕ

�Z
ϕm

−ϕm

�
1

2
Δϕ2

�
2

ρdΔϕ −
�
1

6
ϕ2
m

�
2
�
1=2

;

ð31Þ
which results in

ΔEnonlin
rms ¼ 1

3
ffiffiffi
5

p Ê sinðϕÞϕ2
m ¼ 1ffiffiffi

5
p Ê sinðϕÞk2σ2z : ð32Þ

The longitudinal emittance is found by multiplying Eq. (32)
with the rms bunch length:

Δεrfz ¼ 1ffiffiffi
5

p Ê sinðϕÞk2σ3z : ð33Þ

Equivalent equations can be derived for various bunch
forms. They will always show a scaling as Ê sinðϕÞk2σ3z but
with a different prefactor. A Gaussian particle distribution
leads, for example, to a prefactor 1=

ffiffiffi
2

p
. The formulas

derived in this section can be applied to beam line sections
with a constant bunch length. Since the average energy
gain [Eq. (30)] and the longitudinal emittance [Eq. (33)]
both scale with Ê sinϕ, the induced longitudinal emittance
depends directly on the required energy gain of that section
but not on the phase ϕ. Within the limits of the available rf
voltage, the linearly correlated energy spread is hence an
independent parameter.
It has been pointed out that neither the backward

propagating wave nor higher spatial harmonics contribute
to the net energy gain over a complete cavity cell. The
results of this section are hence applicable to all cavities
including traveling wave cavities. This changes, however, if
cavities with different rf frequencies need to be taken into
account. Higher harmonic cavities allow the control of
the longitudinal emittance by decelerating the bunch in the
higher harmonic system, so that the nonlinear terms in the
Taylor series of the two systems cancel [19–21]. Since two
rf systems have four free parameters, namely, two voltages
and two phases, it is possible to set terms of up to third
order in Δϕ to any desired value. This is possible not only
for the rf-induced nonlinearities in the longitudinal phase
space but also for correlated contributions of other sources,
like wake fields or the space charge field.
Before closing this section, Eq. (33) shall be applied to

an rf gun cavity. This implies that a sinelike dependence
of the energy gain as a function of the rf phase is assumed
within the phase interval occupied by the bunch, a
sufficient approximation if the bunch length is not too
long. Although the Taylor expansions of Eqs. (10) and (9)
yield a better description of the local dependence, other
factors are more important. The condition of a constant
bunch length is, for example, not fulfilled in the half-cell of
the gun cavity, and the bunch compression [Eq. (20)] leads
in addition to a small distortion of the bunch form, so that
even if a uniform bunch is started at the cathode a slightly
asymmetric bunch form appears at the exit of the cavity.
Note that for any functional dependence of Eðϕ0Þ basic
properties remain unchanged; i.e., the maximum of the
energy gain coincides with the zero crossing of the
correlated energy spread. Space charge and wake fields
modify this, because a dependence on the local position in
the bunch is introduced. Another factor is the variation of
the correlated energy spread and longitudinal emittance due
to velocity differences. Velocity differences lead to varia-
tions of the longitudinal distribution and depend only to
first order linearly on the energy spread. This is discussed in
Ref. [21] but requires more study.
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The comparison of Eq. (33) with numerical results
shown in Fig. 9 reveal a reasonable agreement. The basis
for this figure is an energy gain calculated in correspon-
dence to Fig. 5 (analytical result, α ¼ 1.8), which replaces
the factor Ê sinðϕÞ, and a bunch length calculated as

σz ¼ cσt
Δϕsync

Δϕ0
. For the numerical simulation, a uniform

bunch of σt ¼ 10 ps has been tracked with the program
ASTRA [22] through an rf gun with a field profile
corresponding to Eq. (2) (operating frequency 1.3 GHz,
E0 ¼ 50 MV=m, α ¼ 1.8). For shorter emission times than
used in this example, the model tends to underestimate the
emittance somewhat stronger. The drop of the longitudinal
emittance (numerical result) at the right side of the plot is
related to the aforementioned variation of the emittance due
to velocity differences. (An equivalent effect for the trans-
verse plane is discussed in Sec. XIII.) While the energy
gain in the plotted phase interval is roughly constant, the
longitudinal emittance varies in accordance to the bunch
length as described by Eq. (20). Thus, if only rf effects are
considered, lower start phases allow generation of shorter
bunches with smaller longitudinal emittance.

XI. RF FOCUSING IN STANDARD CAVITIES
AND RF GUNS

For a particle traveling parallel to the z axis ðβ ¼ βzÞ,
the radial Lorentz force is given as

Fr ¼ eðEr − βcBθÞ: ð34Þ

Including Eq. (2) into Eq. (34) leads for β ¼ 1 to

Fr ¼ −
re
2
E0k cosð2kzþ ϕÞ; ð35Þ

from which the variation of the radial momentum
follows as

Δpr ¼
Z

Frdt ¼
Z

Fr

c
dz: ð36Þ

While the longitudinal dynamics can be treated to a large
extent in terms of the normalized vector potential α
and thus independent of the rf frequency, the accelerating
field appears without relation to the rf wavelength in the
transverse dynamics. Treating the radius as constant and
introducing an integration constant such that Δpr ¼ 0 is
fulfilled at the entrance of the cavity yields

Δpr ¼ −
re
4c

E0 sinð2kzþ ϕÞ − re
4c

E0 sinϕ: ð37Þ

In the literature, the integration constant is sometimes
referred to as a fringe field effect, which is somewhat
misleading. Here a field as described by Eq. (2) is assumed,
i.e., without any additional fringe field. The field in the
entrance and exit cell of a real cavity has additional field
components due to the extension of the field into the beam
tube, which may modify the behavior when compared to
the approach discussed here.
The integration constant describes an average radial

momentum which the particle achieves during the passage
through the cavity. Only in the case of a constant radius,
i.e., for sufficiently high particle energies, is Δpr ¼ 0 also
fulfilled at the exit of the cavity. In all other cases, since the
oscillating term in Eq. (37) leads to first order to no net
momentum transfer, the particle motion inside the cavity
can be described by an angular kick of

Δr0 ¼ Δpr

p̄z
¼ ∓ r

p̄z

eE0

4c
sinϕ ð38Þ

at the entrance and the exit of the cavity, where for r the
values at the respective positions are to be taken, while p̄z is
the average momentum in the rf cell. For phases on which
the particle is accelerated, the entrance kick is directed
inward (focusing) and the exit kick is directed outward
(defocusing). For lower particle energies, Eq. (38) gives
hence a net focusing action, which is not related to the
momentum gain but to the change of the transverse particle
position, equivalent to the case of a doublet focusing. This
focusing action has to be clearly distinguished from the
damping due to the momentum gain.
It is tempting to include the variation of the particle

momentum into Eq. (38), i.e., to set instead of the average
momentum p̄z the momentum at the entrance and the exit
of the cavity. In this case, the reduction of the initial angle
by the acceleration (adiabatic damping) should also be
taken into account. Note, however, that a constant radius is
assumed for the integration of Eq. (36); thus, the solution is
anyhow limited to small variations of the beam radius.
Therefore it is not a priori clear that these attempts lead to a
better description of the particle dynamics.
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FIG. 9. Longitudinal emittance as a function of the start phase
for a 1 1

2
cell rf gun; solid line, numerical result; broken line,

analytical result. For details, see the text.
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The oscillating term in Eq. (35) yields only to first order
a vanishing net momentum gain. In order to derive a
second-order correction, we assume that the average radius
and the longitudinal momentum over one period stay
constant and calculate the oscillating particle trajectory as

Δr0osc ¼ −
r
p̄z

eE0

4c
sinð2kzþ ϕÞ;

Δrosc ¼
r
p̄z

eE0

8ck
cosð2kzþ ϕÞ: ð39Þ

The corrected trajectory rðzÞ ¼ rþ Δrosc can now be
inserted into Eq. (36) to calculate an average force over
one rf cell as

Fpon ¼
2

λ

Z
λ=4

−λ=4
−
eE0k
2

r

�
1þ eE0

8p̄zck
cosð2kzþ ϕÞ

�

× cosð2kzþ ϕÞdz ¼ −
e2E2

0

32p̄zc
r: ð40Þ

Thus, an average focusing force is acting on the particles.
In the case of on-crest acceleration, for a short cavity this
average or ponderomotive force yields only a small
correction of the focusing characteristics; it becomes,
however, the dominant term for long cavities. In addition,
it is the only term present when the bunch is accelerated at
the zero crossing of the rf field.
Before turning to rf guns, the results should be gener-

alized somewhat further. So far, a longitudinal electric field
consisting only of the fundamental spatial harmonics was
assumed, which is a good description for most standing
wave pi-mode structures. The resulting transverse focusing
force [Eq. (35)] is related to the backward traveling wave,
while the components related to the forward traveling wave
cancel. This changes if spatial harmonics are taken into
account, which is particularly important for traveling wave
structures, where the backward traveling wave is missing.
Since traveling wave structures are, in general, not designed
as pi-mode structures, they comprise a higher content of
higher-order spatial harmonics. In addition, it is worth
noting that the fields in the entrance and exit cell of a
traveling wave structure are standing wave fields. Hence,
the particle trajectory receives transverse kicks of similar
order as given by Eq. (38) in the entrance and exit cells of a
traveling wave structure, and the higher-order spatial
harmonics lead to an additional ponderomotive force of
similar strength as in a standing wave structure.
In the following discussion concerning rf guns, the

ponderomotive force will be ignored. A detailed discussion
of the ponderomotive focusing in standard cavities is found
in Ref. [23] and the references therein.
For the case of the longitudinal dynamics in rf guns, it

was successfully assumed that particles travel at the speed
of light, even though the particles start with near zero

velocity at the cathode. Attempting the same procedure for
the transverse dynamics, we find from the integral of the
transverse force Eq. (35) as transverse momentum

Δpr ¼ −
re
4c

E0 sinð2kzþ ϕÞ þ re
4c

E0 sinϕ: ð41Þ

Note that the integration constant has now a positive sign;
i.e., it is defocusing, because the particles start at z ¼ 0,
while they start at 2kz ¼ −π in the case of a standard cavity.
At the exit of the cavity, again 2kz ¼ π holds, and thus also
the oscillating term leads to a defocusing contribution at
the exit of the cavity.
The particle position r and the phase ϕ are not constant as

implicitly assumed so far. We may set as the approximated
particle trajectory a function of the form r ¼ rc þ r0z. The
additional terms in the integral of the transverse force scale,
however, as r0

4k2 and
r0z

2kΔz and are hence not significant.
Note that the integration constant in Eq. (41) describes

only the average momentum; at the cathode, the rf field still
has a focusing nature. Despite the fact that the beam is
highly divergent at the cavity exit, r0 can hence be negative
inside of the cavity for certain parameters. Thus, it is
justified to use the cathode position as the starting position
for the particle, i.e., r ¼ rc. Since the dynamics close to the
cathode is governed by the integration constant, we set
the phase of the constant term to the initial phase ϕ0, while
the synchronous phase ϕsync is used for the oscillating term,
which describes the residual contribution at the exit of the
cavity. The transverse momentum at the cavity exit is hence
given as

Δpr ¼
re
4c

E0ðsinϕ0 þ sinϕsyncÞ: ð42Þ

The comparison of the transverse momentum according to
Eq. (42) with the numerical result for an rf gun as a function
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FIG. 10. Transverse momentum versus start phase for a 1 1
2
cell

rf gun cavity (1.3 GHz, E0 ¼ 50 MV=m). The particle starts at
the cathode with an offset of 1 mm. The solid line shows the result
of a numerical integration, while the dashed line displays the
result in accordance to Eq. (42).
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of the start phase is shown in Fig. 10 and indicates a good
agreement within the relevant phase interval up to
about 90°.

XII. RF-INDUCED TRANSVERSE MOMENTUM
SPREAD AND EMITTANCE

The phase dependence of the rf-induced transversemomen-
tum leads to a correlated emittance growth. To simplify the
calculation of the emittance, we introduce Cartesian coordi-
nates and approximate the transverse momentum by

Δpx ≅
xe
2c

E0 sin ϕ̄;

ϕ̄ ¼ ϕ0 þ ϕsync

2
: ð43Þ

As in the case of the longitudinal dynamics,we can expand the
phase dependence as a Taylor series up to the quadratic term in
the phase spread and find the rms momentum spread as

Δprf
x;rms ¼

eE0

2c

�
hx2i

�
sin2ϕ̄þ 1

3
ðcos2ϕ̄ − sin2ϕ̄Þϕ2

m

þ 1

20
sin2ϕ̄ϕ4

m

�
−ðΔpxÞ2

�
1=2

; ð44Þ

where again a uniform current distribution as described in
Eq. (29) is assumed. Note that the quadratic average of the
particle positions hx2i should be calculated with respect to the
axis of the rf cavity. Thus, we write it as

hx2i ¼ x2off þ σ2x; ð45Þ

with xoff being the offset of the particle distribution with
respect to the symmetry axis of the rf field and σx being the rms
width of the particle distribution. The average momentum
follows as

Δpx ¼
eE0

2c
xoff

�
sin ϕ̄ −

sin ϕ̄
6

ϕ2
m

�
ð46Þ

and the correlation term as

hxΔpxi ¼
eE0

2c
σ2x

�
sin ϕ̄ −

sin ϕ̄
6

ϕ2
m

�
; ð47Þ

which leads finally to an rf-induced transverse emittance
contribution given as

εrfn;x ¼
eE0

2m0c2
σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2off þ σx

2

q

×

�
cos2ϕ̄k2σ2z þ

sin2ϕ̄
5

k4σ4z

�
1=2

; ð48Þ

where ϕm is already replaced by
ffiffiffi
3

p
kσz.

The comparison of results from Eq. (48) with numerical
results as shown in Fig. 11 reveals a significant discrepancy
in the position of the emittance minimum and an under-
estimation of the emittance at high phases. Note that the
phase for the minimal emittance coincides in our theory
with the phase for the maximum transverse momentum,
i.e., with the phase at which the first derivative d

dϕΔpr
becomes zero. The numerical emittance minimum appears,
however, at an even lower phase (compare Fig. 10 with
Fig. 11), which will be further explored in the following
section.
The asymmetry in the emittance, i.e., the minimal value

at zero start phase and the maximal value at the highest start
phase, is driven by the increasing bunch length (compare
with Fig. 3). For a constant bunch length, the result would
be symmetric with respect to the emittance minimum,
which is determined by the dominant cosine term in
Eq. (48). The cosine term is linear in the bunch length
and becomes zero at the central emittance minimum, at
which point the sine term with its quadratic bunch length
dependence becomes relevant.
It should be noted that any rf cavity acts as a time-

dependent focusing element [see Eq. (42)] and hence
introduces a correlated momentum spread as the rf gun
cavity. The induced transverse momentum spread is,
however, not proportional to the beam size but, since the
focusing kicks at the entrance and the exit of the cavity
compensate each other, the net remaining kick being due
only to the difference in the entrance and exit beam sizes.
The induced emittance is given by the product of the
remaining transverse momentum spread and the beam size
at the exit of the cavity, i.e., the smaller beam size of the
focused beam. For an on-crest operation, only the small
quadratic term contributes to the emittance, while for
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FIG. 11. rf-induced emittance growth at the exit of a half-cell
rf gun cavity operating at 1.3 GHz, E0 ¼ 50 MV=m,
xoff ¼ 0.0 mm, σx ¼ 0.75 mm. An initial constant current bunch
of ϕm ¼ 4.68° length has been used in the numerical simulation
(solid line). The resulting bunch length at the exit of the cavity
has been fed into the analytical calculation (dashed line), while a
constant transverse beam size equal to the value at the cathode is
assumed.
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operation at the zero crossing, as for a buncher cavity, the
momentum spread and hence the induced emittance
become zero. The rf-induced emittance of cavities other
than rf gun cavities can therefore often be ignored; for low
energies and large beam sizes, it may, however, become
significant. Note also that a large beam divergence
increases both the induced transverse momentum spread
and the beam size at the exit of the cavity.

XIII. CHROMATIC EMITTANCE VARIATION
AND THE TWO LINE MODEL

A beam exits a half-cell rf gun cavity with large trans-
verse momenta and with a large energy spread, conditions
under which the canonical phase space emittance is not
conserved in a drift [24]. In order to interpret the discrep-
ancies between the analytical theory and numerical results
found in the previous section, a model for a chromatic
emittance variation will now be developed.
Since the rf field acts as a time-dependent focusing

element, a fanlike structure as depicted in Fig. 12 opens in
phase space when the beam travels through a cavity.
The position of the highly divergent particles develops
in a drift behind the cavity as

x ¼ x0 þ x0z; ð49Þ

which corresponds to a shearing of the phase space ellipses
towards increasing x as indicated by the arrows in the
figure. Since the shearing is driven by x0 ¼ px=pz, the
velocity of the shearing can be different for the different
slices. While this leads, in general, to an emittance increase,
an emittance reduction is possible in the present case,
where the transverse momentum is linearly correlated to the

longitudinal particle position. An obvious condition for this
chromatic emittance reduction, besides the preconditions of
a high transverse momentum and a high energy spread, is
that slice A in Fig. 12 shears faster than slice B, so that the
fan can close. This condition is, however, not sufficient. For
a mathematical description of the process, we explore a
simple model, where the phase space distribution is
described by two lines defined as

pA
x ¼ ðᾱþ ΔαÞx; pB

x ¼ ðᾱ − ΔαÞx; ð50Þ

so that ᾱ is the average inclination and �Δα describes a
small deviation from this average.
Assuming a uniform distribution of particles along these

two lines, the emittance is approximately given as

εn;x ¼
1

2m0c
Δαðx2A þ x2BÞ; ð51Þ

with xA and xB being the rms transverse extension of the
two lines. The approximation is valid as long as xA and xB
do not differ too much from each other.
As indicated in Fig. 12 for the initial phase space, we set

xA ¼ xB ¼ x0: ð52Þ

After a drift the bunch has expanded, and the end points of
the lines are found at the positions

xA ¼ x0 þ ΔxA; xB ¼ x0 þ ΔxB: ð53Þ

Since the transverse momentum does not change in a drift,
we can write for the rms momentum of the two lines

ðᾱþ ΔαÞx0 ¼ ðᾱ0 þ Δα0Þðx0 þ ΔxAÞ;
ðᾱ − ΔαÞx0 ¼ ðᾱ0 − Δα0Þðx0 þ ΔxBÞ; ð54Þ

where the prime indicates the parameters for the final phase
space distribution. Equations (54) can be used to replace
Δα0 in the emittance calculation of the final state. We find

Δα0 ¼ ᾱx0

�
ΔxB − ΔxA

2ðx0 þ ΔxAÞðx0 þ ΔxBÞ
�

þ Δαx0
�

2x0 þ ΔxA þ ΔxB
2ðx0 þ ΔxAÞðx0 þ ΔxBÞ

�
; ð55Þ

which needs to be multiplied by x2A þ x2B ¼ ðx0 þ ΔxAÞ2 þ
ðx0 þ ΔxBÞ2 to calculate the emittance [Eq. (51)].
Approximating

ðx0 þ ΔxAÞ2 þ ðx0 þ ΔxBÞ2
2ðx0 þ ΔxAÞðx0 þ ΔxBÞ

≈ 1; ð56Þ

we find the emittance in the final state as
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FIG. 12. Schematic distortion of the transverse phase space due
to the time-dependent focusing of the rf field. Only two ellipses,
A and B, indicating a slice in the head and in the tail of the bunch
are shown. The other slices, which are filling the area between the
head and the tail slice, are omitted for the sake of clarity. Only if
slice A shears faster than slice B can the fan close.
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εn;x ¼
1

2m0c
½2Δαx20 þ Δαx0ðΔxA þ ΔxBÞ

þ ᾱx0ðΔxB − ΔxAÞ�: ð57Þ

Thus, for a reduction of the incoming emittance the term
describing the chromatic emittance variation needs to
become negative, i.e.,

Δεchrom ∝ Δαx0ðΔxA þ ΔxBÞ þ ᾱx0ðΔxB − ΔxAÞ < 0:

ð58Þ

Now the parameters of Eq. (58) have to be identified with
parameters of our phase space distribution. ᾱ is just given as
the correlated rms momentum pcor divided by the rms spot
size x0. Since the transverse momentum within the bunch
is linearly correlated with the longitudinal position, we
can set

ᾱ ¼ pcor

x0
; Δα ¼ dpcor

dϕ

σϕ
x0

: ð59Þ

Also, the beam divergence is linearly correlated with the
longitudinal position in the bunch. Thus, we set

ΔxA ¼
�
x0rms þ

dx0

dϕ
σϕ

�
z;

ΔxB ¼
�
x0rms −

dx0

dϕ
σϕ

�
z; ð60Þ

where z is the distance the bunch has traveled in the drift
section. With these identities we can reformulate the
condition for a possible emittance reduction as

Δεchrom ∝
dpx

dϕ
x0rms −

dx0

dϕ
pcor < 0: ð61Þ

Before applying Eq. (61) to the phase space distribution at
the exit of an rf gun cavity, the position and the shearing
velocity of the head and the tail slices need to be under-
stood. Looking at the transverse rms momentum shown in
Fig. 13 (top), we note that for start phases below ≈80°
the head of the bunch gains a lower transverse momentum
than the tail, while above ≈80° the head gains a higher
momentum than the tail. (Since the phase is increasing with
time, the head, which starts earlier than the tail, is left of the
tail in Fig. 13.) Thus, for phases below ≈80° slice A is the
tail, while it is the head for phases above ≈80°. The energy
spread (compare with Fig. 4) is increasing with an
increasing start phase above ≈40° and is oriented such
that the tail gains less energy than the head. As a result,
particles in the head are always less divergent than particles
in the tail, as shown in the bottom part of Fig. 13. Since the
tail, which has a higher divergence and hence shears faster
in phase space than the head, is located at the position of

slice A in Fig. 12 for phases below ≈80°, the fan can close
and the emittance can shrink for phases below ≈80°.
However, the condition for a chromatic emittance reduction
as given by Eq. (61), which is plotted in Fig. 14 (top) for
our case, restricts the emittance reduction to phases above
≈45°, since it is positive for lower phases.
Figure 14 shows in the bottom plot the development of

the rf-induced emittance in a drift section behind a half-cell
rf gun cavity which we can now interpret. For phases
between ≈45° and ≈80°, we expect a chromatic emittance
reduction, since the difference in the beam divergence of
the head and the tail slice can lead to a closing of the fan
structure in phase space. This process works until the tail
and the head slice overlap in phase space. At this point,
only the quadratically correlated momentum spread contrib-
utes to the emittance. The quadratic term in Eq. (48), which
is also plotted in Fig. 14 (bottom), underestimates the
minimal emittance, because the difference in the shearing
motion of the slices leads to an emittance increase for the
quadratically correlated momentum spread as it does for an
uncorrelated momentum spread. (Note that the value of the
local minimum increases with increasing drift length.) After
reaching an emittance minimum the emittance increases
again, because slice A has overtaken slice B.
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FIG. 13. Transverse rms momentum (top) and rms beam
divergence (bottom) at the exit of a half-cell cavity operated at
1.3 GHz, E0 ¼ 50 MV=m, xoff ¼ 0.0 mm, σx ¼ 0.75 mm. An
initial constant current bunch of ϕm ¼ 4.68° length has been used
in the numerical simulation.
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As a result of this process, we can observe a shift of the
minimal emittance towards lower phases in the drift behind
the cavity. Indeed, the process starts already inside of the
half-cell, and hence the minimal emittance is already
shifted to ≈60° at the exit of the cavity rather than being
at ≈80° where we expect it (compare with Fig. 11). In a
multicell cavity, the process continues in the cells following
the half-cell until the beam divergence is sufficiently
reduced at higher beam energies due to adiabatic damping.
In addition, the emittance development is modified by
the differences in the focusing kicks at the entrance and
the exit of the cells arising from the change in the beam
radius.
Increased gradients lead to an increased rf-induced

emittance contribution [cf. Eq. (48)] but also to a suppres-
sion of the chromatic emittance variation and a shift of
condition (58) towards larger start phases.
Transverse offsets of the beam relative to the cavity axis

lead to an additional emittance contribution as described by
Eq. (48). In contrast to the spot size contribution, which has
the character of a time-dependent focusing element, the

offset contribution has the character of a time-dependent
dipole; i.e., it leads to a difference in the average transverse
momentum of the different slices as indicated in Fig. 15
[cf. Eqs. (46) and (47)].
In a drift the ellipses still shear relative to the px ¼ 0 axis;

i.e., the beam develops a transverse offset and the distorted
fan structure can close until the phase space ellipses are
parallel to each other (rather than overlapping each other) if
the conditions as discussed in the previous section are
fulfilled. Therefore, transverse offsets do not change the
general characteristics of the rf-induced emittance.

XIV. COMPENSATION OF THE
RF-INDUCED EMITTANCE

The rf-induced emittance is a correlated emittance
contribution; thus, a compensation is not excluded by
principle reasons. The three examples for a partial com-
pensation shown in Figs. 16–18 are only roughly optimized
to achieve a minimum emittance at a start phase of about
≈45°, the phase of maximum energy gain in the half-cell
(which also seems to be the phase where the compensation
works best). The compensation is achieved by a cavity
operating at the fundamental frequency (Fig. 16), a third
harmonic cavity following the rf gun (Fig. 17), and an rf
gun cavity operating simultaneously at the fundamental and
the third harmonic frequency. The compensation behind the
half-cell (Figs. 16 and 17) takes advantage of the large
beam divergence but suffers from the chromatic phase
space mixing which already took place inside of the gun
cavity. The superposition of a third harmonic field inside
of the half-cell [7,25,26] circumvents this problem to a
large extent. Besides challenging technical problems, the

px

x

A

B

FIG. 15. Schematic distortion of the transverse phase space due
to the time-dependent focusing of the rf field for the case of a beam
starting with an offset relative to the rf field axis. Only two ellipses,
A and B, indicating a slice in the head and in the tail of the bunch
are shown. The other slices, which are filling the area between the
head and the tail slice, are omitted for the sake of clarity.
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FIG. 14. Chromatic emittance variation (top) and development
of the emittance in a drift (bottom) for a half-cell cavity operated
at 1.3 GHz, E0 ¼ 50 MV=m, xoff ¼ 0.0 mm, σx ¼ 0.75 mm. An
initial constant current bunch of ϕm ¼ 4.68° length has been used
in the numerical simulation. The bottom plot shows the emittance
at the cavity exit (solid line), after 5 cm drift (dashed line), and
after 10 cm drift (dotted line). The dashed-dotted line (close to the
horizontal axis) shows the analytical emittance contribution from
the quadratic term in the bunch length as given by Eq. (48).
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relevance of the compensation of the rf-induced emittance
in the presence of a large space charge field remains open at
this point. Note that the start phase is defined relative to the
zero crossing of the field, while an off-crest phase is
defined relative to the phase of maximum momentum
gain, and that theoretical fields without realistic edge fields
are used.

XV. EMITTANCE OSCILLATION AND MAXIMUM
EMITTANCE IN A CELL

Equation (48) describes the rf-induced emittance growth
for the complete passage through a cavity. The kick model
for the transverse momentum can be interpreted as an
emittance contribution which is induced at the entrance of
the cavity and then partly compensated at the exit (for a full
cell). In the worst case, the emittance is not compensated
but is doubled by the exit kick as in the case of the rf gun.
However, the dynamics inside the cavity is more complex
as can be seen from Fig. 19, which shows the development
of the transverse emittance inside a cavity. Here a beam of
relatively high energy (50 MeV) is passed on crest through
the single-cell cavity, so that the variation of the beam
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FIG. 16. Compensation of the rf-induced emittance by a cavity
running at the fundamental frequency. The setup consists
of a half-cell rf gun cavity (1.3 GHz, E0 ¼ 50 MV=m,
xoff ¼ 0.0 mm, σx ¼ 0.75 mm, ϕm ¼ 4.68°), 5 cm drift, and a
single-cell cavity (1.3 GHz, E0 ¼ 50 MV=m) running at the
fundamental frequency. The phase of the single-cell cavity is
fixed to 48° off crest for a start phase in the gun cavity of 45°.
With this phase only the linear part of the rf-induced emittance is
compensated, while the quadratic part is increased. The lines
show the emittance at the entrance (dashed line) and at the exit
(solid line) of the single-cell cavity.
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FIG. 17. Compensation of the rf-induced emittance by a third
harmonic cavity. The setup consists of a half-cell rf gun cavity
(1.3 GHz, E0 ¼ 50 MV=m, xoff ¼ 0.0 mm, σx ¼ 0.75 mm,
ϕm ¼ 4.68°), 5 cm drift, and a three-cell cavity (3.9 GHz,
E0 ¼ 3.1 MV=m) running at the third harmonic frequency.
The third harmonic cavity with its stronger nonlinearity allows
operation at a decelerating phase of 134° off crest for a start phase
in the gun cavity of 45°. Thus, also the quadratic contribution to
the rf-induced emittance can be compensated. The lines show the
emittance at the entrance (dashed line) and at the exit (solid line)
of the third harmonic cavity.
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FIG. 18. Compensation of the rf-induced emittance in a two
frequency cavity. The setup consists of a half-cell rf gun cavity
(1.3 GHz, E0 ¼ 50 MV=m, xoff ¼ 0.0 mm, σx ¼ 0.75 mm,
ϕm ¼ 4.68°), which simultaneously supports the third harmonic
frequency (1 1

2
periods) at 5.2 MV=m. The third harmonic

frequency is operated at a start phase of 134°. The lines show
the emittance at the exit of the cavity without (dashed line) and
with the higher frequency rf field (solid line).
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FIG. 19. Emittance development inside a cavity cell (solid line).
The cavity center is located at z ¼ 0 m and the beam
(σx ¼ 0.75 mm, ϕm ¼ 4.68°) is passed on crest through the
cavity. The dashed line shows the development of the transverse
rms momentum in arbitrary units.
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radius is very small and the emittance for the complete
passage compensates nearly perfectly. While the transverse
momentum runs through a single oscillation in the cavity,
two big emittance bumps are observable, the height of
which depends on the local beam size and the phase. Off-
crest operation leads to an asymmetry in the height of the
bumps, with the central emittance minimum shifting either
left or right, depending on the sign of the off-crest phase.
For on-crest operation, the first emittance maximum occurs
when the beam has traveled a quarter of the cell length into
the cavity. Equation (41) gives at this point a transverse
momentum change of

Δpr ¼ −
re
4c

E0ðcosϕþ sinϕÞ; ð62Þ
which using the described model leads to an emittance of

εrfn;x ¼
eE0

4mc2
σ2x

�
ðsinϕ − cosϕÞ2k2σ2z

þðsinϕþ cosϕÞ2 k
4σ4z
5

�
1=2

: ð63Þ

The first term of the square bracket in Eq. (63) is
dominating for on-crest operation; the emittance maxima
hence show a linear dependence on the bunch length.
Looking at the quarter, the half, the three-quarter, and the
end point of the cavity, where 2kz yields values of π, 2π,
3π, and 4π, respectively, we note that cosinelike terms add
up with signs as −,þ,þ, −, while the sinelike terms add up
as −, −, þ, þ. The maximum of the transverse momentum
in the center of the cavity is hence related to the sine term,
while the maxima in the momentum spread and the
emittance are related to the sum of the sine and the cosine
term. The residual emittance for a complete on-crest
passage is thus found to be the result of a rather delicate
compensation process. Distortions of this compensation,
i.e., distortions over the length scale of a cavity cell,
can have rather dramatic effects on the residual emittance.
In the worst case, we may expect an emittance contribution
of 3–4 times the emittance given by Eq. (63). Note that
Eq. (63) is independent of the beam energy, while the
residual emittance for the complete passage depends via
the beam size variation on the beam energy. Thus at high
energies the residual rf-induced emittance contribution
becomes zero, but the emittance inside a cavity still
oscillates with significant amplitudes. The discussions in
the following sections will point out the relevance of these
detailed considerations.

XVI. EMITTANCE GROWTH
BY FIELD ASYMMETRIES

A commonly used configuration to couple power into a
cavity is a side slot which breaks the rotational symmetry of
the coupler cell and thereby also the rotational symmetry
of the accelerating field. Similar symmetry breaks can be

introduced by rf components such as tuning plungers and
rf probes or by coupling holes in the cavity iris. Different
means to symmetrize the field, e.g., by vacuum pumping
ports, symmetric power couplers, or racetrack-shaped
cavity cells, are possible and have been successfully
exploited [8,27,28]. Alternative designs avoid field asym-
metries by on-axis circular symmetric couplers [29].
Coupler-induced field asymmetries have been theoretically
discussed for various cases [8,27,30]. In general, it is
assumed that the field distortion is constant over the
complete length of the coupler cell. In the following, a
model is developed to take a closer look at possible
implications of the longitudinal distribution of the distor-
tions. A coupling slot in the side wall of a cavity cell
introduces a distortion of the rf field which can be
approximated by a transverse offset of the accelerating
field in the region of the slot [31]. (This is equivalent to a
description as a dipolelike field distortion.) The offset is
typically on the order of millimeters. Assuming that the slot
is located longitudinally in the middle of the cell and that
the induced distortion vanishes towards the irises of the
cell suggests a field description of the form

~E ¼
�
−
x
2
E0;

y − yoffðzÞ
2

E0; E0

�
sinðωtþ ϕÞ;

~B ¼
�
−
y − yoffðzÞ

2
E0;

x
2
E0; 0

�
cosðωtþ ϕÞ;

yoffðzÞ ¼ Yoffcos2ðkzÞ for −
π

2
< kz <

π

2
; ð64Þ

where a coupling slot location in the y direction is assumed.
Thus, the force in the y direction is given as

Fy ¼ −
½y − yoffðzÞ�e

2
E0k cosð2kzþ ϕÞ: ð65Þ

Here we are interested only in the contribution of the field
asymmetry, and thus we ignore the term which describes
the normal rf-induced emittance. The momentum integral
then takes the form

Δpasym
y ¼ eE0

8c
Yoff

�
sinð2kzþ ϕÞ þ kz cosϕ

þ 1

4
sinð4kzþ ϕÞ

�				
π
2

−π
2

: ð66Þ

The contributions of the sinelike terms at the boundary
cancel, and, as before, we develop the cosinelike term in a
Taylor series, leading to

Δpasym
y ¼ πeE0

8c
Yoff

�
cosϕ − sinϕΔϕ −

cosϕ
2

Δϕ2

�
;

ð67Þ
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which brings us finally to

εasymn;y ¼ πeE0

8m0c2
σyYoff

�
sin2ϕk2σ2z þ

cos2ϕ
5

k4σ4z

�
1=2

: ð68Þ

Note that, while the asymmetry-induced emittance reaches
its maximum at ϕ ¼ 90°, the transverse kick [Eq. (67)]
becomes zero at this phase. As in the previous section, we
find a linear dependence on the bunch length for the on-
crest operation. Assuming that Yoff ≈ σy, we can compare
Eq. (68) with Eq. (63) and find that the maximal emittance
contribution of the asymmetry is π=2 times the maximum
emittance described in Eq. (63). The difference in the phase
dependence of Eq. (68) as compared to Eq. (48) prevents
the compensation of the coupler-induced emittance by
offsetting the beam transversely at on-crest operation.
These results are, of course, directly related to the assumed
longitudinal distribution of the transverse offset.

XVII. EMITTANCE GROWTH IN COMBINED
SOLENOID-CAVITY SECTIONS

Solenoids are common focusing elements in injectors
and low-energy beam lines. Often the fringe field of a
solenoid overlaps a cavity field; in other cases, cavities are
completely embedded in solenoids. The internal compen-
sation of the rf-induced emittance within a cell is perturbed
by the external solenoid field [32] leading to an increased
residual rf emittance. In the following, two examples will
be discussed: first, the case where a beam is created inside a
solenoid field (a so-called magnetized beam) and second,
the case where the beam enters a cavity section which is
embedded in a solenoid field.
A charged particle which is created and appropriately

accelerated inside a solenoid field of constant strength can
travel on a straight line parallel to the field lines of the
solenoid. If then a transverse momentum kick is given to
the particle, it will start to rotate in the transverse plane.
Thus, the entrance kick of an rf cavity, which acts in the
radial direction, leads to a trajectory described by

x ¼ xi −
E0 sinϕ
4cB0

½xi sin θC − yiðcos θC − 1Þ�;

y ¼ yi −
E0 sinϕ
4cB0

½yi sin θC þ xiðcos θC − 1Þ�;

θC ¼ eB0

pz
Δz; ð69Þ

where xi and yi stand for the initial particle coordinates, E0

and ϕ for the rf field amplitude and phase, respectively,
and B0 for the constant solenoid field strength. The rotation
is governed by the cyclotron angle θC, which is twice as
large as the Larmor phase angle. Note that the Larmor angle
is defined with respect to the center of the solenoid, while
the cyclotron angle is defined with respect to the center of

the circular particle trajectory. Figure 20 illustrates the
situation.
For a round beam, Eq. (69) yields the rms beam size as

σx;y ¼ σxi;yi

�
1 −

E0 sinϕ
2cB0

sin θC

þ
�
E0 sinϕ
4cB0

�
2

½sin2θC þ ðcos θC − 1Þ2�
�

1=2
: ð70Þ

The comparison of the beam size according to Eq. (70) with
a numerical calculation shown in the top of Fig. 21 shows
good agreement for low solenoid fields below ≈0.5 T for
this example. For higher solenoid fields, the particle
trajectories develop a spiral pattern rather than the closed
circular motion predicted by the kick approximation. Both
numerical and analytical results converge to a pointlike
motion and hence to the incoming beam size at the highest
solenoid fields. The emittance calculation would require
integration of the transverse rf fields along the electron
path, which leads to rather awkward equations. We will
hence not pursue this but discuss some numerical results.
The bottom plot of Fig. 21 shows the emittance gen-

erated when a 5 MeV beam is passed on crest through a
single-cell cavity as a function of the applied solenoid field.
(The emittance is corrected for the rotational mode in the
solenoid field.) Except for very low solenoid fields, the
emittance scales linearly with the bunch length. Note that
the induced emittance growth shifts towards lower solenoid
fields for lower beam energies and vice versa. In this
example, the maximum emittance is reached at B0 ≈ 1.5 T,

x
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rC

0

FIG. 20. Schematic of the transverse particle motion in a
solenoid field after excitation by a radial kick towards the origin.
The initial particle coordinates are yi, xi ¼ 0, and rC denotes the
cyclotron radius. The initial focusing kick is transferred into a
pure angular motion with respect to the coordinate center at an
angle θ0 ¼ arctan yi

rC
¼ arctan 4cB0

E sinϕ and at θ0 þ π, while it leads to
a pure radial motion at an angle 2θ0. rf forces act only in the radial
direction; a compensation is hence possible only when the phase
of the cyclotron motion and the rf phase match.
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corresponding to a cyclotron angle of ≈2π over the length
of the cell. The development of the emittance inside the
cavity cell, shown in Fig. 22 (top), displays nicely the
failing of the emittance compensation at these conditions.
The maximum emittance of ≈1.2 mradmm is 2.6 times the
maximum emittance as calculated by Eq. (63).
Finally, the bottom plot of Fig. 22 shows the emittance

growth as a function of the solenoid strength for a single-
cell, a two-cell, and a three-cell cavity. For lower solenoid
fields, the emittance growth is better compensated by more
cells.
In the case where the electrons are created outside of the

solenoid field, we can first trace the electron trajectories
up to the entrance of the cavity, before adding the
momentum kick that the cavity generates. On the way
to the cavity entrance, the particle starts to rotate toward
the solenoid axis in accordance to the standard equations
of motion in a solenoid. The momentum kick of the cavity
fields will again be modulated with the cyclotron angle
during the passage through the cavity. Hence the trans-
verse momentum inside the cavity is in the rotating frame
given as

p~y ¼ −yin
eB0

2
sin θL þ pyin cos θL − yin

eE0

4c
sinϕ sin θC:

ð71Þ

yin and pyin are the coordinates at the entrance of the
cavity, and the Larmor angle refers here only to the phase
advance over the length of the cavity; i.e., it starts equal
to the cyclotron angle at zero at the cavity entrance.
Integrating over the momentum, we find the particle
position at the cavity exit, which we can directly interpret
as the rms beam size, described by

σy ¼ σyin

�
cos θL −

eE0 sinϕ
4cB0

sin θC

�
þ σpyin

2

eB0

sin θL:

ð72Þ

The comparison of the analytical result with a numerical
calculation shown in the top plot of Fig. 23 reveals a good
agreement. The incoming beam and cavity parameters are
the same as in the discussion of the magnetized beam
above. The emittance development in cavities of varying

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

n,
 x

]
m

m dar
m[

B0 [T]

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 0.5 1 1.5 2 2.5 3 3.5

]
m

m[ ezis tops s
mr

B0 [T]

FIG. 21. Top: rms beam size versus strength of the solenoid
field for a 5 MeV beam passing through a single-cell cavity
(1.3 GHz, E0 ¼ 50 MV=m, on crest). The analytical result
(dashed line) deviates between 0.5 and ∼2 T from the numerical
result (solid line). Both results converge for high fields to the
incoming beam size of 0.75 mm. Bottom: Numerical result for the
emittance as a function of the strength of the solenoid field, all
parameters as for the top plot (bunch length, ϕm ¼ 4.68°).
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FIG. 22. Top: Emittance development inside a cavity cell for a
solenoid field of 1.5 T (solid line). For comparison, the emittance
development for the case without a solenoid field is included
(dashed line; see also Fig. 19, which shows an equal plot but for a
higher energy). Bottom: Emittance versus strength of the solenoid
field for a single-cell cavity (solid line), a two-cell cavity (dashed
line), and a three-cell cavity (dotted line).

RF-INDUCED BEAM DYNAMICS IN RF GUNS AND … Phys. Rev. ST Accel. Beams 18, 064801 (2015)

064801-19



numbers of cells shown in the bottom plot shows an
increasing emittance contribution with an increasing
number of cells for higher solenoid fields. However, in
practice, lower solenoid fields, which show only a small
emittance contribution, will in general be more relevant.

XVIII. EMITTANCE GROWTH DUE TO
SPHERICAL ABERRATIONS

The effects discussed in Secs. XI–XVII are related to the
phase dependence of the focusing rf field; nonlinearities of
the field have so far not been included.
A nonlinearity of the transverse rf field is intimately

related to the appearance of higher-order spatial harmonics
[cf. Eq. (1)]. The above described treatment of the rf
emittance can be extended to higher-order spatial harmon-
ics, which appears to be a promising approach if a single,
dominant higher-order spatial component exists. See
Ref. [5] for a discussion of this approach. The following
treatment is based on the polynomial expansion Eq. (1). We
can write the transverse force to second order as

Fxðz; t;ϕ; rÞ ¼ xaþ xr2b; ð73Þ

with

a ¼ e
2

�
−E0

z sinðωtþ ϕÞ − Ez;0β
ω

c
cosðωtþ ϕÞ

�
;

b ¼ e
16

��
E000
z þ ω2

c2
E0
z

�
sinðωtþ ϕÞ

−
�
E00
z þ

ω2

c2
Ez;0

�
β
ω

c
cosðωtþ ϕÞ

�
: ð74Þ

The transverse momentum is then expressed as

px ¼
Z

xadtþ
Z

xr2bdt: ð75Þ

If the particle positions inside the cavity do not change
significantly, we can bring x and r out of the integrals. In
order to calculate the emittance contribution of the quad-
ratic term, it is convenient to subtract the correlated
momentum first:

hxpxi ¼ hx2i
Z

adtþ hx2r2i
Z

bdt: ð76Þ

Assuming a uniform particle distribution within a circle of
radius R, the brackets yield

hx2i ¼ R2

4
; hx2r2i ¼ R4

6
; ð77Þ

and thus

hxpxi ¼
R2

4

�Z
adtþ 2

3
R2

Z
bdt

�
: ð78Þ

By introducing

~px;i ¼ px;i −
hxpxi
hx2i xi ¼ xi

�
r2 −

2

3
R2

�Z
bdt; ð79Þ

the emittance is expressed as

εsphern;x ¼ 1

m0c
½hx2ih ~p2

xi�1=2

¼ 1

m0c
R4

12
ffiffiffi
2

p
				
Z

bdt

				 ¼ 1

m0c
4σ4x
3

ffiffiffi
2

p
				
Z

bdt

				; ð80Þ

where the relation hx2r4i ¼ R6

8
has been used. The integral

over b can be solved numerically for various phases.
Equation (80) ignores the fact that different parts of a
longitudinally extended bunch travel on different phases,
which is justified if the result of Eq. (80) is small as
compared to the rf-induced emittance given by Eq. (48).
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FIG. 23. Top: rms beam size versus strength of the solenoid
field for a 5 MeV beam passing through a single-cell cavity
(1.3 GHz, E0 ¼ 50 MV=m, on crest). The beam starts outside of
the solenoid with an rms size of 0.75 mm and travels an effective
length of 5 cm to the entrance of the cavity. Dashed line,
analytical result; solid line, numerical result. Bottom: Emittance
versus strength of the solenoid field for a single-cell cavity (solid
line), a two-cell cavity (dashed line), and a three-cell cavity
(dotted line).
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Equation (80) can be useful in comparing and optimizing
the impact of the spherical aberrations arising from various
cavity shapes.

XIX. SUMMARY

The beam dynamics in rf guns is characterized by a rapid
variation of the phase in the half-cell of the gun cavity. To
yield improved analytical models for the synchronous
phase, the energy gain, and the bunch compression factor,
an effective start phase has been successfully introduced for
the description of the dynamics in the half-cell of the gun
cavity. The energy gain is calculated as sum of the energy
gain in the half-cell which is traversed at the effective start
phase and the energy gain from all other cells which are
traversed at the synchronous phase. This approach has
allowed us to discuss aspects such as elongated half-cells
and unbalanced field profiles. The calculation of the energy
spread and the longitudinal emittance has been presented in
a generalized way which can be applied to both rf guns and
accelerating cavities.
In the discussion of the transverse emittance, discrep-

ancies between the derived analytical model and numerical
simulations have been identified and found to be related to
a chromatic emittance variation in the gun and the follow-
ing drift section. Three methods to compensate the rf-
induced transverse emittance have been compared. An
important aspect of the transverse dynamics is the emit-
tance oscillation appearing inside each rf cell. Large
correlated emittance contributions build up and cancel
during the passage through each cell. The final emittance
growth is the result of a delicate compensation process
which can be distorted, for example, by field asymmetries
or by external solenoid fields overlaying the cavity. It has
been pointed out that the longitudinal distribution of a field
asymmetry has a significant impact on the resulting
emittance growth and thus needs to be taken into account.
For overlaid solenoid fields, the cyclotron angle over one rf
cell has been shown to be a relevant quantity. In the final
section, emittance growth due to spherical asymmetries has
been discussed.
A discussion of space charge effects and cathode physics

is beyond the scope of this report. Space charge effects can
become the dominant source for emittance growth in the
transverse and longitudinal planes, especially in the case of
high bunch charges, while the ultimate limit of the trans-
verse emittance is determined by the initial transverse beam
size and momentum of the electrons as they are emitted
from the cathode. The strength and time dependence of
the accelerating field limits, however, the parameter space
available to minimize the detrimental space charge effects.
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