
Beam-based model of broad-band impedance of the Diamond Light Source

Victor Smaluk,* Ian Martin, and Richard Fielder
Diamond Light Source, Oxfordshire OX11 0DE, United Kingdom

Riccardo Bartolini
Diamond Light Source, Oxfordshire OX11 0DE, United Kingdom and John Adams Institute,

University of Oxford, Oxford OX1 3RH, United Kingdom
(Received 17 December 2014; published 23 June 2015)

In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber
impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-
based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to
get the model parameters, a set of measured data has been used including current-dependent shift of
betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code
for multiparticle tracking has been developed. The tracking results and analytical estimations are quite
consistent with the measured data. Since Diamond has the shortest natural bunch length among all light
sources in standard operation, the studies of collective effects with short bunches are relevant to many
facilities including next generation of light sources.
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I. INTRODUCTION

Collective effects of beam dynamics in particle accel-
erators result from the interaction of a particle beam with
electromagnetic fields induced in a vacuum chamber by the
beam itself. The most significant result of the collective
effects is instability of longitudinal or transverse motion
leading to deterioration of the beam quality or even to beam
loss. Studies of collective effects are essential both for
designing new accelerators and for understanding the beam
dynamics in the already operated facilities in order to
improve their performance.
In the theory of collective effects (see, for example,

[1,2]), the interaction between the beam and wake fields is
described using a concept of a wake function, which is
determined as a normalized integral of the Lorentz force
that acts on a test particle moving behind a leading one
exciting the wake fields. The wake function is a time-
domain response of a vacuum chamber to the excitation by
a point charge. In most practical cases, it is enough to
consider only monopole longitudinal and dipole transverse
wake functions to analyze stability of the beam motion. In
the ultrarelativistic case, the wake function is determined by
the geometry and electromagnetic properties of the cham-
ber only, and it is independent of the charge distribution
in the beam. In the frequency domain, the beam-wake
interaction is characterized by frequency-dependent

coupling impedances, which are Fourier transforms of
the corresponding wake functions.
There is a limited number of analytical formulas to

calculate impedances of simplest vacuum chamber sec-
tions, such as pill-box cavities or step transitions. Real
vacuum chambers usually have a complex geometry
including collimators, transitions between various cross-
sections, button electrodes, striplines, etc. Practically, for
estimation of wake functions and impedances of a vacuum
chamber section, finite-difference simulation codes are
used (e.g., GdfidL [3] and CST Particle Studio [4]). The
problem is that the wake function is not calculated directly,
the simulation code output is a wake potential which is a
convolution of the wake function with longitudinal bunch
profile. So the bandwidth of the impedance derived from
the simulated wake potential is limited by the bunch
spectrum width which is inversely proportional to the
bunch length. For a bunch length of a few millimeters,
full 3D simulation of wake fields in a big and complex
structure is quite difficult too, because huge memory and
processor time are required. Generally, there is no way to
derive a point-charge wake function from a wake potential
of a finite-length bunch, although asymptotic models for
some geometries have been developed [5].
Calculation of impedance budget is an essential stage of

a new accelerator design. If the interference of the wake
fields induced by the beam in various components of the
vacuum chamber is negligible (large distance between the
components or fast-damping wake fields), the impedances
are additive at any frequencies. In this case, the impedance
of the entire vacuum chamber can be represented as a
sum of impedances of its components. A total frequency-
dependent impedance is usually very complex and hardly
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suitable for beam stability analysis. A simplified model
characterized by very few parameters such as total loss
factor and inductance (or normalized impedance) for the
longitudinal wake, and horizontal/vertical kick factors for
the transverse wakes, are generally used to characterize the
beam-chamber interaction, see some recent results in [6–8].
For the Diamond Light Source, we have developed a

model consisting of a broad-band resonator (BBR) and
restive-wall impedance. The latter is calculated analytically
using known dimensions and resistivity of the vacuum
chamber. Neither constant resistance nor inductance were
needed to fit the measured data. Shunt impedance and
resonant frequency values of the model BBR have been
obtained from beam-based measurements, the quality
factor is assumed equal to 1. To improve the fit accuracy
of the measured data, a combined fitting technique was
developed and realized. For the longitudinal BBR, both
current-dependent bunch lengthening and synchronous
phase shift were fit with two parameters, shunt impedance
R∥ and resonant frequency ω∥. For the horizontal or vertical
BBR, both current-dependent betatron tune shift and
chromatic damping rate were fit with two parameters,
shunt impedance Rx;y and resonant frequency ωx;y.

II. RESISTIVE-WALL AND BROAD-BAND
RESONATOR IMPEDANCE

Total impedance of a vacuum chamber includes geo-
metric and resistive-wall components. Vacuum chambers of
modern electron storage rings are made with rather small
apertures (especially vertical), so the resistive-wall imped-
ance can be comparable with the geometric one. The
Diamond Light Source has a 2 mm thick stainless-steel
vacuum chamber, the in-vacuum narrow-gap (5 mm if
closed) insertion devices (IDs) are covered by copper-
nickel foil (50 μm Cu). Formulas to calculate the resistive-
wall impedance have been derived analytically for the
elliptic and rectangular vacuum chambers [9]. If the wall
thickness is much larger than the skin depth

δsðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c
μrσcZ0jωj

s
; ð1Þ

the longitudinal Z∥=L and transverse Zx=L; Zy=L imped-
ances per unit length are

Zrw
∥ ðωÞ
L

¼ ð1þ isignωÞZ0jωjδsðωÞ
4πcb

G0; ð2Þ

Zrw
x;yðωÞ
L

¼ ðsignωþ iÞZ0δsðωÞ
2πb3

G1x;y; ð3Þ

where c is the speed of light, μr and σc are the relative
permeability and conductivity of the chamber material,
respectively; Z0 is the free space impedance; b is the

half-aperture. Assuming cutoff frequency of the vacuum
chamber about 10 GHz, the skin depth is about 4 μm in
stainless steel and is about 0.5 μm in copper. These values
are much smaller than the vacuum chamber thickness
(2 mm) and formulas (2), (3) are valid for the frequencies
much smaller than c=

ffiffiffiffiffiffiffi
δsb

p ≃ 2π · 200 GHz. Frequency
dependence of the resistive-wall impedance is discussed
in [10] for the frequency range of 1–1014 Hz.
The form-factors G0, G1x, andG1y are determined by the

vacuum chamber cross section. For an elliptic chamber
with horizontal a and vertical b semi-axes, the form-factors
are [9]:

G0ðu0Þ ¼
sinh u0
2π

Z
2π

0

Q2
0ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2u0 þ sin2v
p dv; ð4Þ

G1x;yðu0Þ ¼
sinh3u0
4π

Z
2π

0

Q2
1x;yðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2u0 þ sin2v
p dv; ð5Þ

where

Q0ðvÞ ¼ 1þ 2
X∞
m¼1

ð−1Þm cos 2mv
cosh 2mu0

; ð6Þ

Q1xðvÞ ¼ 2
X∞
m¼0

ð−1Þmð2mþ 1Þ cosð2mþ 1Þv
coshð2mþ 1Þu0

; ð7Þ

Q1yðvÞ ¼ 2
X∞
m¼0

ð−1Þmð2mþ 1Þ sinð2mþ 1Þv
sinhð2mþ 1Þu0

; ð8Þ

and

u0 ¼ arccosh
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðb=aÞ2
p :

The vacuum chamber of the Diamond Light Source
has average horizontal half-aperture a ¼ 40 mm and ver-
tical half-aperture b¼12mm, so G0¼0.98, G1x¼0.43,
G1y ¼ 0.83.
The geometric impedance of any vacuum chamber

section can be approximately represented as a sum of
equivalent resonators, each of them contributes the
impedance:

Z∥ðωÞ ¼
R∥

1þ iQð ωω∥
− ω∥

ω Þ
; ð9Þ

Zx;yðωÞ ¼
ωx;y

ω

Rx;y

1þ iQð ω
ωx;y

− ωx;y

ω Þ ; ð10Þ

where R∥, Rx;y are the shunt impedances, ω∥;ωx;y are the
resonance frequencies, and Q is the quality factor. The
broad-band (low-Q) impedance causing intra-bunch
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particle interaction can be assumed to be additive, because
the wake fields dissipate rapidly, and effects of super-
position of the wake fields excited by the same bunch in
different components of the vacuum chamber are negli-
gible. To characterize the single-bunch collective effects in
many important practical cases, the total broad-band
impedance of the vacuum chamber can be approximated
by a single broad-band resonator (9), (10) assumingQ≃ 1.

III. LONGITUDINAL IMPEDANCE

Interaction of a bunched beam with short-range longi-
tudinal wake fields (broad-band impedance) deforms the
longitudinal bunch profile λðtÞ, which is Gaussian for a
zero-intensity bunch:

λ0ðtÞ ¼
1ffiffiffiffiffiffi
2π

p
σ0

exp

�
−

t2

2σ20

�
; ð11Þ

with the r.m.s. bunch length (in seconds)

σ0 ¼
α

ωs

σE
E

; ð12Þ

where α is the momentum compaction factor, ωs is the
synchrotron frequency, E is the beam energy, σE=E is the
relative energy spread. At small beam currents, the energy
spread of the relativistic electron beam is independent of its
intensity and λðtÞ as a function of the average bunch current
Ib can be approximately described by the Haissinski
integral equation [11]:

λðtÞ ¼ Kλ0ðtÞ exp
�
−

αIb
ω2
sσ

2
0E=e

Z
t

−∞
Sðtþ τÞλðτÞdτ

�
:

ð13Þ
The beam-impedance interaction is described by the step-
function wake potential

SðtÞ ¼
Z

t

0

W∥ðτÞdτ;

W∥ is the longitudinal wake function. Normalizing factor K
is determined by the condition

R∞
−∞ λðtÞdt ¼ 1. For a

positive momentum compaction α, the intensity-dependent
deformation of the longitudinal bunch profile λðtÞ causes
the bunch lengthening, which can be approximately
described by a cubic equation using a concept of effective
impedance [12].
The bunch profile has been measured using a streak-

camera [13] for the single-bunch beam current Ib varied in
the range of 0.05–0.8 mA with the following parameters
of the Diamond storage ring: E ¼ 3 GeV, σ0 ¼ 12.5 ps,
α ¼ 1.66 × 10−4; ωs ¼ νsω0, νs ¼ 0.0042 is the synchro-
tron tune, ω0 ¼ 2πf0, f0 ¼ 533.8 kHz is the revolution
frequency. Figure 1 shows three examples of the bunch
profiles measured at 0.05 mA, 0.2 mA, and 0.5 mA
together with the fit curves obtained by numerical solution

of the Haissinski equation (13), the wake function W∥
includes both BBR and resistive-wall terms.
The beam-impedance interaction results also in coherent

loss of the bunch energy, which is proportional to the
square of bunch charge qb. The proportionality factor is the
loss factor

k∥ ¼
1

2π

Z
∞

−∞
Z∥ðωÞhðωÞdω; ð14Þ

where hðωÞ ¼ ΛðωÞΛ�ðωÞ is the bunch power spectrum,
ΛðωÞ is the Fourier transform of the longitudinal beam
density distribution λðtÞ. For a Gaussian beam (11),
hðωÞ ¼ e−ω

2σ2
0 .

The coherent energy loss is compensated in the accel-
erating rf cavities every beam turn, as well as the energy
loss U caused by synchrotron radiation. The loss factor can
be derived from the energy balance of the bunch:

qbVrf sin ðϕs þ ΔϕsÞ ¼ U þ k∥q2b; ð15Þ

where Vrf is the rf voltage, ϕs is the synchronous phase. If
the phase shift Δϕs is small, it can be assumed proportional
to the beam current Ib ¼ qbf0 and the loss factor k∥:

Δϕs ¼
Ibk∥

f0Vrf cosϕs
; ð16Þ

Rewriting Eq. (16) in the form:

k∥ ¼
ν2sω

2
0E=e
α

Δts
ΔIb

; Δts ¼
Δϕs

ωrf
; ð17Þ

we can estimate the loss factor from the measurable
beam parameters: current-dependent shift of the bunch
synchronous time Δts=ΔIb and the synchrotron tune νs.
The revolution frequency ω0 and the rf frequency ωrf are
known with high precision.
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FIG. 1. Measured longitudinal beam profile with Haissinski
equation fit.
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A multiparticle tracking code has been developed to
study the single-bunch beam stability. For the longitudinal
motion, the numerical model includes collective effects and
nonlinearity of the rf potential well. The beam is repre-
sented as an ensemble of macroparticles with Gaussian
initial distribution. One-turn transformations of the longi-
tudinal position zi and relative energy deviation εi ¼ ΔE=E
of ith macroparticle are

εi;nþ1 ¼ εi;n þ
Vrf

E=e
cos

�
ωrf

zi;n
c

− ϕs þ
π

2

�
−
U
E
;

zi;nþ1 ¼ zi;n − αcT0εi;nþ1;

T0 ¼ 1.873 μs is the revolution period. Then radiation
damping −ð2T0=τsÞεnþ1 and quantum excitation
ð2σE=EÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
T0=τs

p
terms are also added to εnþ1.

To simulate the beam-impedance interaction, each mac-
roparticle gets an energy kick Δεi every turn:

Δεi ¼ −V∥ðtiÞ
qp
E=e

; ð18Þ

where qp is the macroparticle charge, ti ¼ zi=c,

V∥ðtÞ ¼
1

2π

Z
∞

−∞
Z∥ðωÞΛðωÞeiωtdω; ð19Þ

Z∥ðωÞ is the total longitudinal impedance including BBR
and resistive-wall ones.
The bunch length and synchronous time have been

measured using a streak-camera [13] as functions of the
bunch current Ib varied in the range of 0.05–0.8 mA. The
parameters of the Diamond storage ring related to
the measurements are: E ¼ 3 GeV, σE=E ¼ 1.1 × 10−3,
f0 ¼ 533.8 kHz, α ¼ 1.66 × 10−4, νs ¼ 0.0042, σ0 ¼
12.5 ps (Vrf ¼ 2.5 MV, wigglers are switched on).
The measured bunch profiles have been approximated by

numerical solutions of Haisinski equation (13); at the same
time, the synchronous phase shift has been approximated
by Eq. (16). The longitudinal impedance Z∥ is a sum of
the geometric impedance and the resistive-wall one. The
resistive-wall impedance (2) is calculated for an elliptic
stainless steel chamber (μr ¼ 1 and σ−1c ¼ 7.3 × 10−7 Ωm)
with average half-apertures a ¼ 40 mm and b ¼ 12 mm.
The geometric impedance is modeled by a single broad-
band (Q ¼ 1) resonator (9), the resonance frequency ω∥
and shunt impedance R∥ are the fit parameters. The best fit
gives ω∥ ¼ 2π · 22 GHz, R∥ ¼ 8 kΩ, average fit error is
about 12%.
Figure 2 shows the model of longitudinal impedance

including the BBR (9) and the resistive-wall (2) ones.
A zero-current loss factor calculated with formula (14)
using the model impedance and Gaussian bunch with

σt ¼ 12.5 ps is 54 V=pC, whereas the loss factor estimated
from the measured data is 58� 6 V=pC.
The model impedance shown in Fig. 2 was used for

multiparticle tracking. The machine parameters used for
the tracking are the same as they were during the beam
measurements, the number of macroparticles is 5 × 105.
Figure 3 shows the bunch full width at half-maximum
(FWHM) as a function of beam current (upper plot) and the
current-dependent shift of the bunch synchronous time
(lower plot). The measured data are presented by dots with
error bars together with the fit curves (red lines) and with
the tracking results (green lines).
As one can see, the measured data are in agreement with

the formula within the statistical accuracy of the measure-
ment. The bunch lengthening calculated by multiparticle
tracking agrees quite well too with both the measurement
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and the formula. For a higher beam current, the synchro-
nous time shift calculated by tracking is underestimated
in comparison with the others two. This discrepancy can
probably result from the constant synchronous phase (18)
used in the tracking code, whereas the real rf phase is auto-
tuned with the current-dependent beam load.

IV. TRANSVERSE IMPEDANCE

Resonance interaction of the beam with short-range
transverse wake fields characterized by the transverse
broad-band impedance, results in the transverse mode
coupling. Thewake fields induced by the head of a bunched
beam act on particles of its tail part (a head-tail effect). The
head and tail of the bunch exchange places periodically due
to synchrotron oscillations. The beam motion is dependent

on the chromaticity ξ≡ dνβ
dE=E , νβ is the betatron tune, dE=E

is the relative energy deviation.
If the chromaticity is zero, a fast head-tail instability

occurs when the beam current exceeds a certain threshold,
causing an exponential growth of betatron oscillations. As a
result, the beam particles are lost on the aperture and the
beam intensity drops down to the threshold value. In the
frequency domain, the instability arises when the coherent
(center-of-mass) mode is coupled with lower head-tail mode.
The current-dependent frequency shift of the coherent mode
almost reaches the synchrotron frequency at the threshold.
If the chromaticity is nonzero, a chromatic head-tail

effect arises and some head-tail modes become unstable
for any beam current, without a threshold. The coherent
(center-of-mass) mode damps upon the positive chroma-
ticity and becomes unstable when the latter is negative,
and the higher-order head-tail modes behave oppositely.
The rising/damping rates decrease rapidly with the mode
number, and the higher-order modes are usually not
dangerous for beam stability, since they are suppressed
by the radiation damping. Since only a few of the lowest
modes are essential, the eigenmode analysis is quite
efficient for study of the head-tail effect. The complex
frequency Ω ¼ ωþ i=τ of lth head-tail mode can be found
solving the eigenvalue problem [1]

det

��
Ω − ωβ

ωs
− l

�
I −M

�
¼ 0; ð20Þ

here ωβ is the unperturbed betatron frequency, τ is the
rising/damping time. The matrix elements are

Mkk0 ¼ Ib
β

2νsE=e

X∞
p¼−∞

Z⊥ðω0Þglkðω0 − ωξÞglk0 ðω0 − ωξÞ;

ð21Þ
where β is the average beta function, ω0 ¼ pω0 þ ωβþ
lωs, ωξ ¼ ξω0=α is the chromatic frequency. The functions
characterizing oscillation modes of the Gaussian bunch are

glkðωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πk!ðjlj þ kÞ!p
�
ωσtffiffiffi
2

p
�jljþ2k

exp

�
−
ω2σ2t
2

�
:

ð22Þ

If the frequency shift of coherent (0th) mode is small
compared with the synchrotron frequency ωs, the linear
approximation [1] is applicable:

dΩ
dIb

¼ i
βZeff⊥

4
ffiffiffi
π

p
σtE=e

; ð23Þ

where

Zeff⊥ ¼
P∞

p¼−∞ Z⊥ðω0Þhðω0 − ωξÞP∞
p¼−∞ hðω0 − ωξÞ

ð24Þ

is the effective broad-band impedance, hðωÞ is the bunch
power spectrum.
If the chromaticity is positive, the frequency shift Δω ¼

ReΩ − ωβ and chromatic damping time τ ¼ 1=ImΩ of the
coherent (l ¼ 0) mode can be obtained by spectral analysis
of beam oscillations registered by a turn-by-turn beam
position monitor.
Computer simulations of the interaction between a

single-bunch beam and short-range transverse wake fields
have been performed using a multiparticle tracking code.
For the transverse motion, the numerical model includes
linear matrix transformations with chromatic shift of
betatron tunes as well as collective effects. Betatron motion
of ith macroparticle at nth turn is described by the one-turn
matrix transformation of a position-angle vector

�
xi;nþ1

x0i;nþ1

�
¼

� cos 2πνi;n β sin 2πνi;n

− 1
β sin 2πνi;n cos 2πνi;n

��
xi;n
x0i;n

�
: ð25Þ

Here x and x0 denotes horizontal or vertical position and
angle, respectively; β is the beta function, νi;n is the one-
turn betatron phase advance including chromatic shift:

νi;n ¼ νβ þ ξεi;n; ð26Þ

νβ is the unperturbed betatron tune, ε ¼ ΔE=E is the
relative energy deviation, ξ is the chromaticity. For the
horizontal motion, the dispersive terms ηxð1 − cos 2πνi;nÞ
and ηx

β sin 2πνi;n are added to xi;nþ1 and x0i;nþ1, respectively.
Here ηx is the dispersion. The radiation damping and
quantum excitation terms are included as well.
To simulate the beam-impedance interaction, each mac-

roparticle gets a transverse Δx0i kick

Δx0i ¼ xVxðtiÞ
qp
E=e

; ð27Þ

where qp is the macroparticle charge,
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xVxðtÞ ¼ −
i
2π

Z
∞

−∞
ZxðωÞΛxðωÞeiωtdω; ð28Þ

ZxðωÞ is the broad-band transverse impedance (horizontal
or vertical),

ΛxðωÞ ¼
Z

∞

−∞
λðtÞxðtÞe−iωtdt; ð29Þ

λðtÞ is the longitudinal bunch profile, xðtÞ is the transverse
position of corresponding particles.
A series of beam studies has been carried out at the

Diamond storage ring in single-bunch mode and in two
regimes: with 13 in-vacuum IDs open or closed. The
chromaticity was set close to ξx ¼ ξy ¼ 0; 1; 2. Both
horizontal and vertical coherent beam oscillations were
excited by the kickers. To measure turn-by-turn beam
positions, the pickup of transverse multibunch feedback
system [14] was used. Its high sensitivity allows us to limit
the beam oscillation amplitude down to 100 μm and
thereby to reduce amplitude-dependent nonlinear effects,
which can deteriorate the measurement accuracy. The
measurements have been performed with the single-bunch
current varying in the 0.05–0.8 mA range.
In Fig. 4, an example of the horizontal (upper plots) and

vertical (lower plots) turn-by-turn beam position (left)
measured with the bunch current of 0.03 mA, 0.17 mA,
and 0.6 mA and their spectra (right) are presented. The
beam positions are plotted as functions of time, amplitude
spectra—as functions of tune. Both horizontal and vertical
chromaticities were set to 1. As one can see, the damping
time of the coherent oscillation mode decreases rapidly
with the beam current. In the spectrum graph, it can be
also seen that for Ib ¼ 0.6 mA, the amplitude of −1 st

vertical head-tail mode is almost the same as the amplitude
of 0th mode, this indicates the proximity of the instability
threshold.
The solutions of eigenvalue problem (20) have been used

for approximation of the measured frequency shift (real part
of ΔΩ) and chromatic damping rate (imaginary part of
ΔΩ). This combined fitting technique allows us to improve
the fit accuracy of the measured data, especially for the
horizontal plane where the current-dependent tune shift is
hardly measurable, whereas the damping rate can be
measured with much better accuracy.
The total transverse model impedance consists of BBR

and resistive-wall components. The resistive-wall imped-
ance is calculated with formula (3) for a stainless steel
chamber (μr ¼ 1 and σ−1c ¼ 7.3 × 10−7 Ωm) with average
horizontal half-aperture of 40 mm and vertical half-aperture
of 13 mm (open IDs) and 12 mm (closed IDs). For both
horizontal and vertical planes, the geometric impedance is
modeled by a single broad-band (Q ¼ 1) resonator (10), the
resonance frequency ωx;y and shunt impedance Rx;y were
the fit parameters.
The combined fit of the measured vertical current-

dependent tune shift and chromatic damping rate gives
the parameters of the vertical BBR impedance: the shunt
impedance is Ry ¼ 0.27 MΩ=m if the IDs are open and
Ry ¼ 0.32 MΩ=m if the IDs are closed, the resonant
frequency is ωry ¼ 2π · 30 GHz in both cases. Average
fit error is about 10%. Figure 5 shows the model of vertical
broad-band impedance including the BBR (10) and the
resistive-wall (3) components.
The model vertical impedance shown in Fig. 5 was used

for multiparticle tracking. The machine parameters used for
the tracking are the same as they were during the beam
measurements, the number of macroparticles is 5 × 105.
Figure 6 shows the current-dependent shift of vertical
betatron tune νy ¼ ωy=ω0 (upper plot) and damping rate
1=τy (lower plot), the in-vacuum IDs are open. The
measured values are shown by blue points with error
bars, red lines represent the eigenvalues of (20) calculated
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for 3 values of chromaticity according to the measurements,
the green lines represent the tracking results. Note that the
betatron tune graphs corresponding to different values of
chromaticity are manually separated for better visibility in
this and the next figures. A zero-current vertical kick factor
calculated using the model broad-band impedance and
Gaussian bunch with σt ¼ 12.5 ps is about 8 kV=ðpCmÞ if
the in-vacuum IDs are open, and it is about 10 kV=ðpCmÞ
if the IDs are closed.
The same fit procedure has been performed for the

measured horizontal current-dependent tune shift and
chromatic damping rate. The fit results are the parameters
of horizontal BBR impedance: ωrx ¼ 2π · 16 GHz,
Rx ¼ 0.10 MΩ=m, Q ¼ 1. Possible variation related to

the open IDs/closed IDs regimes was not detected in these
measurements. Figure 7 shows the model of horizontal
broad-band impedance including BBR and resistive-wall
components. A zero-current horizontal kick factor calcu-
lated using the model impedance and Gaussian bunch with
σt ¼ 12.5 ps is about 3 kV=ðpCmÞ.
Figure 8 shows the horizontal tune νx ¼ ωx=ω0 (upper

plot) and damping rate 1=τx (lower plot) as functions of
beam current. For the horizontal chromaticity of 0,1,2,
there are measured values (blue points with error bars),
solutions of the eigenvalue problem (red lines), and the
results of tracking of 5 × 105 macroparticles (green lines).
As one can see, the coherent shift of the horizontal tune is
very small because the dipole and quadrupole impedances
contributed by asymmetric sections of vacuum chamber
almost compensate each other, but the chromatic damping
rate is measured with much better accuracy.

V. CONCLUSION

Beam-based numerical models of broad-band imped-
ances have been developed at the Diamond Light Source.
For each axis (longitudinal, horizontal, and vertical), the
model includes a single broad-band resonator and a
resistive-wall impedance calculated analytically using
known dimensions and resistivity of the vacuum chamber.
To get the model parameters, a set of measured data has
been used including current-dependent shift of betatron
tunes and synchronous phase, chromatic damping times,
and bunch lengthening. The turn-by-turn beam position
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was measured using transverse multibunch feedback sys-
tem, and the longitudinal bunch profile was measured using
a streak-camera. Performance of the beam diagnostic
equipment was good enough to measure precisely these
beam parameters characterizing the interaction between a
single-bunch beam and broad-band coupling impedance. A
complex frequency shift obtained by solving an eigenvalue
problem was used to fit the measured current-dependent
betatron tune shift (real part) and chromatic damping rate
(imaginary part). This combined fitting technique allows us
to improve the fit accuracy of the measured data, especially
for the horizontal plane, because the current-dependent
shift of the horizontal tune is hardly measurable due to
dipole and quadrupole impedance compensation, whereas
the damping rate can be measured quite precisely. The
beam-based impedance models have been used as input
parameters of the multiparticle tracking code, the tracking
results have been compared with the measured data. The
measured betatron tunes and chromatic damping rates agree
rather well with the tracking data. So we can conclude that
the impedance models and tracking algorithms are
adequate for simulations of single-bunch collective effects
resulting from interaction between a beam and the broad-
band impedance. Since Diamond has the shortest natural
bunch length among all light sources in standard operation,
the applicability of the collective effects analysis to the
regime relative to Diamond can be relevant to many other
accelerator facilities including next generation of light
sources.
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