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We calculate the orbit response coefficients for an arbitrarily coupled storage ring subject to maintaining
the orbit length constant due to the presence of a radio-frequency system.
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I. INTRODUCTION

The orbit correction system in a storage ring, where the
information from beam position monitors is used to
calculate steering magnet excitations in order to place
the beam in the center of the beam pipe, is a central pillar
of accelerator operation. The central quantity in the
corrections system is the response matrix Cij that relates
the beam position on a beam position monitor (BPM)
labeled i to the excitation of a steering magnet, labeled j.
A further use of the response matrix is the determination
of the beam optics by carefully analyzing the deviation of
measured from computer-calculated response matrix ele-
ments [1,2]. The response matrix can be calculated from the
knowledge of the magnet configuration and the corre-
sponding transfer matrices in the following way

Cij ¼ Rijð1 − RjjÞ−1 ð1Þ

where Rij is the 4 × 4 transfer matrix from the steering
magnet to the BPM and Rjj is the transfer matrix for one
turn starting at the location of the steering magnet. This
method works for arbitrarily coupled rings, but ignores that
the length of the closed orbit changes when exciting a
steering magnet at a location with nonzero dispersion.
In the presence a rf system, however, the revolution time

is forced to stay constant in order to maintain synchroni-
zation with the rf system. The beam automatically adjusts
to this by slightly varying the beam energy and thus the
closed orbit obtains a contribution proportional to the
dispersion in the ring. A careful analysis [2–4] shows that
for a ring without transverse betatron coupling the response
coefficients Cij

12 are given by

Cij
12 ¼ ½Rijð1 − RjjÞ−1�12 −

DiDj

ηC
ð2Þ

where the transfer matrices R are the 2 × 2 horizontal
transfer matrices corresponding to those referred to above.
The extra term with the horizontal dispersion Dj at the
steering magnet and Di the BPM takes into account the
change of energy and assures that the orbit length stays
constant. C is the circumference of the ring and η the phase
slip factor. This expression is only valid for rings without
betatron coupling and in the remainder of this report we
generalize it to arbitrarily coupled accelerators.

II. COUPLED RESPONSE COEFFICIENTS

We start by considering the 6 × 6 transfer matrix Rjj that
starts at the location of the steering magnet and do not take
synchrotron radiation into account. The requirement that
the variation of the revolution time does not change when
applying a perturbation jvi ¼ ðvx; vx0 ; vy; vy0 Þt imposes
the following constraint on the closed-orbit vector
jxi ¼ ðx; x0; y; y0Þt, arrival time τ and energy δ
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where we omit the superscript jj to simplify the notation
and choose to express the transfer matrix in terms of
2 × 2 sub-matrices A; B;…; I. Note that the superscript t
denotes transpose of a vector or matrix. The top left 4 × 4
section with A; B;D; E contains the 4 × 4 coupled one-
turn transfer matrix R̂ starting at the steering magnet. The
requirement to leave the revolution time unchanged when
changing the steering magnet by making for example vx0
or vy0 nonzero is given by forcing the fifth and sixth
component of the vector on the left-hand side to be equal.
Equation (3) can be solved in a straightforward way by
calculating ð1 − RjjÞ−1, as is done in [5], and probably
a number of other codes, but in order to investigate it
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further and seek a generalization of Eq. (2) for coupled
rings, we write it in the following way by borrowing from
quantum mechanics for the notation

jxi ¼ R̂jxi þ
�
C

F

��
τ

δ

�
þ jvi

�
τ

δ

�
¼ ðG;HÞjxi þ I

�
τ

δ

�
: ð4Þ

The first equation corresponds to the first four rows of
the previous equation and the second equation to the two
bottom rows. A consequence of the requirement to
maintain the revolution time is that the arrival time τ
and the energy δ have to adjust according to

ð1 − IÞ
�
τ

δ

�
¼ ðG;HÞjxi: ð5Þ

Solving this equation for the τ and δ we find in the case
that the matrix on the left-hand side is invertible

�
τ

δ

�
¼ ð1 − IÞ−1ðG;HÞjxi ð6Þ

and
�
τ

δ

�
¼

�
0 0

−1=R56 0

�
ðG;HÞjxi ð7Þ

in case the matrix ð1 − IÞ is not invertible. In the following
we will use the first expression from Eq. (6) with the tacit
assumption to use the matrix from Eq. (7) instead of
ð1 − IÞ−1 in case the matrix is not invertible.
The expression for τ and δ we now insert into the first of

Eq. (4) and find

jxi ¼ R̂jxi þ
�
C

F

�
ð1 − IÞ−1ðG;HÞjxi þ jvi

¼
�
R̂þ

�
C

F

�
ð1 − IÞ−1ðG;HÞ

�
jxi þ jvi ð8Þ

which, after solving for the closed orbit vector jxi,
becomes

jxi ¼
�
1 − R̂ −

�
C

F

�
ð1 − IÞ−1ðG;HÞ

�−1
jvi ¼ ~Cjjjvi

ð9Þ

where the previous equation defines the response matrix of
the closed orbit ~Cjj at the location of the steering magnet j
due to the perturbation jvi of the magnet. The response at
the BPM i is trivially computed by left multiplying ~Cjj with
the 4 × 4 transfer matrix R̂ij from the steering magnet to the
BPM. Finally we find that the general response matrix,

containing the constraint of maintaining the revolution time
fixed is given by ~Cij ¼ R̂ij ~Cjj.

III. DISPERSION-LIKE QUANTITIES

The expression for the response matrix in Eq. (9) is
suitable for numerical calculations of the response matrices,
but gives little insight into the physics. We therefore use it
as the starting point toward a generalized version of Eq. (2)
and rewrite Eq. (9) in the following form

�
1 − ð1 − R̂Þ−1

�
C

F

�
ð1 − IÞ−1ðG;HÞ

�
jxi ¼ ð1 − R̂Þ−1jvi

ð10Þ

and introduce the dispersion-like quantities ~C and ~F, which
are defined by

�
~C
~F

�
¼ ð1 − R̂Þ−1

�
C

F

�
: ð11Þ

The rational is, of course, that the second column of the
4 × 2 matrix C and F contains the matrix elements
R16; R26; R36; R46 and left-multiplying with the inverse of
(1 − R) results in the column vector containing the coupled
dispersions Dx;D0

x; Dy;D0
y which populate the second

column of ~C and ~F. These definitions result in

�
1 −

�
~C
~F

�
ð1 − IÞ−1ðG;HÞ

�
jxi ¼ ð1 − R̂Þ−1jvi: ð12Þ

The matrix in the square brackets has the form of the sum of
unity plus an outer product which permits us to write the
inverse as

�
1 −

�
~C
~F

�
ð1 − IÞ−1ðG;HÞ

�−1

¼
�
1þ

�
~C
~F

�
Qð1 − IÞ−1ðG;HÞ

�
ð13Þ

where the 2 × 2 matrix Q is given by

Q ¼ ½1 − ð1 − IÞ−1ðG ~CþH ~FÞ�−1: ð14Þ

Details about the algebra involved as well as the numerical
validity are deferred to the Supplemental material [6].
Left-multiplying Eq. (12) with the inverse of the matrix in

the square brackets and after some reordering we arrive at

jxi ¼
�
ð1 − R̂Þ−1 þ

�
~C
~F

�
Qð1 − IÞ−1ðG;HÞð1 − R̂Þ−1

�
jvi:

ð15Þ
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Finally, we need to express the matricesG andH in terms of
the dispersion-like quantities ~C and ~F. It is easy to show that
the symplecticity of the transfer matrix implies conditions
among the sub-matrices A;B;…; I. In particular, the matri-
cesG andH are given in terms of the matrices in the two top
rows by

G ¼ 1

det I
½ISCtSAþ ISFtSD�

H ¼ 1

det I
½ISCtSBþ ISFtSE� ð16Þ

where S is the 2 × 2 symplectic matrix

S ¼
�
0 −1
1 0

�
ð17Þ

and we also introduce S4, the 4 × 4 symplectic matrix
containing two matrices S on the diagonal and zeros else-
where. The two equations for G and H can be written more
compactly as

ðG;HÞ ¼ IS
det I

ðCt; FtÞS4R̂ ¼ IS
det I

ð ~Ct; ~FtÞð1 − R̂tÞS4R̂
ð18Þ

where, in the second of the equations, we use Eq. (11) to
express C and F in terms of the dispersion-like quantities ~C
and ~F. Inserting this expression in Eq. (15) and some
algebra, we arrive at

jxi ¼
�
ð1 − R̂Þ−1 −

�
~C
~F

�
Qð1 − IÞ−1 IS

det I
ð ~Ct; ~FtÞS4

�
jvi

¼ Cjjjvi ð19Þ

which expresses the response coefficients in terms of
dispersion-like quantities ~C and ~F.

IV. PHYSICAL INTERPRETATION

To make the connection to the conventionally used
expression Eq. (2) we assume that the matrix I is only
given in terms of the R56 and that the first four rows of the
fifth column of the transfer matrix contain zeros. This
implies that we have

�
~C
~F

�
¼ ð1 − R̂Þ−1
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which follows from the requirement that the dispersion
jDi ¼ ðDx;D0

x; Dy;D0
yÞt is the periodic solution of the

equation

jDi ¼ R̂jDi þ

0
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The matrix Q that appears in Eq. (19) and is given by
Eq. (14) evaluates to

Q ¼
�
1 −

�
0 0

−1=R56 0

���
R51 R52
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��
0 Dx

0 D0
x

�
þ
�
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��
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0 D0
y

���−1

¼
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1 0
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yÞ
�

ð22Þ

where we expressed ð1 − IÞ−1 by the form from Eq. (7) following the discussion from there. InsertingQ in Eq. (19) and after
some straightforward algebra we find the expression for the response matrix in terms of the dispersion as

~Cjj ¼ ð1 − R̂Þ−1 − 1

ηC
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where the two vectors with the dispersions need to be evaluated as an outer matrix product. Here we also introduce the
circumference C and use the generalization of the phase slip factor η

RESPONSE MATRICES IN STRONGLY COUPLED … Phys. Rev. ST Accel. Beams1 18, 054001 (2015)

054001-3



−ηC ¼ R56 þ R51Dx þ R52D0
x þ R53Dy þ R54D0

y ð24Þ

which agrees with the expression used in MADX [7].
Equation (23) is the generalization of Eq. (2) for a fully
coupled ring. Note that the dispersions appearing in
Eqs. (23) and (24) are the coupled dispersions following
from Eq. (21). The response coefficient to a different
location can be calculated by left-multiplying ~Cjj by R̂ij,
the 4 × 4 transfer matrix from the location of the steering
magnet, labeled j to the other, labeled i. The column vector
with the dispersion at location of the steerer is thus
propagated to the dispersion at the location i.

V. CONCLUSIONS

We calculate the orbit response coefficients for
arbitrarily coupled storage rings in case the revolution
time is constrained by a radio-frequency system and
exciting a steering magnet causes a variation of the orbit
length. The computations only involve manipulations of
6 × 6 transfer matrices that are usually available from
codes such as MADX [7]. This makes the method easy
to implement numerically. Expressing the additional
term in terms of the coupled dispersion we arrived in
Eq. (23) at a generalized version of the well-known result
from Eq. (2).
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