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Fringe fields in multipole magnets can have a variety of effects on the linear and nonlinear dynamics of
particles moving along an accelerator beam line. An accurate model of an accelerator must include realistic
models of the magnet fringe fields. Fringe fields for dipoles are well understood and can be modeled at an
early stage of accelerator design in such codes as MAD8, MADX, GPT or ELEGANT. Existing techniques for
quadrupole and higher order multipoles rely either on the use of a numerical field map, or on a description
of the field in the form of a series expansion about a chosen axis. Usually, it is not until the later stages of a
design project that such descriptions (based on magnet modeling or measurement) become available.
Furthermore, series expansions rely on the assumption that the beam travels more or less on axis throughout
the beam line; but in some types of machines (for example, Fixed Field Alternating Gradients or FFAGs)
this is not a good assumption. Furthermore, some tracking codes, such as GPT, use methods for including
space charge effects that require fields to vary smoothly and continuously along a beam line: in such cases,
realistic fringe field models are of significant importance. In this paper, a method for constructing analytical
expressions for multipole fringe fields is presented. Such expressions allow fringe field effects to be
included in beam dynamics simulations from the start of an accelerator design project, even before detailed
magnet design work has been undertaken. The magnetostatic Maxwell equations are solved analytically
and a solution that fits all orders of multipoles is derived. Quadrupole fringe fields are considered in detail
as these are the ones that give the strongest effects. The analytic expressions for quadrupole fringe fields are
compared with data obtained from numerical modeling codes in two cases: a magnet in the high luminosity
upgrade of the Large Hadron Collider inner triplet, and a magnet in the nonscaling FFAG EMMA. In both
examples, the analytical expressions provide a good approximation to the numerical field maps.
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I. INTRODUCTION

Fringe fields represent regions that lie at the edges of a
magnet where there is a transition from the nominal field to
zero field, or to the field in an adjacent magnet. In multipole
magnets, the nominal field has no longitudinal component.
However, in the fringe field region where the fields vary
with longitudinal position, Maxwell’s equations require the
presence of a nonzero longitudinal field component. For
dipoles, the nominal field has only a single component. In
dipole fringe fields, therefore, the field has only two
components, and (assuming that the fields are independent
of the horizontal transverse coordinate) analytical expres-
sions for the field can be obtained by solving the two-
dimensional Laplace equation. For quadrupoles and
higher-order multipoles, however, the fields in the fringe
region have three components, and analytical expressions

for these fields must be obtained by solving the three-
dimensional Laplace equation. Fringe fields can impact the
motion of particles passing through magnets in a number of
ways. For example, they can introduce nonlinearities in the
equation of motion, or they can make a substantial
contribution to the desired effects of the nominal field.
The latter situation is the case in EMMA, for example,
where the large aperture of the quadrupoles compared to
their lengths means that the fringe fields dominate the
focusing effects of these magnets. Nonlinearities from
fringe fields can become important if the transverse size
of the beam is large, or if the beam traverses a multipole at
an angle and some distance from the magnetic axis: this is
often the case in final focus quadrupoles in colliders. The
implementation of fringe fields is also important in some
tracking codes which include effects such as space charge,
as is the case in GPT (General Particle Tracer) [1], for
example. This requires that all fields be continuous so that
there are smooth regions where the fields transit from their
maximal value to zero and vice versa.
There are several models available for the study of fringe

fields for multipoles, see for example [2–7] and references
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therein. However, existing models are usually limited to on-
axis and midplane approximations, meaning that the field
in the full space of the multipole typically has to be
computed with elliptic integrals. Therefore, for simple
but accurate particle tracking, a significant amount of effort
and computing power goes into just the calculation of the
fields that particles see. The results obtained in this paper
make possible an alternative method, based on analytical
expressions for the fields as functions of position, which
provide exact solutions to the static Maxwell equations in
three dimensions. This allows for arbitrarily smooth fields
to be constructed and used in tracking codes as well as
the possible creation of transfer maps. The fringe fields
considered here have associated scalar and vector poten-
tials. From the scalar potential it is possible to inspect the
shape of the pole face for an iron-dominated magnet
generating the given field. Using the vector potential it
is possible to perform symplectic integration of the equa-
tions of motion for a particle in the field, leading to the
construction of transfer maps for the fringe region. Further,
it may be possible to improve the efficiency of the magnet
design process by making some initial assumptions based
on the formulas presented in this paper. However, a full
three-dimensional numerical field map will ultimately be
needed (obtained from a numerical magnet modeling code)
in order to achieve the accuracy that is needed for validating
the design of many accelerators.
This paper develops the mathematical framework that

was initially presented in [8], gives further details and
results, and presents two examples. In Sec. II, fringe fields
for dipoles are briefly reviewed. The formalism used for
dipoles is extended to fully three-dimensional fields in
Sec. III. A complete solution to the static Maxwell
equations, in a form suitable for application to multipole
fringe fields, is derived and presented. Expressions for
fringe fields in multipoles of arbitrary order are then given
in Sec. IV. A particular case of a quadrupole fringe field,
with a simple falloff in the form of an Enge function [9], is
then presented in Sec. V. All the salient properties are
described in order to demonstrate that the field behaves in
the way expected of a quadrupole, first inside the magnet,
then in the fringe field region, and finally at a large distance
from the magnet (so that the field effectively falls to zero).
In Sec. VI, the scalar and vector potentials for fringe fields
in the case of a multipole of arbitrary order are discussed. In
Sec. VII, two quadrupole examples are presented. The first
is the high luminosity upgrade of the Large Hadron
Collider (HL-LHC) inner triplet, where the beam size
and trajectory in the quadrupoles providing strong focusing
close to the interaction point make fringe field effects
significant. The second example is based on the quadrupole
magnets in the nonscaling Fixed Field Alternating Gradient
(FFAG), EMMA. The large aperture of these magnets
compared to their length means that the fringe fields make a

dominant contribution to the focusing effects. Conclusions

are given in Sec. VIII.

II. FRINGE FIELDS FOR DIPOLES

The goal is to derive expressions for multipole fringe
fields that satisfy Maxwell’s equations. To ensure the
validity of the solution and the corresponding assumptions,
it is important to write all equations explicitly. For static
fields in the absence of any electric current, the equations
for the magnetic field ~B are

∇ × ~B ¼ ∇ · ~B ¼ 0:

For dipole magnets, it is sufficient to consider a two-
dimensional version of the equations. Taking Bx ¼ 0, we
are left with

∂yBy þ ∂zBz ¼ ∂yBz − ∂zBy ¼ 0; ð1Þ

together with

∂xBz ¼ ∂xBy ¼ 0; ð2Þ

which excludes all dependence on x. Maxwell’s equa-
tions (1) imply

Δy;zBy ¼ Δy;zBz ¼ 0;

where Δy;z ¼ ∂2
y þ ∂2

z . Both equations (for By and Bz) can
easily be solved:

By ¼ fyðzþ iyÞ þ gyðz − iyÞ;
Bz ¼ fzðzþ iyÞ þ gzðz − iyÞ;

for arbitrary functions fy, gy, fz and gz. Requiring that
equations (1) be solved as well, we end up with

By ¼ fðzþ iyÞ þ gðz − iyÞ;
Bz ¼ −ifðzþ iyÞ þ igðz − iyÞ;

for arbitrary functions f and g. If we further restrict
ourselves to real magnetic fields, we obtain

By ¼ fðzþ iyÞ þ f̄ðz − iyÞ; ð3Þ

Bz ¼ −ifðzþ iyÞ þ if̄ðz − iyÞ; ð4Þ

where the function f̄ is the complex conjugate of the
function f. By and Bz are given by twice the real and
imaginary parts of the function fðzþ iyÞ, respectively.
As an illustration of these results, consider the following

form for dipole fringe fields (that is used, for example, in
the code GPT [10]):
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By ¼
B0

2π

�
π − arctan

�
z

αþ y

�
− arctan

�
z

α − y

��
; ð5Þ

Bz ¼
B0

4π
fln½z2 þ ðαþ yÞ2� − ln½z2 þ ðα − yÞ2�g; ð6Þ

where B0 is the nominal strength of the dipole field, and α is
a parameter (related to the aperture of the magnet) affecting
the precise shape of the fringe field. Using the result

½zþ iðα� yÞ�½z − iðα� yÞ� ¼ z2 þ ðα� yÞ2;

the expression for Bz in (6) may be rewritten as

Bz ¼
B0

4π
fln½zþ iðαþ yÞ� þ ln½z − iðαþ yÞ�

− ln½zþ iðα − yÞ� − ln½z − iðα − yÞ�g;

whence fðzþ iyÞ has the form

fðzþ iyÞ ¼ iB0

4π
½lnðzþ iyþ iαÞ − lnðzþ iy − iαÞ�:

Then, using Eq. (3) we find By to be given by

By ¼
iB0

4π
fln½zþ iðαþ yÞ� − ln½z − iðαþ yÞ�

þ ln½zþ iðα − yÞ� − ln½z − iðα − yÞ�g;

which may be converted into the same form as By given
in (5).
As a second illustration, consider a magnetic field in

which the By component varies along the z axis as an Enge
function [9]:

Byjy¼0
¼ 1

1þ eEðzÞ
; ð7Þ

with EðzÞ given by

EðzÞ ¼
XN−1

n¼0

an

�
z
D

�
n
; ð8Þ

for some set of N coefficients an. D is the aperture of the
dipole, and for simplicity we consider a magnet with unit
field strength (i.e., By ¼ 1 in the body of the magnet). In
general, the number of terms in the summation (8) can be
chosen to customize the shape of the falloff of the field,
with the values of the coefficients determined by modeling
or measurement. For example, a six-parameter Enge
function is used in [11]. The main advantage of the
Enge function is that it is analytic and can be made to
tend to asymptotic values arbitrarily fast. The main dis-
advantage is that, if several coefficients an with N > 1 are
included, features of the fringe field cannot readily be
associated with particular coefficients. For example, the

“hardness” of the fringe field (the distance taken for the
field to fall below a given value) depends on the combined
effect of all the coefficients. Other functions that decay
sufficiently rapidly may be used instead of the Enge
function [12,13]. For simplicity, we consider in this paper
only Enge functions where a1 ≠ 0 and all other coefficients
are set to zero. Because we only have one nonzero
coefficient, we can normalize it to unit magnet aperture
(effectively replacing a1 with a1=D) in (8) without loss of
generality.
Given a dipole fringe field (7) with Enge-type falloff on

the z axis, the results (3) and (4) imply that the dependence
of By on coordinates y and z can be written

By ¼
1

2ð1þ eEðzþiyÞÞ þ
1

2ð1þ eEðz−iyÞÞ : ð9Þ

Furthermore, Bz has the form

Bz ¼
−i

2ð1þ eEðzþiyÞÞ þ
i

2ð1þ eEðz−iyÞÞ ; ð10Þ

where the complex function Eðzþ iyÞ is obtained by
replacing z with zþ iy in (8). If we consider the simple
case Eðzþ iyÞ ¼ zþ iy (i.e., a single-parameter Enge
function with a1 ¼ 1) then Eqs. (9) and (10) simplify to

By ¼
1þ ez cos y

1þ 2ez cos yþ e2z
; ð11Þ

Bz ¼
−ez sin y

1þ 2ez cos yþ e2z
: ð12Þ

This may be extended to include as many parameters
of the Enge function as desired. So, if Eðzþ iyÞ ¼
a1ðzþ iyÞ þ a2ðzþ iyÞ2, with a1 and a2 arbitrary con-
stants, we have

By ¼
1þ eθ cosψ

1þ 2eθ cosψ þ e2θ
;

Bz ¼
−eθ sinψ

1þ 2eθ cosψ þ e2θ
;

where θ ¼ a1zþ a2ðz2 − y2Þ and ψ ¼ yða1 þ 2a2zÞ.
We can plot the fringe fields (9) and (10) in the simplest

case Eðzþ iyÞ ¼ zþ iy, as shown in Fig. 1. Each field
component has singularities, of which two are visible in the
plots. From the denominator of (9) and (10), it can be seen
that the singularities appear when (reintroducing the
arbitrary aperture diameter D)

1þ 2ez=D cosðy=DÞ þ e2z=D ¼ 0:

Hence, singularities occur at vertical positions:
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y ¼ �lπD;

where l is an odd integer. The presence of singularities
does not cause any problems for modeling the field in
practice, as it is always possible to arrange that the
singularities are located outside the region of interest. It
is not possible to avoid the appearance of singularities since
any solution to Laplace’s equation that is bounded at
infinity either has singularities or is constant. In practical
terms, the singularities can be associated with the currents
acting as sources of the magnetic field. The singularities
have a tanlike behavior: at the exact point where z ¼ 0, the
value of the field is precisely half of the maximum and
everything is smooth. This can be verified by setting z ¼ 0
in the expressions for the dipole fringe fields above and
using l’Hopital’s rule.
Locally, it is possible to find potentials for the dipole

fringe fields. For magnetostatic fields in the absence of
currents, the field can be derived from a scalar potential φ, by

~B ¼ ∇φ: ð13Þ

The scalar potential exists because ∇ × ~B ¼ 0. For the
simple case discussed above, the scalar potential is given by

φ¼ yþ i
2
lnð1þ ezþiyÞ− i

2
lnð1þ ez−iyÞþ constant; ð14Þ

with the only gauge freedom being given by the constant.
From the scalar potential, it is possible to obtain a description
of the pole-face geometry, since this is given by surfaces
where φ is constant. This is shown in Fig. 2 where two
profiles of the pole face can be seen. It should be remembered

that there is a scale invariance in the expressions depending
on the dimensions of the dipole. Figure 2 also shows that the
pole-face profiles encompass the singularities: this is con-
sistent with the assertion made earlier that the singularities are
associated with currents acting as sources of the field.
The usual vector potential ~A is related to the field by

~B ¼ ∇ × ~A: ð15Þ

FIG. 1. Field components By and Bz in the fringe field region of a dipole magnet. The falloff of the field in this case in the plane
y ¼ 0 is given by a single-parameter Enge function.

FIG. 2. Scalar potential φ in the fringe field region of a dipole
magnet. The field has a falloff in the plane y ¼ 0 described by a
single-parameterEngefunction, thecontoursofconstantφshowing
possible pole-face profiles.
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The existence of the vector potential is ensured by the

Maxwell equation ∇ · ~B ¼ 0. The vector potential has
extensive gauge freedom, but in one of its simplest forms
the vector potential in a dipole fringe field can be given as

Ax ¼ z −
1

2
lnð1þ ezþiyÞ − 1

2
lnð1þ ez−iyÞ; ð16Þ

with the other components of ~A set to zero.

III. ELEMENTARY SOLUTION
IN A FRINGE FIELD

General expressions for the fringe fields in a dipole
followed from writing Maxwell’s equations in the form (1).
In a dipole, we only needed to consider two field compo-
nents (By and Bz) as functions of two coordinates (y and z).
For higher order multipoles, it is necessary to consider the
dependence of all three field components on all three
coordinates. One approach might be to look for solutions to
the three-dimensional Laplacian:

Δx;y;zφ≡ ∂2
xφþ ∂2

yφþ ∂2
zφ ¼ 0;

and obtain the field components from ~B ¼ ∇φ. A formal
solution (due to Whittaker [14–16]; also given, for exam-
ple, in [17]) is known, and can be expressed as

φðx; y; zÞ ¼ fðzþ ix cos ϑþ iy sinϑÞ; ð17Þ

where f is an arbitrary analytic function, and ϑ is an
arbitrary parameter (that can take complex as well as real
values). Of course, it is possible to superpose solutions of
the form (17) with different values of ϑ to obtain solutions
to Laplace’s equation in particular cases. For example, the
potential

φðx; y; zÞ ¼ 1

2π

Z
2π

0

dϑ
zþ ix cosϑþ iy sinϑ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
represents the electrostatic potential around a point charge.
It is also possible to use (17) to construct potentials from
which fields may be derived with the properties expected of
fringe fields in multipole magnets. In this paper, we give a
derivation of suitable expressions for the fields in such
cases; however, rather than starting from (17) we start from
Maxwell’s equations for magnetostatic fields in free space.
This leads to somewhat different expressions for the fields
than would naturally be derived from (17), although it is
straightforward to show that the expressions resulting from
the two starting points are directly related: this is discussed
further in Sec. VI A. It is possible that different forms of the
expressions for multipole fringe fields will be convenient
for different cases. The examples that we consider in

Sec. VII are based on implementation of the expressions
derived from solution of Maxwell’s equations.
Our goal is to find solutions to Maxwell’s equations that

describe the field in the fringe field region of a multipole
magnet. The basis of our approach is to define new
variables in terms of which Maxwell’s equations can be
written for a general three-dimensional magnetostatic field
in a form very similar to (1). This raises the possibility of
finding expressions for fringe fields in higher order multi-
poles by applying similar techniques to those described in
Sec. II for dipoles. To begin, we define new variables:

u ¼ 1ffiffiffi
2

p ðxþ iyÞ; ð18Þ

v ¼ 1ffiffiffi
2

p ðx − iyÞ; ð19Þ

ζ ¼
ffiffiffi
2

p
z: ð20Þ

We express the magnetic field in terms of components:

Bu ¼
1ffiffiffi
2

p ðBx þ iByÞ; ð21Þ

Bv ¼
1ffiffiffi
2

p ðBx − iByÞ; ð22Þ

Bζ ¼
1ffiffiffi
2

p Bz: ð23Þ

In terms of the new variables, the magnetostatic Maxwell’s
equations can be written:

∂uBu þ ∂ζBζ ¼ 0; ð24Þ

∂vBv þ ∂ζBζ ¼ 0; ð25Þ

∂ζBu − ∂vBζ ¼ 0; ð26Þ

∂ζBv − ∂uBζ ¼ 0: ð27Þ

From (24) and (25), one can see immediately that, in the
absence of any fringe fields, the general solution of
Maxwell’s equations for any magnet, acting transversely
only and without fringe (Bζ ¼ 0) is given by

Bu ¼ BuðvÞ;
Bv ¼ BvðuÞ;

for any function BuðvÞ (that is a function of v only) and
BvðuÞ (that is a function of u only). The case of a multipole
of order n (n ¼ 0 for a dipole, n ¼ 1 for a quadrupole,
n ¼ 2 for a sextupole, and so on) is given by
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Bu ¼ ivn; ð28Þ

Bv ¼ −iun; ð29Þ

Bζ ¼ 0: ð30Þ

Using (18)–(23), we find that the transverse components of
the field in this case in Cartesian coordinates are

Bx ¼ 2
1−n
2 sinðnθÞ;

By ¼ 2
1−n
2 cosðnθÞ;

where θ is the azimuthal angle with respect to the x axis. In
cylindrical polar coordinates, the radial field component is

Br ¼ 2
1−n
2 sinððnþ 1ÞθÞ;

from which we see that the field given by (28)–(30) has the
behavior of a multipole of order n.
To describe a multipole fringe field, we need to include a

dependence of the fields on the longitudinal coordinate ζ.
One way to proceed is to write down expressions for the
fields (as functions of u, v and ζ) with a high degree of
generality, but with a structure based on a generalization of
the fringe fields for the dipole case. Substituting the
assumed expressions into Maxwell’s equations leads to
explicit constraints on the form that the expressions for the
fields can take: however, if the initial assumption is
sufficiently general, the constraints allow the description
of a field that represents a multipole (of any given order) in
the body of a magnet, but that decays in any desired fashion
along the axis of the magnet with increasing distance from
the magnet (i.e., with increasing ζ). Details of this process
are given in the Appendix. The result is a solution to
Maxwell’s equations of the following form:

Bu ¼ ibfðζ þ ihÞ − ibgðζ − ihÞ; ð31Þ

Bv ¼
i
b
fðζ þ ihÞ − i

b
gðζ − ihÞ; ð32Þ

Bζ ¼ fðζ þ ihÞ þ gðζ − ihÞ; ð33Þ

where f and g are arbitrary functions, b is an arbitrary
parameter (which can take real or complex values), and h is
defined by

h ¼ u
b
þ bv: ð34Þ

For the field (31)–(33) to describe a physical fringe field for
a multipole magnet, additional constraints must be imposed
on the functions f and g. Furthermore, it will be necessary
to superpose solutions with different values of the param-
eter b. We therefore refer to (31)–(33) as the “elementary”
solution (in the sense that it provides the basic elements for
constructing physical multipole fringe fields). In the fol-
lowing sections, we discuss how physical multipole fringe
fields can be constructed based on the elementary solution,
and provide some examples.

IV. MULTIPOLE FRINGE FIELDS
WITH ARBITRARY FALLOFF

From inspection of the elementary solution (31)–(33) we
see that Bu ∝ Bv: no physical magnetic fields can be
represented this way. However, because of the linearity
of Maxwell’s equations, any linear combination of elemen-
tary solutions gives a solution to Maxwell’s equations.
Physical solutions corresponding to multipole fields can be
constructed by taking appropriate combinations of elemen-
tary solutions. Further (physical) constraints are that the
field decays to zero as ζ → ∞ and that the field matches the
nominal multipole field inside the magnet. In this section,
we describe in detail the procedure for constructing an
expression for the fringe field in a quadrupole, and then
generalize our results to multipoles of any order.
To obtain the correct behavior of the field as a function of

ζ, the functions fðζ þ ihÞ and gðζ − ihÞ are each written as
a product of two factors. The first factor, ðζ þ ihÞn and
ðζ − ihÞn for f and g respectively, represents the (nominal)
multipole for some constant n. The second factor,
Fðζ þ ihÞ and Gðζ − ihÞ for f and g respectively, is a
multiplicative function that is chosen to give the desired
decay as ζ becomes large (ζ → ∞), and to give the correct
field in the body of the magnet (ζ → −∞). Thus, we write

fðζ þ ihÞ ¼ ðζ þ ihÞnFðζ þ ihÞ; ð35Þ

gðζ − ihÞ ¼ ðζ − ihÞnGðζ − ihÞ: ð36Þ

Following the form of (31)–(33), let Bu, Bv and Bζ be given
by linear combinations of the elementary solution:

Bu ¼
Xm
j¼1

cj½ibjðζ þ ihjÞnFjðζ þ ihjÞ − ibjðζ − ihÞnGjðζ − ihjÞ�; ð37Þ

Bv ¼
Xm
j¼1

cj

�
i
bj

ðζ þ ihjÞnFjðζ þ ihjÞ −
i
bj

ðζ − ihjÞnGjðζ − ihjÞ
�
; ð38Þ
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Bζ ¼
Xm
j¼1

cj½ðζþ ihjÞnFjðζþ ihjÞþðζ− ihjÞnGjðζ− ihjÞ�;

ð39Þ
where

hj ¼
u
bj

þ bjv; ð40Þ

and m is a constant determined by the number of copies of
the elementary solution needed to construct a physical
multipole of the desired order. The constant n determines
the order of the multipole. Within the body of the magnet
(i.e., in the limit ζ → −∞), Bu ¼ ivn, Bv ¼ −iun, and

Bζ ¼ 0: these conditions impose a number of constraints on
the constants bj and cj, which are discussed in the
remainder of this section. We first consider in turn quadru-
pole, sextupole and octupole magnets. The results in these
cases establish a pattern that is readily generalized to
multipole magnets of arbitrary order.

A. Quadrupole magnets

A quadrupole field is obtained by putting n ¼ 1 in
Eqs. (35) and (36). Within the body of the magnet (far from
any fringe field) Fjðζ þ ihjÞ ¼ Gjðζ − ihjÞ ¼ 1 for any j.
The required behavior of the fields in the body of the
magnet can be obtained by taking m ¼ 2 (larger values of
m can be used, but are not required). Then, putting Bu ¼ iv,
Bv ¼ −iu and Bζ ¼ 0 gives

ic1b1

�
ζ þ i

u
b1

þ ib1v

�
− ic1b1

�
ζ − i

u
b1

− ib1v

�
þ ic2b2

�
ζ þ i

u
b2

þ ib2v

�
− ic2b2

�
ζ − i

u
b2

− ib2v

�
¼ iv;

i
c1
b1

�
ζ þ i

u
b1

þ ib1v

�
− i

c1
b1

�
ζ − i

u
b1

− ib1v

�
þ i

c2
b2

�
ζ þ i

u
b2

þ ib2v

�
− i

c2
b2

�
ζ − i

u
b2

− ib2v

�
¼ −iu;

c1

�
ζ þ i

u
b1

þ ib1v

�
þ c1

�
ζ − i

u
b1

− ib1v

�
þ c2

�
ζ þ i

u
b2

þ ib2v

�
þ c2

�
ζ − i

u
b2

− ib2v

�
¼ 0:

Thus, we have three equations to satisfy:

2c1b21 þ 2c2b22 ¼ −i;

−2
c1
b21

− 2
c2
b22

¼ −i;

c1 þ c2 ¼ 0:

Therefore, inside the magnet, the coefficients bj and cj
must satisfy the following constraints:

c1 ¼ −
i

2ðb21 − b22Þ
; ð41Þ

c2 ¼ −
i

2ðb22 − b21Þ
; ð42Þ

b1 ¼ � 1

b2
: ð43Þ

We are left with the freedom of choosing one constant,
which we take to be b2. We shall consider the significance
of this constant in more detail later, but for now we note that
to avoid b1 becoming singular, b2 must not be equal to 0;
and to avoid c1 and c2 becoming singular, b2 must not be
equal to �1 or �i. Also, the field is unchanged if we
replace b2 by 1=b2.

The results for fields in quadrupole magnets can be
extended to higher order multipoles in a straightforward
way. However, the higher the order, the more copies of the
elementary solution are needed to construct fields with the
required properties. In the following subsections, we shall
consider explicitly the cases of sextupole and octupole
magnets, to establish a pattern from which the results for a
general multipole magnet can be written down.

B. Sextupole magnets

A sextupole field is obtained by putting n ¼ 2 in
Eqs. (35) and (36). To obtain the constraints on the various
coefficients cj and bj, we can proceed in close analogy with
the case of the quadrupole magnet. In particular, within
the body of the magnet (far from any fringe field)
Fjðζ þ ihjÞ ¼ 1 and Gjðζ − ihjÞ ¼ −1 for any j, and
the field is given by

Bu ¼ iv2;

Bv ¼ −iu2;

Bζ ¼ 0:

The corresponding constraints are

ANALYTICAL EXPRESSIONS FOR FRINGE FIELDS IN … Phys. Rev. ST Accel. Beams 18, 064001 (2015)

064001-7



ic1b1

�
ζ þ i

u
b1

þ ib1v

�
2

þ ic1b1

�
ζ − i

u
b1

− ib1v

�
2

þ ic2b2

�
ζ þ i

u
b2

þ ib2v

�
2

þ ic2b2

�
ζ − i

u
b2

− ib2v

�
2

þic3b3

�
ζ þ i

u
b3

þ ib3v
�

2

þ ic3b3

�
ζ − i

u
b3

− ib3v
�

2

¼ iv2;

i
c1
b1

�
ζ þ i

u
b1

þ ib1v

�
2

þ i
c1
b1

�
ζ − i

u
b1

− ib1v

�
2

þ i
c2
b2

�
ζ þ i

u
b2

þ ib2v

�
2

þ i
c2
b2

�
ζ − i

u
b2

− ib2v

�
2

þi
c3
b3

�
ζ þ i

u
b3

þ ib3v

�
2

þ i
c3
b3

�
ζ − i

u
b3

− ib3v

�
2

¼ −iu2;

c1

�
ζ þ i

u
b1

þ ib1v

�
2

− c1

�
ζ − i

u
b1

− ib1v

�
2

þ c2

�
ζ þ i

u
b2

þ ib2v

�
2

− c2

�
ζ − i

u
b2

− ib2v

�
2

þc3

�
ζ þ i

u
b3

þ ib3v

�
2

− c3

�
ζ − i

u
b3

− ib3v

�
2

¼ 0:

There are four equations to satisfy, namely,

2c1b31 þ 2c2b32 þ 2c3b33 ¼ −1;

−2
c1
b31

− 2
c2
b32

− 2
c3
b33

¼ −1;

c1b1 þ c2b2 þ c3b3 ¼ 0;
c1
b1

þ c2
b2

þ c3
b3

¼ 0:

Finally, the constraints on the coefficients bj and cj may be
written

c1 ¼ −
b1

2ðb21 − b22Þðb21 − b23Þ
;

c2 ¼ −
b2

2ðb22 − b21Þðb22 − b23Þ
;

c3 ¼ −
b3

2ðb23 − b21Þðb23 − b22Þ
;

b1 ¼ � i
b2b3

:

For a sextupole, there are two free parameters, which we
can take to be b2 and b3.

C. Octupole magnets

An octupole field is obtained by putting n ¼ 3
in Eqs. (35) and (36). Within the body of the magnet
Fjðζ þ ihjÞ ¼ Gjðζ − ihjÞ ¼ 1 for any j, and the field is
given by

Bu ¼ iv3;

Bv ¼ −iu3;

Bζ ¼ 0:

Following the same procedure as for the quadrupole
and the sextupole, the constraints on the coefficients cj
and bj are

ic1b1

�
ζ þ i

u
b1

þ ib1v

�
3

− ic1b1

�
ζ − i

u
b1

− ib1v

�
3

þ ic2b2

�
ζ þ i

u
b2

þ ib2v

�
3

− ic2b2

�
ζ − i

u
b2

− ib2v

�
3

þ ic3b3

�
ζ þ i

u
b3

þ ib3v

�
3

− ic3b3

�
ζ − i

u
b3

− ib3v

�
3

þ ic4b4

�
ζ þ i

u
b4

þ ib4v

�
3

− ic4b4

�
ζ − i

u
b4

− ib4v

�
3

¼ iv3;

i
c1
b1

�
ζ þ i

u
b1

þ ib1v

�
3

− i
c1
b1

�
ζ − i

u
b1

− ib1v

�
3

þ i
c2
b2

�
ζ þ i

u
b2

þ ib2v

�
3

− i
c2
b2

�
ζ − i

u
b2

− ib2v

�
3

þ i
c3
b3

�
ζ þ i

u
b3

þ ib3v

�
3

− i
c3
b3

�
ζ − i

u
b3

− ib3v

�
3

þ i
c4
b4

�
ζ þ i

u
b4

þ ib4v

�
3

− i
c4
b4

�
ζ − i

u
b4

− ib4v

�
3

¼ −iu3;

c1

�
ζ þ i

u
b1

þ ib1v

�
3

þ c1

�
ζ − i

u
b1

− ib1v

�
3

þ c2

�
ζ þ i

u
b2

þ ib2v

�
3

þ c2

�
ζ − i

u
b2

− ib2v

�
3

þc3

�
ζ þ i

u
b3

þ ib3v

�
3

þ c3

�
ζ − i

u
b3

− ib3v

�
3

þ c4

�
ζ þ i

u
b4

þ ib4v

�
3

þ c4

�
ζ − i

u
b4

− ib4v

�
3

¼ 0:
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There are five equations to satisfy, namely,

2c1b41 þ 2c2b42 þ 2c3b43 þ 2c4b44 ¼ i;

−2
c1
b41

− 2
c2
b42

− 2
c3
b43

− 2
c4
b44

¼ i;

c1b21 þ c2b22 þ c3b23 þ c4b24 ¼ 0;

c1 þ c2 þ c3 þ c4 ¼ 0;
c1
b21

þ c2
b22

þ c3
b23

þ c4
b24

¼ 0:

The constraints on the coefficients bj and cj can be written

c1 ¼
ib21

2ðb21 − b22Þðb21 − b23Þðb21 − b24Þ
;

c2 ¼
ib22

2ðb22 − b21Þðb22 − b23Þðb22 − b24Þ
;

c3 ¼
ib23

2ðb23 − b21Þðb23 − b22Þðb23 − b24Þ
;

c4 ¼
ib24

2ðb24 − b21Þðb24 − b22Þðb24 − b23Þ
;

b1 ¼ � 1

b2b3b4
:

For an octupole, there are three free parameters, which we
can take to be b2, b3 and b4.

D. General multipole magnets

The derivation of the constraints on the coefficients cj
and bj in the case of quadrupoles, sextupoles and octupoles
can be extended to any order of multipole. In the body of
the multipole, the components of the field are

Bu ¼ ivn;

Bv ¼ −iun;

Bζ ¼ 0:

The falloff functions Fjðζ þ ihjÞ and Gjðζ − ihjÞ satisfy
for any j:

lim
ζ→−∞

Fjðζ þ ihjÞ ¼ 1;

lim
ζ→−∞

Gjðζ − ihjÞ ¼ ð−1Þnþ1;

and

lim
ζ→∞

Fjðζ þ ihjÞ ¼ lim
ζ→∞

Gjðζ − ihjÞ ¼ 0:

Substituting into (37), (38) and (39) gives

ic1b1

�
i
u
b1

þ ib1vþ ζ

�
n
þ ic1b1

�
i
u
b1

þ ib1v − ζ

�
n
þ ic2b2

�
i
u
b2

þ ib2vþ ζ

�
n
þ ic2b2

�
i
u
b2

þ ib2v − ζ

�
n

þ � � � þ icnþ1bnþ1

�
i

u
bnþ1

þ ibnþ1vþ ζ

�
n
þ icnþ1bnþ1

�
i

u
bnþ1

þ ibnþ1v − ζ

�
n
¼ ivn;

i
c1
b1

�
i
u
b1

þ ib1vþ ζ

�
n
þ i

c1
b1

�
i
u
b1

þ ib1v − ζ

�
n
þ i

c2
b2

�
i
u
b2

þ ib2vþ ζ

�
n
þ i

c2
b2

�
i
u
b2

þ ib2v − ζ

�
n

þ � � � þ i
cnþ1

bnþ1

�
i

u
bnþ1

þ ibnþ1vþ ζ

�
n
þ i

cnþ1

bnþ1

�
i

u
bnþ1

þ ibnþ1v − ζ

�
n
¼ −iun;

c1

�
i
u
b1

þ ib1vþ ζ

�
n
− c1

�
i
u
b1

þ ib1v − ζ

�
n
þ c2

�
i
u
b2

þ ib2vþ ζ

�
n
− c2

�
i
u
b2

þ ib2v − ζ

�
n

þ � � � þ cnþ1

�
i

u
bnþ1

þ ibnþ1vþ ζ

�
n
− cnþ1

�
i

u
bnþ1

þ ibnþ1v − ζ

�
n
¼ 0:

There are nþ 2 equations to satisfy. Two of the equations
can be written

2c1b
nþ1
1 þ 2c2b

nþ1
2 þ � � � þ 2cnþ1b

nþ1
nþ1 ¼ ð−iÞn;

−2
c1
bnþ1
1

− 2
c2
bnþ1
2

− � � � − 2
cnþ1

bnþ1
nþ1

¼ ð−iÞn:

The remaining equations have the form

c1bα1 þ c2bα2 þ � � � þ cnþ1bαnþ1 ¼ 0;

where, for convenience, we have defined α ¼ n − 2p with
p a positive integer. The number of equations is determined
by the order of the multipole, and is expressed in the
restriction that −n < α < n. Solving the equations leads to
the following constraints on the coefficients bj and cj:
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c1 ¼
ð−iÞnbn−11

2
Qnþ1

j¼2 ðb21 − b2jÞ
;

c2 ¼
ð−iÞnbn−12

2
Qnþ1

j¼1;j≠2 ðb22 − b2jÞ
;

..

.

cn ¼
ð−iÞnbn−1n

2
Qnþ1

j¼1;j≠n ðb2n − b2jÞ
;

b1 ¼ � inþ1Qnþ1
j¼2 bj

:

With these relationships between the parameters, the field
in a multipole magnet (including the fringe field region) is
described by (37)–(39). The parameters bj for j > 1 can be
chosen arbitrarily. The dipole case is given by n ¼ 0; there
are no free parameters, and the coefficients c1 and b1 are

c1 ¼
1

2b1
; ð44Þ

b1 ¼ �i: ð45Þ

For any order multipole, apart from the constraints on the
behavior of Fjðζ þ ihjÞ and Gjðζ − ihjÞ for large negative
and large positive values of ζ, there is a great deal of
freedom in choosing the functions Fjðζ þ ihjÞ and
Gjðζ − ihjÞ to best describe the field falloff in any
particular case.

E. Significance of the free parameters

The solutions (37)–(39) with Fjðζ þ ihjÞ → 1 and
Gjðζ − ihjÞ → ð−1Þnþ1 as ζ → −∞ describe magnets that
have “pure” multipole fields within the body of the magnet
(where the order of the multipole is specified by the value
of n). In the fringe field region, because of the additional

dependence on the transverse variables introduced by the
functions Fjðζ þ ihjÞ and Gjðζ − ihjÞ, the field is not a
pure multipole. As a consequence, if we evaluate the
multipole gradient at a given longitudinal position in the
fringe field region we will obtain a different value away
from the axis of the magnet compared to the value we
would obtain on the axis. This raises the possibility that,
even when the falloff of the multipole gradient along the
axis of a magnet is specified, there is some freedom to
allow variation in the falloff of the multipole gradient away
from the axis. This freedom is associated with the param-
eters bj (with 2 ≤ j ≤ nþ 1).
As an example, consider a quadrupole magnet (n ¼ 1)

with an Enge-type falloff in the gradient along the axis:
the appropriate forms for the functions Fjðζ þ ihjÞ and
Gjðζ − ihjÞ in this case will be given in Sec. V B. We can
plot the quadrupole gradient g1 defined by

g1 ¼
∂By

∂x ¼ ∂Bx

∂y ;

as a function of z for different values of x and y, and for
different values of b2. An example is shown in Fig. 3.
The falloff of the quadrupole gradient along the axis of
the magnet is determined by the form of the functions
Fjðζ þ ihjÞ and Gjðζ − ihjÞ, and is independent of the
parameter b2 (since hj ¼ 0 for x ¼ y ¼ 0). Away from the
axis of the magnet, the falloff of the gradient depends on
the value of b2 as well as on the values of x and y.
In general, there will be singularities in the field that can

be associated physically with sources of the magnetic field
(e.g., the coil windings in an electromagnet). In Sec. VAwe
shall give an explicit expression for the locations of the
singularities in the longitudinal field component in the case
of a quadrupole with Enge-type falloff of the quadrupole
gradient. We shall see that the transverse locations of the
singularities depend on the value of the parameter b2: this is
consistent with the parameter b2 influencing the falloff of

6 4 2 0 2 4 6
z

0

0.2

0.4

0.6

0.8

1

g 1

6 4 2 0 2 4 6
z

0

0.2

0.4

0.6

0.8

1

g 1

FIG. 3. Quadrupole gradient evaluated as a function of longitudinal position z along the axis of the magnet (black line), and away from
the axis for two different values of the parameter b2 (red and blue lines). In the left-hand plot, the off-axis gradient is shown for
x ¼ 1=

ffiffiffi
2

p
, y ¼ 0; in the right-hand plot, the off-axis gradient is shown for x ¼ 0, y ¼ 1=

ffiffiffi
2

p
. In each case, the red line shows the

gradient for b2 ¼ 2, and the blue line shows the gradient for b2 ¼ 4. The gradient along the axis of the magnet is independent of the
value of b2.
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the gradient (as a function of longitudinal position) away
from the magnetic axis.
We also observe in Fig. 3 that there is an asymmetry

between the dependence of the gradient on the coordinates
x and y. That is, the falloff in the gradient (as a function of
z) changes if we interchange x and y. However, we see from
(37)–(39) that in general, the dependence of the field on the
transverse coordinates is contained in the quantities hj (40),
given in Cartesian coordinates by

hj ¼
1ffiffiffi
2

p
�
1

bj
þ bj

�
xþ iffiffiffi

2
p
�
1

bj
− bj

�
y:

Therefore, for an elementary solution (i.e., selecting a
single j), changing the value of bj corresponds to rescaling
the coordinates x and y (with some associated rescaling of
the field). Furthermore, in the case of a quadrupole-type
field (n ¼ 1), replacing b2 with i=b2 corresponds to
interchanging x and y. Quadrupoles are often constructed
with symmetric geometry so that By↔Bx under x↔y.
Although this symmetry does not appear in the expressions
(37)–(39) for the full quadrupole solution (with n ¼ 1 and
m ¼ 2), symmetry under interchange of the transverse
coordinates can be imposed, if required, by appropriate
superposition of full quadrupole solutions. This issue is
discussed further in Sec. V B, but for now we simply stress
that, although the symmetry By↔Bx under x↔y can be
imposed if required, the solutions we have found for
quadrupole fringe fields allow modeling of cases where
this symmetry does not appear.
Finally, we note that the number of free parameters bj

increases with increasing order n of the multipole. This
corresponds to additional degrees of freedom associated
with the larger number of poles (and corresponding sources
of the magnetic field) in multipoles of increasing order.
Again, a symmetry on the field representing symmetry in
the geometry of the magnet can be imposed if desired, but is
not essential.

V. MULTIPOLE FRINGE FIELDS
WITH ENGE-TYPE FALLOFF

Having constructed general expressions for fringe fields
in multipole magnets, it is worth investigating these
expressions further, to show that the field has the appro-
priate behavior. For a multipole magnet of arbitrary order,
the expressions for the field can be rather complicated:
therefore, we consider in detail only the case of a quadru-
pole. In this section, we shall discuss the behavior of the
fields in a quadrupole, first for the elementary solution, and
then for the full solution (in which the fields are given by
real numbers) obtained by adding two versions of the
elementary solution. In order to plot the field, we need to
make some assumption for the form of the falloff of the
gradient along the axis of the magnet: we shall consider the

case that the falloff is described by an Enge function. At the
end of the section, we shall generalize the expressions for a
full quadrupole solution with Enge falloff of the gradient to
higher order multipole magnets.
The appearance of singularities in the magnetic field is of

some interest. Singularities are expected from the proper-
ties of Laplace’s equation: in two dimensions, solutions to
Laplace’s equation that are bounded at infinity are either
constant everywhere, or have singularities somewhere. Our
expressions for multipole fringe fields have been obtained
by extending the two-dimensional case to three dimensions.
Mathematically, it is no surprise that singularities appear,
but if the expressions we have derived for the fields are to
be applied in physical situations, we should understand the
position and nature of the singularities.

A. Elementary solution for a quadrupole
with Enge-type fringe field

The full solution for a quadrupole can be constructed by
combining elementary solutions with n ¼ 1. We shall
consider in Sec. V B the full solution for a quadrupole
in which the gradient falls off as an Enge function along the
axis of the magnet; but to begin with, in the present section,
we examine the behavior of the elementary solution with
n ¼ 1. The field components are given by (31)–(33), with
fðζ þ ihÞ and gðζ − ihÞ given by (35) and (36). To produce
an Enge-type falloff in the quadrupole gradient, the
functions Fðζ þ ihÞ and Gðζ − ihÞ must have an appro-
priate form. For simplicity we assume that GðξÞ ¼ FðξÞ for
any (real or complex) argument ξ. The field components
then become

Bu ¼ ibðζ þ ihÞFðζ þ ihÞ − ibðζ − ihÞFðζ − ihÞ;

Bv ¼
i
b
ðζ þ ihÞFðζ þ ihÞ − i

b
ðζ − ihÞFðζ − ihÞ;

Bζ ¼ ðζ þ ihÞFðζ þ ihÞ þ ðζ − ihÞFðζ − ihÞ:

Although the elementary solution does not represent a
physical field, we can characterize the gradient in terms of
the derivatives of the transverse components Bu and Bv
with respect to v and u (respectively) along the ζ axis:

∂Bu

∂v
����
u¼v¼0

¼ −2b2½FðζÞ þ ζF0ðζÞ�;

∂Bv

∂u
����
u¼v¼0

¼ −
2

b2
½FðζÞ þ ζF0ðζÞ�;

where F0ðζÞ is the derivative of FðζÞ (with real argument
ζ). We consider the case where the quadrupole gradient is
described by a single-parameter Enge function, so that

FðζÞ þ ζF0ðζÞ ¼ 1

1þ eζ
: ð46Þ
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This has solution

FðζÞ ¼ 1þ ln 2
ζ

−
lnð1þ eζÞ

ζ
; ð47Þ

where we have chosen a constant of integration so that FðζÞ
remains finite at ζ ¼ 0.
The components of the field in a Cartesian basis can now

be written:

Bx ¼−
ð1þb2Þffiffiffi

2
p

b
½2hþ i lnð1þe

ffiffi
2

p
zþihÞ− i lnð1þe

ffiffi
2

p
z−ihÞ�;

By ¼−i
ð1−b2Þffiffiffi

2
p

b
½2hþ i lnð1þe

ffiffi
2

p
zþihÞ− i lnð1þe

ffiffi
2

p
z−ihÞ�;

Bz¼
ffiffiffi
2

p
½2

ffiffiffi
2

p
zþ2 ln2− lnð1þe

ffiffi
2

p
zþihÞ− lnð1þe

ffiffi
2

p
z−ihÞ�;

where, from (18), (19) and (34) the quantity h is expressed
in terms of the Cartesian coordinates:

h ¼ 1ffiffiffi
2

p
�
1

b
þ b

�
xþ iffiffiffi

2
p
�
1

b
− b

�
y:

Along the axis of the magnet (x ¼ y ¼ 0), the transverse
components of the field vanish and the longitudinal
component of the field is purely real. The gradient of
the field along the axis of the magnet is

∂By

∂x
����
x¼y¼0

¼ ∂Bx

∂y
����
x¼y¼0

¼ −i
ð1 − b4Þ

b2
1

1þ e
ffiffi
2

p
z
:

This has the form of a single-parameter Enge function, as
desired.
A physical magnetic field (with real components) can be

constructed by adding together elementary solutions with
appropriate coefficients; however, for now we identify the
physical magnetic field with the imaginary parts of the
elementary solution. In that case, the longitudinal compo-
nent of the field vanishes along the axis. Singularities in the
field occur when

ffiffiffi
2

p
z� ih ¼ ilπ; ð48Þ

where l is any odd integer. If b is real, then in terms of the
Cartesian coordinates, the singularities occur at

ðx; yÞ ¼
� ffiffiffi

2
p

lπ
1
b þ b

;� 2z
1
b − b

�
:

Note, however, that the singularities in the different terms in
the transverse components of the field cancel out
when z ¼ 0.
The behavior of the field can be seen in Fig. 4, which

shows the imaginary parts of the Bx and Bz components of
the magnetic field as functions of the transverse coordinates

at various z locations. As noted in Sec. IV E, for an
elementary solution a change in the constant bj amounts
to a rescaling in the coordinates and the field; therefore, we
show plots for only a single value b ¼ 0.1. Also, since no
new features occur in the behavior of By compared to the
behavior of Bx, we only show plots for Bx and Bz. The plots
in Fig. 4 show that the field has the expected behavior for a
quadrupole: in particular, within the body of the magnet, Bx
is linear in the coordinate y, and independent of x. At
increasing values of z, the slope ofBx versus y decreases (the
gradient falls off); at z ¼ 0, the quadrupole gradient is half
the value at large negative z, by construction. As z increases
further, the gradient (and the field itself) falls to zero. The
singularities in the field have the behavior expected from
(48). At z ¼ 0, the singularities in the transverse field
disappear completely, again, by construction.
Note that it was not necessary to demand that GðξÞ ¼

FðξÞ in the falloff functions above. This was only done for
simplicity and it could well be the case that a nonsymmetric
falloff is desired, which would require FðξÞ and GðξÞ to be
different from each other. As they are just functions that
dictate the behavior of the field in the falloff (fringe) region,
nothing changes inside the quadrupole and the magneto-
static Maxwell equations are still satisfied.

B. Full solution for a quadrupole
with Enge-type fringe field

We can construct physical (real) fields in a quadrupole by
adding two versions of the elementary solution with n ¼ 1.
For simplicity, we assume that FjðζÞ ¼ GjðζÞ ¼ FðζÞ for
all jð¼ 1; 2Þ. The field components are then written:

Bu ¼
X2
j¼1

ibjcj½ðζþ ihjÞFðζþ ihjÞ− ðζ − ihjÞFðζ − ihjÞ�;

ð49Þ

Bv ¼
X2
j¼1

i
cj
bj

½ðζ þ ihjÞFðζ þ ihjÞ − ðζ − ihjÞFðζ − ihjÞ�;

ð50Þ

Bζ ¼
X2
j¼1

cj½ðζ þ ihjÞFðζ þ ihjÞ þ ðζ − ihjÞFðζ − ihjÞ�;

ð51Þ

where hj is given by (40) and the parameters bj and cj
satisfy the relationships in (41)–(43).
The quadrupole gradient on the axis of the magnet

(u ¼ v ¼ 0) is given by

gðζÞ ¼ −i
∂Bu

∂v
����
u¼v¼0

¼ i
∂Bv

∂u
����
u¼v¼0

¼ FðζÞ þ ζF0ðζÞ:

B. D. MURATORI, J. K. JONES, AND A. WOLSKI Phys. Rev. ST Accel. Beams 18, 064001 (2015)

064001-12



FIG. 4. Elementary quadrupole-like fringe field components Bx (left) and Bz (right) at (top to bottom) z ¼ −4.0, z ¼ −2.0, z ¼ 0,
z ¼ 2.0 and z ¼ 4.0.
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A conventional model for the fringe field in a quadrupole
magnet describes the gradient as an Enge function [18].
Again to keep the analysis as simple as possible, we
consider the case that the gradient varies as a single-
parameter Enge function, so that the function FðζÞ satisfies

(46). Writing the gradient in this way determines ζ ¼ 0 as
the location along the axis at which the quadrupole gradient
falls to half its nominal value within the body of the
magnet. Integrating (46) gives the expression (47) for the
function FðζÞ.

The components of the field can now be written (in Cartesian coordinates):

Bx ¼ yþ b

2
ffiffiffi
2

p ð1 − b2Þ ½ln ð1þ e
ffiffi
2

p
zþihÞ − ln ð1þ e

ffiffi
2

p
z−ihÞ þ ln ð1þ e

ffiffi
2

p
z−ih̄Þ − ln ð1þ e

ffiffi
2

p
zþih̄Þ�; ð52Þ

By ¼ xþ ib

2
ffiffiffi
2

p ð1þ b2Þ ½ln ð1þ e
ffiffi
2

p
zþihÞ − ln ð1þ e

ffiffi
2

p
z−ihÞ − ln ð1þ e

ffiffi
2

p
z−ih̄Þ þ ln ð1þ e

ffiffi
2

p
zþih̄Þ�; ð53Þ

Bz ¼ −
ib2ffiffiffi

2
p ð1 − b4Þ ½ln ð1þ e

ffiffi
2

p
zþihÞ þ ln ð1þ e

ffiffi
2

p
z−ihÞ − ln ð1þ e

ffiffi
2

p
z−ih̄Þ − ln ð1þ e

ffiffi
2

p
zþih̄Þ�; ð54Þ

where b ¼ b2 is a free parameter, h ¼ h2 (with h2 given by
(40) in the case that j ¼ 2), and h̄ is given by

h̄ ¼ 1ffiffiffi
2

p
�
1

b
þ b

�
x −

iffiffiffi
2

p
�
1

b
− b

�
y:

If b is real, then h̄ is the complex conjugate of h, and (since
terms in the above expressions for the field components
appear in complex conjugate pairs) the field components
are purely real.
We observe that in the solution (52)–(54), the depend-

ence of Bx on the parameter b is different from the
dependence of By on b. As a consequence, if we plot
Bx as a function of z along a line x ¼ 0, y ¼ r0, we see a
different variation compared to a plot of By as a function of
z along a line x ¼ r0, y ¼ 0. In other words, as already
noted in Sec. IV E, there is an asymmetry in the field in this
case that would not be expected from a quadrupole magnet
constructed with fourfold rotational symmetry about the z
axis. Such a magnet would generate a field with symmetry
Bx↔By under x↔y. Although the solution (52)–(54) does

not display this symmetry, it can be imposed by adding
equivalent expressions to Bx, By and Bz, with x and y
interchanged but keeping b2 the same, and dividing the
result by 2. We refer to such a solution as a “full
symmetrized solution.” Figure 5 shows the behavior of
the field components Bx, By and Bz for the full sym-
metrized quadrupole solution, with the fixed value of the
parameter b2 ¼ 0.1. Within the body of the quadrupole
(large negative z) we see that, as expected, Bx ∝ y, By ∝ x
and Bz ≈ 0. At z ¼ 0 the quadrupole gradient falls to half of
its value within the body of the magnet. At a large distance
from the quadrupole (large positive z), the field
approaches zero.
The full symmetrized solution has the interesting prop-

erty that the field components remain finite in the limit
b → 1. The expressions for the field components then take
a relatively simple form, although we lose a degree of
freedom (provided by the parameter b) allowing some
control over the variation of the fringe field with transverse
position. However, the expressions may be useful in some
cases, so it is worth stating the results:

Bx ¼
�
3 −

sinh ð ffiffiffi
2

p
zÞ

cosh ð ffiffiffi
2

p
zÞ þ cos ð ffiffiffi

2
p

xÞ

�
y
4
−

ffiffiffi
2

p

4
arctan

 
sinð ffiffiffi

2
p

yÞ
e−
ffiffi
2

p
z þ cosð ffiffiffi

2
p

yÞ

!
;

By ¼
�
3 −

sinh ð ffiffiffi
2

p
zÞ

cosh ð ffiffiffi
2

p
zÞ þ cos ð ffiffiffi

2
p

yÞ

�
x
4
−

ffiffiffi
2

p

4
arctan

 
sinð ffiffiffi

2
p

xÞ
e−
ffiffi
2

p
z þ cosð ffiffiffi

2
p

xÞ

!
;

Bz ¼ −
�

sin ð ffiffiffi
2

p
yÞ

cosh ð ffiffiffi
2

p
zÞ þ cos ð ffiffiffi

2
p

yÞ

�
x
4
−
�

sin ð ffiffiffi
2

p
xÞ

cosh ð ffiffiffi
2

p
zÞ þ cos ð ffiffiffi

2
p

xÞ

�
y
4
:
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FIG. 5. Quadrupole fringe field components Bx (left), By (center) and Bz (right) at (top to bottom) z ¼ −4.0, z ¼ −2.0, z ¼ 0, z ¼ 2.0
and z ¼ 4.0.

ANALYTICAL EXPRESSIONS FOR FRINGE FIELDS IN … Phys. Rev. ST Accel. Beams 18, 064001 (2015)

064001-15



C. Full solution for a multipole magnet with Enge-type fringe field

Using (37)–(39), the full solution for a multipole of order n with Enge-type falloff of the gradient can be written:

Bu ¼
Xnþ1

j¼1

ibjcj½ðζ þ ihjÞnFðn; ζ þ ihjÞ − ð−1Þnþ1ðζ − ihjÞnFðn; ζ − ihjÞ�;

Bv ¼
Xnþ1

j¼1

i
cj
bj

½ðζ þ ihjÞnFðn; ζ þ ihjÞ − ð−1Þnþ1ðζ − ihjÞnFðn; ζ − ihjÞ�;

Bζ ¼
Xnþ1

j¼1

cj½ðζ þ ihjÞnFðn; ζ þ ihjÞ þ ð−1Þnþ1ðζ − ihjÞnFðn; ζ − ihjÞ�;

where the parameters bj and cj satisfy the relationships
(41)–(43), and we have chosen for all j:

Fjðζ þ ihjÞ ¼ Fðn; ζ þ ihjÞ;
Gjðζ − ihjÞ ¼ ð−1Þnþ1Fðn; ζ − ihjÞ:

The function Fðn; ξÞ with complex argument ξ is con-
structed so that the multipole gradient has an Enge-type
falloff in the fringe field region. This is achieved if

Fð0; ξÞ ¼ 1

1þ eξ
; ð55Þ

and the functions Fðn; ξÞ for n > 0 are then obtained by
induction, as follows. We define (for real ζ)

ζn

n!
Fðn; ζÞ ¼

Z
ζ

0

ζ0n−1

ðn − 1Þ!Fðn − 1; ζ0Þdζ0: ð56Þ

For any (positive integer) n and (real argument) ζ, Fðn; ζÞ
can be written in the form

Fðn; ζÞ ¼ 1þ n!
ζn

Linð−eζÞ −
Xn
j¼1

n!
ðn − jÞ!ζj Lijð−1Þ; ð57Þ

where LinðζÞ is the polylogarithm (or Jonquière function
[19]) of order n. The functions Fðn; ζÞ have the limits
Fðn; ζÞ → 1 as ζ → −∞, and Fðn; ζÞ → 0 as ζ → ∞. The
domain of Fðn; ζÞ is extended to the complex plane by
substituting a complex variable ξ for ζ in (57). The
multipole gradient on the magnetic axis (u ¼ v ¼ 0) is
given by

−i
n!

∂nBu

∂vn
����
u¼v¼0

¼ i
n!

∂nBv

∂un
����
u¼v¼0

¼ 1

1þ eζ
;

which is a single-parameter Enge function, as desired.

VI. POTENTIALS FOR MULTIPOLE
MAGNET FRINGE FIELDS

For some applications it may be useful to have analytical
expressions for scalar and vector potentials from which the
fringe fields in multipole magnets can be derived. For
example, in an iron dominated magnet the pole faces
correspond to surfaces of constant scalar potential; this
makes it possible to inspect the geometry of a magnet that
would have a fringe field of a given form. The vector
potential can be useful for symplectic tracking of particles
through the field (see, for example, [20]). In this section, we
state expressions for the scalar and vector potentials for
multipole magnets with arbitrary falloff of the gradient in
the fringe field region; we then consider the particular case
that the multipole gradient has a falloff that can be
represented by an Enge function.

A. Scalar potential

The magnetic scalar potential φ ¼ φðx; y; zÞ is defined
so that

~B ¼ ∇φ:
In terms of coordinates u; v; ζ, this can be written

ðBu; Bv; BζÞ ¼
�∂φ
∂v ;

∂φ
∂u ;

∂φ
∂ζ
�
:

The elementary solution (31)–(33) can be derived from the
potential

φ ¼ ~fðζ þ ihÞ þ ~gðζ − ihÞ; ð58Þ

where the functions ~fðζÞ and ~gðζÞ for real argument ζ are
the integrals of fðζÞ and gðζÞ:

~fðζÞ ¼
Z

ζ

0

fðζ0Þdζ0;

~gðζÞ ¼
Z

ζ

0

gðζ0Þdζ0:
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The integrals are performed on the real axis, and the
functions thus obtained are then extended to the complex
plane simply by substitution of a complex argument.
As an example, in the case of a multipole field (of order

n) with an Enge-type falloff in the gradient, the function
fðζÞ is

fðζÞ ¼ ζnFðn; ζÞ;

where Fðn; ζÞ is given by (57). Using (56), and replacing
the real variable ζ by a complex variable ξ, we then find that

~fðξÞ ¼ ξnþ1

nþ 1
Fðnþ 1; ξÞ: ð59Þ

Similarly

~gðξÞ ¼ ð−1Þnþ1
ξnþ1

nþ 1
Fðnþ 1; ξÞ: ð60Þ

The scalar potential is therefore given by

φ ¼ 1

nþ 1

Xnþ1

j¼1

cj½ðζ þ ihjÞnþ1Fðnþ 1; ζ þ ihjÞ

þ ð−1Þnþ1ðζ − ihjÞnþ1Fðnþ 1; ζ − ihjÞ�; ð61Þ

where the coefficients cj and bj (implicit in hj) satisfy
(41)–(43).

In the case of a dipole (n ¼ 0) with Enge-type falloff of
the field in the plane y ¼ 0, the on-axis field is

Byjy¼0
¼

ffiffiffi
2

p

1þ e
ffiffi
2

p
z
;

where the factor
ffiffiffi
2

p
in the numerator ensures consistency

with (28)–(30). Putting n ¼ 0 in (61), and using (44)
and (45) for c1 and b1, we find

φ ¼
ffiffiffi
2

p
yþ i

2
ln ð1þ e

ffiffi
2

p ðzþiyÞÞ − i
2
ln ð1þ e

ffiffi
2

p ðz−iyÞÞ;

which corresponds to (14) with suitable rescaling of the
coordinates and field strength. The field obtained is then

Bx ¼ 0;

By ¼
ffiffiffi
2

p ð1þ e
ffiffi
2

p
z cosð ffiffiffi

2
p

yÞÞ
1þ 2e

ffiffi
2

p
z cosð ffiffiffi

2
p

yÞ þ e2
ffiffi
2

p
z
;

Bz ¼ −
ffiffiffi
2

p
e
ffiffi
2

p
z sinð ffiffiffi

2
p

yÞ
1þ 2e

ffiffi
2

p
z cosð ffiffiffi

2
p

yÞ þ e2
ffiffi
2

p
z
;

in agreement with (11) and (12) (again with suitable
rescaling of the coordinates and field strength).
For the particular case of a quadrupole (n ¼ 1) with

Enge-type falloff of the gradient, the scalar potential can be
written in Cartesian coordinates:

φ ¼ xyþ ib2

2ð1 − b4Þ ½Li2ð−e
ffiffi
2

p
zþihÞ þ Li2ð−e

ffiffi
2

p
z−ihÞ

− Li2ð−e
ffiffi
2

p
z−ih̄Þ − Li2ð−e

ffiffi
2

p
zþih̄Þ�; ð62Þ

where b ¼ b2 is an arbitrary parameter, and h ¼ h2.
In an iron dominated magnet, the pole faces can be

identified with surfaces of constant scalar potential: an
example of such a surface (based on an inner triplet
quadrupole for the HL-LHC) is shown in Fig. 6. The
surface has the geometry expected of the poles in an iron
dominated quadrupole. Within the body of the magnet, the
intersection of the pole face with a plane of constant z forms
a hyperbola. As a function of position along the axis, the
pole face has little dependence on z for large negative z; but
in the fringe field region the pole face abruptly “flattens”
off to lie close to the plane z ¼ 0.
It is worth noting that the form for the scalar potential

(58) for the elementary solution provides a direct con-
nection with Whittaker’s form (17) for solutions to
Laplace’s equation in three dimensions. In Cartesian
coordinates, the potential for the elementary solution can
be written

φ ¼ ~fð
ffiffiffi
2

p
zþ ihÞ þ ~gð

ffiffiffi
2

p
z − ihÞ;

FIG. 6. Surface of constant scalar potential in a representation
of the HL-LHC inner triplet quadrupole, with the gradient falling
as an Enge function in the fringe field. The overall length scale is
arbitrary. The parameters of the Enge function (63) correspond to
the first line in Table I.
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where, using (18), (19) and (34),

h ¼ 1ffiffiffi
2

p
�
1

b
þ b

�
xþ iffiffiffi

2
p
�
1

b
− b

�
y:

If we define a parameter ϑ such that

b ¼ e−iϑ;

then we can write

h ¼
ffiffiffi
2

p
x cosϑþ

ffiffiffi
2

p
y sinϑ;

and the potential for the elementary solution is

φ ¼ ~f½
ffiffiffi
2

p
ðzþ ix cosϑþ iy sin ϑÞ�

þ ~g½
ffiffiffi
2

p
ðz − ix cosϑ − iy sinϑÞ�;

which is in the form of a sum of two of Whittaker’s
solutions (17) (to obtain the second term, we need to
replace ϑ by ϑþ π in Whittaker’s solution). In Whittaker’s
form, it is natural to take ϑ as a real parameter, which
corresponds to a complex value for b (lying on the unit
circle). In general, however, it is possible for ϑ to take any
complex value. In the expressions presented in this paper,
on the other hand, it is natural to take real values for the
parameter b (corresponding to b2 for quadrupoles; for
higher-order multipoles there are additional parameters,
corresponding to additional terms in Whittaker’s solution).
However, it is of course possible to choose complex values
for b. In the examples presented in Sec. VII, we find it
convenient when fitting “real” quadrupole fringe fields to
choose real values for b lying off the unit circle.

B. Vector potential

It can be useful to know the vector potential for a given
field for symplectic integration of the equations of motion
for a charged particle moving through the field: see, for

example, [20]. The field ~B is derived from the vector

potential ~A by the usual relationship:

~B ¼ ∇ × ~A:

It is possible to make a choice of gauge in which any one of

the components of ~A vanishes: we choose to work in a
gauge in which Az ¼ 0. In the coordinates u; v; ζ, this
gauge choice is expressed as Aζ ¼ 0, and the field
components are obtained from the vector potential by

Bu ¼
ffiffiffi
2

p
i
∂Au

∂ζ ;

Bv ¼ −
ffiffiffi
2

p
i
∂Av

∂ζ ;

Bζ ¼
1ffiffiffi
2

p
i

�∂Au

∂u −
∂Av

∂v
�
:

For a field described by the elementary solution (31)–(33),
it is readily verified that the vector potential is given by

Au ¼
bffiffiffi
2

p ½ ~fðζ þ ihÞ − ~gðζ − ihÞ�;

Av ¼ −
1ffiffiffi
2

p
b
½ ~fðζ þ ihÞ − ~gðζ − ihÞ�;

Aζ ¼ 0;

where, as before, ~fðξÞ and ~gðξÞ are the integrals of fðξÞ and
gðξÞ. This potential satisfies the Coulomb gauge condition:

∇ · ~A ¼ ∂Au

∂u þ ∂Av

∂v þ ∂Aζ

∂ζ ¼ 0:

For the particular case of a multipole magnet with Enge-
type falloff of the gradient, the functions ~fðξÞ and ~gðξÞ are
the same as in the case of the scalar potential, (59) and (60).
The vector potential is then

Au ¼
1

nþ 1

Xnþ1

j¼1

cjbjffiffiffi
2

p ½ðζ þ ihjÞnþ1Fðnþ 1; ζ þ ihjÞ − ð−1Þnþ1ðζ − ihjÞnþ1Fðnþ 1; ζ − ihjÞ�;

Av ¼ −
1

nþ 1

Xnþ1

j¼1

cjffiffiffi
2

p
bj

½ðζ þ ihjÞnþ1Fðnþ 1; ζ þ ihjÞ − ð−1Þnþ1ðζ − ihjÞnþ1Fðnþ 1; ζ − ihjÞ�;

Aζ ¼ 0;

where (as usual) the coefficients cj and bj satisfy (41)–(43).
For a dipole the vector potential is obtained with n ¼ 0, and with c1 and b1 given by (44) and (45) respectively:

Ax ¼
ffiffiffi
2

p
z −

1

2
ln ð1þ e

ffiffi
2

p ðzþiyÞÞ − 1

2
ln ð1þ e

ffiffi
2

p ðz−iyÞÞ þ ln 2;

Ay ¼ 0;

Az ¼ 0;
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in agreement with (16) with suitable rescaling of the coordinates and field strength (and with an additive constant, that
vanishes when taking the curl of the vector potential).
For a quadrupole (n ¼ 1), the vector potential can be expressed in Cartesian coordinates as

Ax ¼ xzþ ln 2ffiffiffi
2

p x −
ib

4ð1þ b2Þ ½Li2ð−e
ffiffi
2

p
zþihÞ − Li2ð−e

ffiffi
2

p
z−ihÞ − Li2ð−e

ffiffi
2

p
z−ih̄Þ þ Li2ð−e

ffiffi
2

p
zþih̄Þ�;

Ay ¼ −yz −
ln 2ffiffiffi
2

p yþ b
4ð1 − b2Þ ½Li2ð−e

ffiffi
2

p
zþihÞ − Li2ð−e

ffiffi
2

p
z−ihÞ þ Li2ð−e

ffiffi
2

p
z−ih̄Þ − Li2ð−e

ffiffi
2

p
zþih̄Þ�;

Az ¼ 0;

where b ¼ b2 is an arbitrary parameter, and h ¼ h2.

VII. EXAMPLES

To illustrate the application of the methods and results
described in the previous sections, we consider two
examples: a quadrupole in a final focus or “inner triplet”
region of the high luminosity upgrade of the Large Hadron
Collider (HL-LHC), and a quadrupole in the EMMA
nonscaling fixed-field alternating gradient accelerator.
These magnets are chosen to provide two contrasting cases
in terms of magnet technology and parameter regime. The
HL-LHC inner triplet quadrupole is a superconducting
magnet with large aperture and gradient (respectively,
150 mm diameter and 140 T=m). Design studies are still
in progress; some field maps are available, but the impact of
the fringe fields on the beam dynamics are still under
investigation. The EMMA quadrupoles are normal-
conducting electromagnets with more conventional gra-
dient. Here, we consider one of the two types of EMMA
magnets, namely the F quadrupoles [21]. These magnets
have large apertures (74 mm diameter) given the length of
the iron poles (73 mm); as a result, the fringe fields make a
dominant contribution to the focusing effects. The specified
integrated gradient is 0.387 T. Although it is possible to
represent an EMMA quadrupole by a hard-edge model,
beam dynamics studies (supported by experimental results)
[22] indicate the need for a more realistic representation in
order to give an accurate description of the longitudinal and
transverse dynamics in the machine.
We should emphasize that the purpose of considering

these illustrative cases is not to demonstrate close agreement
between the numerical and analytical field models, but
simply to show that it is possible, using analytical formulas
from the previous sections, to construct a model of the fringe
field in each case that satisfies Maxwell’s equations, and is
closer to reality than a simple hard-edge model.
For the HL-LHC inner triplet quadrupole and for the

EMMA F quadrupole we use the full solution for a
quadrupole with Enge-type fringe field, presented in
Sec. V B. The numerical field data in each case are fitted
using a falloff function such that the quadrupole gradient
has the form of an Enge function:

gðzÞ ¼ a0
1þ ea1þ

ffiffi
2

p
a2z

: ð63Þ

The fit is optimized by varying the parameters a0, a1 and
a2. It is straightforward to generalize the results of Sec. V B
to include the presence of additional parameters [as
compared to the simplified form given in (46)]. Note that
we use a full symmetrized solution for the quadrupole field,
so that the symmetry By↔Bx under x↔y is enforced by
superposition of appropriate full quadrupole solutions.

A. HL-LHC inner triplet quadrupoles

As a first example, we show the results of a fit to the field
in an HL-LHC inner triplet quadrupole. Field data are
obtained from a magnetic model, and the parameters a0, a1
and a2 describing the gradient (63) are then adjusted using
a nonlinear fitting routine (with some chosen value for the
free parameter b2: see the comments below). The fit is
performed to the radial field component along a line
x ¼ y ¼ r=

ffiffiffi
2

p
, where r is the distance of the line from

the axis of the magnet. If the model provides a good
description of the field data, then the parameters obtained
from the fit should be independent of the value of r: results
for some selected values of r are shown in Table I. For the
HL-LHC inner triplet quadrupole, inspection of the values
in Table I shows changes in the fit parameters of less than
0.7%, comparing values obtained by fitting the field
along lines with r ¼ rmax=10 and r ¼ rmax=6 (where

TABLE I. Parameters for a fit of an Enge function of the form
(63), to the quadrupole gradient in an HL-LHC inner triplet
quadrupole. The maximum radius rmax in the field data is 75 mm.

Radius of fit a0 a1 a2

rmax=10 −55.9503 −0.520120 8.98913
rmax=8 −55.9504 −0.521262 9.00549
rmax=6 −55.9505 −0.523743 9.04082
rmax=4 −55.9510 −0.530875 9.14139
rmax=3 −55.9517 −0.540984 9.28116
rmax=2 −55.9539 −0.570142 9.66955
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rmax ¼ 75 mm is the maximum radius for which field data
are available).
Having obtained values for the fit parameters, we

can make direct comparisons of the field based on
Eqs. (49)–(51) with the field obtained by the numerical
magnetic model. An example of such a comparison, for the
radial field component, is shown in Fig. 7. Although the
analytical model does not match the numerical model
exactly, the general behavior of the field is reproduced
quite closely. The impact of the residuals from the fit on the
beam dynamics still needs to be studied; but the analytical
model does include features of the field that would be
completely omitted in a hard-edged magnet model.
Figure 8 shows the radial field component as a function

of position along lines of fixed radius and for different
values of the polar coordinate θ. Again, there is reasonable
agreement between the numerical field data (black lines)
and the analytical fit (red line). Finally, Fig. 9 shows the
longitudinal field component as a function of position
along lines of given radius and with fixed θ ¼ π=4. Here, it
appears that there are more significant discrepancies
between the numerical field data and the analytical model;
however, there is general agreement in the main features,
especially for the region close to the axis of the magnet. The
more detailed structure that appears at larger distances from
the axis cannot be reproduced by the relatively simple
(Enge) function that is used to describe the falloff of the
quadrupole gradient in the fringe field.
It is worth considering the dependence of the field on the

parameter b2. Changing the value of b2 has an effect on
the way that the fringe field varies with distance from the
magnetic axis. This can be seen by comparing the plots in

Fig. 10, which show the radial field component as a
function of position along lines with fixed polar coordinate
θ ¼ π=4 and different distance r from the axis of the
magnet. The plot on the left in Fig. 10 shows a comparison
between the numerical field map and the analytical model
with b2 ¼ 1.5; the plot on the right compares the numerical
field map and the analytical model with b2 ¼ 3.5. In
regions close to the axis of the magnet, changes in the
value of b2 in the range 1.5 to 3.5 have little effect on the
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FIG. 7. Radial component of the magnetic field in an HL-LHC
inner triplet quadrupole as a function of position along lines of
given radius and with cylindrical polar coordinate θ ¼ π=4. Each
pair of black and red lines shows the field at a different radius,
from rmax=5 to 4rmax=5, with rmax ¼ 75 mm. The black lines
show the field obtained from the (numerical) magnetic model;
the red lines show a symmetrized form of the analytical model
(49)–(51), with fit parameters given in Table I with radius of fit
rmax=10, and b2 ¼ 2.5.
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FIG. 8. Radial component of the magnetic field in an HL-LHC
inner triplet quadrupole as a function of position along lines of
fixed distance r ¼ rmax=4. Each pair of black and red lines shows
the field at a different value of the cylindrical polar coordinate θ,
from π=16 to π=4 (in steps of π=16). The black lines show the
field obtained from the (numerical) magnetic model; the red lines
show a symmetrized form of the analytical model (49)–(51), with
fit parameters given in Table I with radius of fit rmax=10, and
b2 ¼ 2.5.
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FIG. 9. Longitudinal component of the magnetic field in an
HL-LHC inner triplet quadrupole as a function of position along
lines of given radius and with cylindrical polar coordinate
θ ¼ π=4. Each pair of black and red lines shows the field at an
increasing radius, from rmax=5 to 4rmax=5, with rmax ¼ 75 mm.
The black lines show the field obtained from the (numerical)
magnetic model; the red lines show a symmetrized form of the
analytical model (49)–(51), with fit parameters given in Table I
with radius of fit rmax=10, and b2 ¼ 2.5.
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field; but differences are apparent at larger distances from
the axis. The parameter b2 therefore allows control over the
field behavior at large r, after the parameters a0, a1 and a2
have been chosen to fit the field behavior close to the axis
of the magnet.
Although the HL-LHC inner triplet quadrupoles are

superconducting magnets, we can nevertheless inspect
the shape of the pole face that would be needed to give
the same field. Assuming poles with infinite magnetic
permeability, the shape of a pole face corresponds to a
surface of constant magnetic scalar potential φ. In the case
of a quadrupole with gradient falling off as an Enge
function, the scalar potential is given by (62): note that
for the present case, this expression needs to be sym-
metrized so that the field has the symmetry Bx↔By under
x↔y. Figure 6 shows an equipotential surface for the
analytical field model fitted to the numerical HL-LHC inner
triplet quadrupole field data. The surface has been chosen
so that the magnetic scalar potential has the (arbitrary)
value φ ¼ 0.25 Tm. We see that the equipotential surface
has the shape that might be expected of an iron-dominated
quadrupole, with the curved surface following a hyperbola
in a plane of constant negative z, and the end of the pole
being reasonably flat (close to a plane of constant z ≈ 0).

B. EMMA quadrupoles

The quadrupole magnets in EMMA are iron-dominated,
normal conducting magnets. The unusual feature of the
EMMA quadrupoles is that the diameter of the aperture is
comparable to the length of the magnet; this allows the
accelerator to have a large transverse acceptance in a lattice
consisting of magnets packed very close together. However,
the relatively large aperture of the quadrupoles means that
the gradient falls off rapidly from the center of the magnet.
There is no appreciable distance along the axis for which
the gradient is constant, and a realistic model of the field
must include some representation of the fringe fields.
Given numerical field data from a magnetic model of an

EMMA quadrupole, we can repeat the analysis used for the

HL-LHC inner triplet quadrupole in Sec. VII A. We again
use an Enge function of the form (63) to represent the
falloff of the gradient along the axis of the magnet. The
field data cover an area closely approaching the pole tip
(the field values are given on a rectangular grid, with
transverse coordinates extending to 36 mm). The results of
fitting the parameters in the Enge function to field data
along a line parallel to the axis (at different distances from
the axis and fixed polar angle θ ¼ π=4) are shown in
Table II. We see that there is much larger variation in the
parameters if the fit is performed at different distances from
the axis, compared to the case of the HL-LHC inner triplet
quadrupole. This suggests that the quality of the fit will not
be as good. Making a direct comparison of the field based
on the analytical formula with the numerical field data
confirms that this is the case: see Figs. 11, 12 and 13.
Inspecting Fig. 11 suggests the reason for the poor quality
of the fit. The gradient initially falls off quite rapidly along
the axis from the center of the magnet, but there is a long
“tail” as the gradient approaches zero: this asymmetric
behavior cannot be represented accurately using an Enge
function with a small number of coefficients. Using a larger
number of Enge coefficients improves the quality of the fit
for the field at a given radius (and polar angle θ), but then
performing the integral of the quadrupole gradient gðzÞ to
find the function corresponding to Fð1; ζÞ in (57) becomes
difficult.
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FIG. 10. As Fig. 7, but with b2 ¼ 1.5 (left) and b2 ¼ 3.5 (right).

TABLE II. Parameters for a fit of an Enge function of the form
(63), to the quadrupole gradient in an EMMA F quadrupole. The
maximum radius rmax in the field data is 36 mm.

Radius of fit a0 a1 a2

rmax=10 0.0138149 −0.162670 11.2914
rmax=8 0.0172756 −0.163023 11.3031
rmax=6 0.0230543 −0.163794 11.3286
rmax=4 0.0346675 −0.166075 11.4036
rmax=3 0.0463818 −0.169480 11.5140
rmax=2 0.0702287 −0.180796 11.8694
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It is of course possible to plot an equipotential surface to
represent the shape of the pole in an EMMA quadrupole, in
the same way that we did for a “normal conducting
equivalent” HL-LHC inner triplet quadrupole. However,
we find that the shape of the pole is much as expected for a
normal conducting quadrupole, i.e., the plot is qualitatively
very similar to that shown in Fig. 6.

VIII. CONCLUSIONS

Closed-form analytic expressions have been presented for
fringe fields in multipole magnets. For quadrupoles, the field
described by the analytic expressions was shown to have the
expected properties. The expressions can be extended to
describe multipoles of any order. For ease of explanation and
illustration, we looked in particular at fringe fields in which
the multipole gradient had a falloff along the axis of the
magnet described by an Enge function with only a single
parameter in the exponent. However, the technique can be
applied to any function with the appropriate dependence on
the coordinates (i.e., any function that depends on the
coordinates combined in the form

ffiffiffi
2

p
z� ih). Examples

of other (non-Enge) functions that may be suitable for
describing fringe fields may be found in [12,13].
Expressions were also given for scalar and vector poten-

tials from which the multipole fringe fields presented here
could be derived. Again, the expressions for the potentials
can be extended to apply to multipole magnets of any order.
The scalar potential is of interest since, in iron-dominated
magnets, the pole faces form surfaces of constant scalar
potential. This provides a connection between studies of the
dynamics of particles moving through the fringe fields a
particular magnet, and design studies of the magnet geom-
etry. It is hoped that by having access to realistic analytical
descriptions of fringe fields at an early stage in the design of
an accelerator beam line, the design process (typically
involving many iterations between beam dynamics studies
and magnet design work) may be made more efficient.
The vector potential is of interest for particle tracking. In

particular, some techniques for symplectic integration of
the equations of motion for particles moving in magnetic
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FIG. 11. Radial component of the magnetic field in an EMMA
F quadrupole as a function of position along lines of given radius
and with cylindrical polar coordinate θ ¼ π=4. Each pair of black
and red lines shows the field at a different radius, from rmax=5 to
4rmax=5, with rmax ¼ 36 mm. The black lines show the field
obtained from the (numerical) magnetic model; the red lines show
a symmetrized form of the analytical model (49)–(51), with fit
parameters given in Table II with radius of fit rmax=10, and
b2 ¼ 1.8. The center of the quadrupole is at the far left of the plot,
z ¼ −53.6 mm.
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FIG. 12. Radial component of the magnetic field in an EMMA
F quadrupole as a function of position along lines of fixed
distance r ¼ rmax=4. Each pair of black and red lines shows the
field at a different value of the cylindrical polar coordinate θ, from
π=16 to π=4 (in steps of π=16). The black lines show the field
obtained from the (numerical) magnetic model; the red lines show
a symmetrized form of the analytical model (49)–(51), with fit
parameters given in Table II with radius of fit rmax=10, and
b2 ¼ 1.8. The center of the quadrupole is at the far left of the plot,
z ¼ −53.6 mm.
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FIG. 13. Longitudinal component of the magnetic field in an
EMMA F quadrupole as a function of position along lines of
given radius and with cylindrical polar coordinate θ ¼ π=4. Each
pair of black and red lines shows the field at an increasing radius,
from rmax=5 to 4rmax=5, with rmax ¼ 36 mm. The black lines
show the field obtained from the (numerical) magnetic model;
the red lines show a symmetrized form of the analytical model
(49)–(51), with fit parameters given in Table II with radius of fit
rmax=10, and b2 ¼ 1.8. The center of the quadrupole is at the far
left of the plot, z ¼ −53.6 mm.
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fields are based on analytical expressions for the vector
potential (see, for example, [20]). Again, it is hoped that
there will be benefits in being able to perform symplectic
tracking through realistic fringe field models at an early
stage in the design of an accelerator.
In some types of magnets, such as those used in

nonscaling FFAGs, fringe fields dominate the effects of
the magnet. In such cases, being able to study the impact of
fringe fields at an early stage of the accelerator design is
essential for making efficient progress with the design. It
should be possible to implement the methods presented
here in standard accelerator tracking codes; this will allow
accurate modeling of fringe field effects in multipole
magnets of arbitrary order, and enhance the range of tools
available for accelerator design and simulation.
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APPENDIX: SOLUTION OF MAXWELL’S
EQUATIONS

In this Appendix, we show that a solution to the
magnetostatic Maxwell’s equations with the properties
expected for a multipole fringe field takes the form
(31)–(33). Based on a generalization of the fringe fields
for the dipole case, we start from the assumption that
multipole fringe fields will be of the form

Bu ¼
f1ðu; v; ζÞ þ f2ðu; v; ζÞeζ
1þ 2f3ðu; vÞeζ þ e2ζ

; ðA1Þ

Bv ¼
f4ðu; v; ζÞ þ f5ðu; v; ζÞeζ
1þ 2f3ðu; vÞeζ þ e2ζ

; ðA2Þ

Bζ ¼
f6ðu; v; ζÞ þ f7ðu; v; ζÞeζ
1þ 2f3ðu; vÞeζ þ e2ζ

; ðA3Þ

where the functions fi (for i ¼ 1;…; 7) are arbitrary
functions of the specified variables. As we shall see, this
provides sufficient generality that the multipole gradient
can decay along the z axis in any desired fashion.
Substituting (A1)–(A3) into Maxwell’s equations (24)–
(27) gives a set of constraints on the possible forms of the
functions f1, f2 etc. To obtain useful expressions for
multipole fringe fields, we need to find solutions satisfying
the various constraints.
Essentially, there are only two types of derivative that we

need to consider. These are

∂uBu¼
∂uf1þ∂uf2eζ

A
−
2ðf1þf2eζÞeζ∂uf3

A2
;

∂ζBu¼
∂ζf1þ∂ζf2eζþf2eζ

A
−
2ðf1þf2eζÞðeζf3þe2ζÞ

A2
;

where A ¼ 1þ 2f3eζ þ e2ζ. For the remaining derivatives,
we simply implement the following changes sequentially:

∂vBu ≡ ∂uBu under ðu↔vÞ;
∂uBv ≡ ∂uBu under ðf1 → f4; f2 → f5Þ;
∂vBv ≡ ∂uBv under ðu↔vÞ;
∂ζBv ≡ ∂ζBu under ðf1 → f4; f2 → f5Þ;
∂uBζ ≡ ∂uBu under ðf1 → f6; f2 → f7Þ;
∂vBζ ≡ ∂uBζ under ðu↔vÞ;
∂ζBζ ≡ ∂ζBu under ðf1 → f6; f2 → f7Þ:

As all equations (24)–(27) are equal to zero, we can take
out a factor of A2 to give

ð∂xf1 þ ∂xf2eζÞð1þ 2f3eζ þ e2ζÞ þ ð∂yf4 þ ∂yf5eζÞð1þ 2f3eζ þ e2ζÞ
þð∂ζf6 þ ∂ζf7eζ þ f7eζÞð1þ 2f3eζ þ e2ζÞ

−2ðf1 þ f2eζÞeζ∂xf3 − 2ðf4 þ f5eζÞeζ∂yf3 − 2ðf6 þ f7eζÞðf3eζ þ e2ζÞ ¼ 0;

ð∂xf4 þ ∂xf5eζÞð1þ 2f3eζ þ e2ζÞ − ð∂yf1 þ ∂yf2eζÞð1þ 2f3eζ þ e2ζÞ
−2ðf4 þ f5eζÞeζ∂xf3 þ 2ðf1 þ f2eζÞeζ∂yf3 ¼ 0;

ð∂xf6 þ ∂xf7eζÞð1þ 2f3eζ þ e2ζÞ − ð∂ζf1 þ ∂ζf2eζ þ f2eζÞð1þ 2f3eζ þ e2ζÞ
−2ðf6 þ f7eζÞeζ∂xf3 þ 2ðf1 þ f2eζÞðf3eζ þ e2ζÞ ¼ 0;

ð∂yf6 þ ∂yf7eζÞð1þ 2f3eζ þ e2ζÞ − ð∂ζf4 þ ∂ζf5eζ þ f5eζÞð1þ 2f3eζ þ e2ζÞ
−2ðf6 þ f7eζÞeζ∂xf3 þ 2ðf4 þ f5eζÞðf3eζ þ e2ζÞ ¼ 0:
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We can now equate coefficients of eζ giving

e3ζ∶ ∂uf2 þ ∂ζf7 − f7 ¼ 0 ðA4Þ
∂vf5 þ ∂ζf7 − f7 ¼ 0 ðA5Þ
∂uf7 − ∂ζf5 þ f5 ¼ 0 ðA6Þ
∂vf7 − ∂ζf2 þ f2 ¼ 0 ðA7Þ

e2ζ∶ f2∂uf3 þ f6 − f3f7 ¼ 0 ðA8Þ
f5∂vf3 þ f6 − f3f7 ¼ 0 ðA9Þ
f7∂uf3 − f4 þ f3f5 ¼ 0 ðA10Þ
f7∂vf3 − f1 þ f3f2 ¼ 0 ðA11Þ

eζ∶ f1∂uf3 þ f3f6 − f7 ¼ 0 ðA12Þ
f4∂vf3 þ f3f6 − f7 ¼ 0 ðA13Þ
f6∂uf3 þ f5 − f3f4 ¼ 0 ðA14Þ
f6∂vf3 þ f2 − f3f1 ¼ 0 ðA15Þ

e0∶ ∂uf1 þ ∂ζf6 ¼ 0 ðA16Þ
∂vf4 þ ∂ζf6 ¼ 0 ðA17Þ
∂uf6 − ∂ζf4 ¼ 0 ðA18Þ
∂vf6 − ∂ζf1 ¼ 0: ðA19Þ

Note that we have not included all the steps and the above
equations represent the original set with all possible
simplifications taking into account the set itself. Note also
that Eqs. (A4)–(A7) and (A16)–(A19) may be solved
independently of the rest and can therefore be dealt
with later. From Eq. (A11), using (A8) and (A12), we
see that

f7ð∂vf3∂uf3 þ f23 − 1Þ ¼ 0:

Had we looked at Eqs. (A10) and (A14) instead, using (A9)
and (A13), we would have had

f6ð∂vf3∂uf3 þ f23 − 1Þ ¼ 0;

with the same result from Eq. (A15). Now, f6 and f7 cannot
both be zero as this would mean Bζ ¼ 0. Therefore, we
must have

∂vf3∂uf3 þ f23 − 1 ¼ 0:

The general solution for f3, using the method of
characteristics [14], is

f3 ¼ sin hðu; vÞ;

with

hðu; vÞ ¼ 1

b
uþ bvþ c; ðA20Þ

where b and c are constant. Without loss of generality and
for simplicity, we set c ¼ 0. Substituting this back into
(A8)–(A15) gives the relations

f2 ¼ b2f5;

f1 ¼ b2f4:

The equations reduce to just two independent equations
that may be written as

1

b
f2 cos hþ f6 − f7 sin h ¼ 0; ðA21Þ

f6 cos hþ 1

b
f2 −

1

b
f1 sin h ¼ 0: ðA22Þ

Using f1 ¼ b2f4 and Eqs. (A16) and (A17) we see that we
require

b2∂uf4 ¼ ∂vf4;

which can again be solved by the method of characteristics
to give f4 ¼ f4ðh; zÞ. Using this with Eqs. (A18) and
(A19) we see that f6 ¼ f6ðh; zÞ. Similarly, f2 ¼ b2f5
applied to (A4) and (A5) and, subsequently (A6) and
(A7) gives f5 ¼ f5ðh; zÞ and f7 ¼ f7ðh; zÞ. This leaves
six equations to be satisfied from the original system
(A4)–(A19), namely (A21) and (A22) together with

∂uf2 þ ∂ζf7 − f7 ¼ 0 ðA23Þ

∂vf7 − ∂ζf2 þ f2 ¼ 0 ðA24Þ

∂uf1 þ ∂ζf6 ¼ 0 ðA25Þ

∂vf6 − ∂ζf1 ¼ 0: ðA26Þ

After cross differentiation, Eqs. (A25) and (A26) give

∂2
u;vf6 þ ∂2

ζf6 ¼ 0;

∂2
u;vf1 þ ∂2

ζf1 ¼ 0:

Now, we can reexpress the partial derivatives in u and v
in terms of h only. The equations simplify to

△f1 ¼ △f6 ¼ 0;

where △≡ ∂2
h þ ∂2

ζ . We introduce the coordinates

B. D. MURATORI, J. K. JONES, AND A. WOLSKI Phys. Rev. ST Accel. Beams 18, 064001 (2015)

064001-24



w ¼ hþ iζ;

w̄ ¼ h − iζ:

Note that this operation is equivalent to complex conju-
gation in the ζ coordinate only and the function h is
untouched. Therefore, we have the solutions

f1 ¼ p1ðwÞ þ q1ðw̄Þ;
f6 ¼ p6ðwÞ þ q6ðw̄Þ;

where p1, p6 are arbitrary functions of w, and q1, q6 are
arbitrary functions of w̄. Substituting this back into (A25)
and (A26), we see that the solutions are further constrained
to

f1 ¼ −ibp6 þ ibq6 þ k;

with k constant, from which we can get f4 via f4 ¼ 1
b2 f1.

Subsequently, we can get f2 from (A22) and hence f5 via
f5 ¼ 1

b2 f2 and f7 from (A21). The general result, in terms
of p6 and q6 may be summarized as follows (with
h ¼ 1

b uþ bv):

f1 ¼ −ibp6 þ ibq6 þ k; ðA27Þ

f2 ¼ ð−ibp6 þ ibq6 þ kÞ sin h − ðbp6 þ bq6Þ cos h;
ðA28Þ

f3 ¼ sin h; ðA29Þ

f4 ¼
1

b

�
−ip6 þ iq6 þ

k
b

�
; ðA30Þ

f5 ¼
1

b

�
−ip6 þ iq6 þ

k
b

�
sin h −

1

b
ðp6 þ q6Þ cos h;

ðA31Þ

f6 ¼ p6 þ q6; ðA32Þ

f7 ¼ ðp6 þ q6Þ sin hþ
�
−ip6 þ iq6 þ

k
b

�
cos h: ðA33Þ

We are left with Eqs. (A23) and (A24) to be solved.
Upon substitution of (A27)–(A33), these are actually seen
to be trivially satisfied with no further constraints on any of
the functions fi. In fact, the results constitute a Darboux
transformation, where, given a solution to Maxwell’s
equations expressed by (A16)–(A19), a new solution
may be created, given by (A1)–(A3), provided
(A4)–(A15) are satisfied. Further, the results can be seen
to imply the following solution to Maxwell’s equations:

Bu ¼ −ibfðhþ iζÞ þ ibgðh − iζÞ;

Bv ¼ −
i
b
fðhþ iζÞ þ i

b
gðh − iζÞ;

Bζ ¼ fðhþ iζÞ þ gðh − iζÞ;

with h defined by (A20). Writing the arbitrary functions f
and g as functions of ζ � ih rather than as functions of
h� iζ leads to the form of solution given in (31)–(33). This
solution could have been arrived at by a shorter method, but
the above workings show that, for the kind of functions we
are interested in, it is the only solution that fits. We may
have been forced to consider more complicated functions
by introducing nonlinearities in the coordinate dependance,
for example. Note that the constant b is purely a scaling
constant of the coordinates, as well as giving a proportion-
ality between Bu and Bv.
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