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Smith-Purcell radiation is a well-known phenomenon, which provides a noninvasive scheme for
diagnostics of charged particle beams and is used as an effective source of electromagnetic waves, e.g., in
the orotron, the free electron laser, etc. In this paper we develop the theory of Smith-Purcell radiation (SPR)
for the little-investigated case of arbitrary angles between the charged particle trajectories and the rulings of
a grating. The effect of conical diffraction arising here changes drastically the space distribution of the
radiation. By contrast to the only existing approach, described by Haeberle et al. [Phys. Rev. E 55, 4675
(1997)], which requires difficult numerical calculations, we give a fully analytic theory of SPR. Also, in this
paper we present for the first time the theory of x-ray Smith-Purcell radiation. Evanescent waves on the
surface are shown to lead to strong enhancement of Smith-Purcell radiation, through a resonant mechanism.
The results are important for the description of real divergent high-brightness beams and for the
development of novel noninvasive diagnostic schemes based on the Smith-Purcell effect.
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I. INTRODUCTION

There are two main ways for charged particles to radiate:
first, when the particle changes its velocity in an external
field. This happens, for example, in Roentgen tubes
(bremsstrahlung), in free electron lasers based on undulator
radiation, and so on.
The second type of radiation is called polarization

radiation and arises when a moving charge acts upon
matter by its Coulomb field, and the matter polarized by
this dynamically changing field becomes a source of
radiation. The charged particle itself can move uniformly
and nevertheless generate electromagnetic radiation. Here
we talk not only about the widely known Cherenkov and
transition radiations, but also about diffraction radiation
(DR) (arising when charge moves near a target), about
Smith-Purcell radiation (SPR), a special case of DR for
targets with periodical surface [1,2], and about parametric
x-ray radiation (x-ray radiation of a charged particle
moving in a crystal with constant velocity: see, e.g.,
[3]). Polarization-type interactions of particles with
matter also can be a good source of electromagnetic
radiation [3–5], including free electron lasers based on
SPR [6], but is especially useful for beam diagnostics [2,7].
DR and SPR occupy a special place among the kinds of

polarization radiation. They occur when the trajectory of a
charged particle is out of the target and the radiation

process is not followed by direct scattering of the particles
on the target material. In this case the beam of particles is
not disturbed and therefore DR and SPR can provide
noninvasive diagnostics of bunches [2,8]. SPR was the
subject of investigation for many researchers, starting from
the original article by Smith and Purcell in 1953 [1]. The
theory and applications of SPR are described in mono-
graphs [2,3,9]. However, the general theory of SPR has not
been created yet and at present there exist a number of
different approaches, which sometimes are in agreement
and sometimes contradict each other. The principal
approaches were developed by: (i) van den Berg ([10]:
seminumerical, demands difficult numerical calculations);
(ii) Shestopalov ([9]: very complicated mathematically,
suitable for nonrelativistic beams mainly); (iii) Brownell,
Doucas and others ([11]: physically clear and simple, valid
mainly for ideally conductive gratings); (iv) Potylitsyn
([2,12], based on results of Kazantsev and Surdutovich
for DR [13], only for ideally conductive gratings);
(v) Karlovets ([14], the most general theory at present,
valid for arbitrary dielectric properties of a target; however,
it requires further development and comparison with
experimental data).
This short characterization of the methods expresses only

our opinion and does not pretend to be an ultimate truth.
For oblique incidence, i.e., at arbitrary angle between

particle trajectory and rulings direction, none of the results
mentioned above are valid.
Haeberle with coauthors [15] constructed the theory of

SPR for the case of oblique incidence as a development of
the van den Berg approach, (i) which is very good for
nonrelativistic electrons, (ii) which for relativistic electrons
sometimes is in good agreement but sometimes disagrees
with experiment (see [16] and the discussion in Sec. VA),
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(iii) whose validity in EUV and x-ray range has not been
investigated, (iv) and which demands difficult numerical
calculations.
In this paper we construct a fully analytical theory of

SPR for the case of arbitrary angle between charged particle
trajectory and the rulings, from nonrelativistic up to ultra-
relativistic particles: (i) in UV and x-ray range, proceeding
from the theory of UV and x-ray diffraction radiation
created in our previous papers (see [17–19] or in more
detail Chapter 4 in [2] and for the bunch of particles in
[20,21]), (ii) in optics and THz, proceeding from the results
for DR of Potylitsyna-Kube and Artru [22], who managed
to generalize the theory of Kazantsev and Surdutovich [13].
Why and when can the case of oblique incidence be of

interest?
The most important case seems to be that of divergent

beams. Coulomb interaction in a beam of moving ultra-
relativistic electrons in transversal directions is screened by
the magnetic force, and the closer velocity of the electrons
to the speed of light, the stronger this suppression is. This
effect leads to a weakening of the divergence effects,
because the divergence of the beam is caused by the
Coulomb repulsion of electrons. Nevertheless, in practice
the role of divergence is pronounced in some realistic cases:
(a) nonrelativistic beams; (b) moderately relativistic ener-
gies for high-brightness beams having small transverse
dimensions (compact accelerators for such ranges of
energies are now coming into use as effective x-ray and
THz sources in security, industry, medicine etc.); (c) ultra-
relativistic high-brightness beams, for example, originating
from laser-plasma sources [24]; (d) ultrarelativistic super
high-brightness beams for proposed future facilities like
ILC, where the size of focal spot is expected to be
about 8 nm.
In all these cases conservation of phase volume

(Liouville’s theorem) results in increasing the divergence,
which should be taken into account in a correct theoretical
description.
The second situation when oblique incidence can play a

vital part arises in (e) the case of a few directions of
periodicity, as happens in periodical structures like 2D and

3D photonic crystals [5,23]. The charged particle moving,
e.g., along a 2D or 3D photonic crystal, inside or outside,
will produce a radiation distribution of which should be
strongly influenced by the conical diffraction.

II. QUALITATIVE PICTURE OF RADIATION

In this section we shall demonstrate the analogy between
Smith-Purcell radiation and reflection of light from a
grating.
The main features of the process of the light reflection

from a diffraction grating can be derived from conserva-
tion laws.
Photons of light with the wave vector k0 are scattered on

some periodical structure (which hereafter we call a
diffraction grating, or just a grating) with the period d in
the x-direction and with rulings along the axis y, and
becomes the photons of reflected light with the wave vector
k, see Fig. 1(a). This process should satisfy the conserva-
tion laws:

k0y ¼ ky;

k0x ¼ kx þ 2πm=d; m ¼ 0;�1;�2;…;

k0 ¼ k; ð1Þ

where m is a diffraction order. The first line expresses the
conservation of momentum along the direction of medium
homogeneity—axis y; the second line states quantified
transfer of the momenta along the direction of the
periodicity—axis x; and the third line implies energy
conservation. In the case of d → ∞ the first and second
expressions give us the usual Snell’s law. As dielectric
properties of the medium where the light is reflected to are
not of importance (e.g., one may think that it is air), we
put k0 ¼ k ¼ ω=c.
Taking into account the relation k ¼ ðω=cÞr=r between

the vector k and the radius vector of the point of
observation r ¼ ðx; y; zÞ, from the first and third formulas
of Eqs. (1) one can obtain the canonical equation for a cone
with the main axis y:
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FIG. 1. (a) Reflection of light from a grating. (b) Radiation of a charged particle as a reflection of its own (Coulomb) field from the
grating. Velocity of the charged particle is v ¼ ðvx; vy; 0Þ, e is its charge, the size of a single strip is ða;∞; bÞ, the grating period is d, h is
the impact parameter, i.e., the shortest distance between the grating surface and the particle trajectory; k0 is the wave vector of a photon
of incident light, k is the wave vector of a photon of reflected light, q is the momentum of virtual photons of the particle Coulomb field.
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x2

1 − n20y
þ z2

1 − n20y
− y2

n20y
¼ 0; ð2Þ

where n0 ¼ k0=k0. The reflected light is distributed over
the conical surface, so that each diffraction order m is
represented by the line on its surface, see Fig. 2(a). In case
k0y ¼ 0 the cone is reduced to a plane, see Fig. 2(b). The
phenomenon of conical diffraction is known in optics
[25–27].
Now we consider another process—radiation of a

charged particle moving at some distance above the grating,
see Fig. 1(b). We expand the Coulomb field E0ðr; tÞ into
Fourier integral

E0ðr; tÞ ¼
Z

d3r
ð2πÞ3

Z
dt
2π

e−iq·reiωtE0ðq;ωÞ: ð3Þ

For a charge e moving with the constant velocity v ¼
ðvx; vy; 0Þ at the distance h (impact parameter) above the
plane z ¼ 0 we have

E0ðq;ωÞ ¼ − ie
2π2

q − vω=c2

q2 − k2
e−hρδðω − q · vÞ: ð4Þ

Considering reflection of a plane wave (Fourier compo-
nent) expð−iq · rÞ from the grating with the period d in the
x-direction one can write the conservation laws as in
Eq. (1):

qy ¼ ky;

qx ¼ kx þ 2πm=d; m ¼ 1; 2;…;

q ¼ k: ð5Þ

The vector q in Eq. (5) is unknown, and besides these
equations do not contain the characteristics of the charged
particle. So, one should redefine this system using one
more equation, namely,

ω ¼ q · v; ð6Þ

which comes from the delta function in Eq. (4). Noting that

qz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − q2x − q2y

q
, from Eqs. (5) and (6) one can get

qz ¼ iρ; ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω − kyvy

vx

�
2

þ ðkyÞ2 −
�
ω

c

�
2

s
: ð7Þ

Exponential decreasing of the Coulomb field of the particle
with rise of impact-parameter h results in the same decreas-
ing of the radiation filed generated by the field from Eq. (4),
which is a characteristic feature of Smith-Purcell radiation.
The radiation is maximal when ρ is minimal:

ρmin ¼
ω

cβγ
; ð8Þ

which occurs at

ky ¼
ω

c

βy
β2

; ð9Þ

where β ¼ v=c. Using the first and second expressions from
Eq. (5) we can rewrite Eq. (6) in the form

ω ¼ vxðkx þ 2πm=dÞ þ vyky: ð10Þ

This is Smith-Purcell dispersion relation in its general form;
it interlinks the direction of observation n ¼ k=k, wave-
length λ ¼ 2πc=ω, velocity v and the period of a grating d.
For vy ¼ 0 Eq. (10) gives the well-known relation

obtained by Smith and Purcell [1]:

1

β
− nx ¼

λ

d
m; m ¼ 1; 2;…: ð11Þ

One can see from Eq. (9) that ky ¼ 0 if vy ¼ 0, and
therefore a maximum of radiation is in the plane y ¼ 0, see
Fig. 2(b).
With the help of Eq. (9), as it was in the case with light

reflection, we obtain the equation of a cone:

x2

1 − β2y=β4
þ z2

1 − β2y=β4
− y2

β2y=β4
¼ 0: ð12Þ

This equation resembles Eq. (2) with the only difference:
characteristics of “incident light” are defined by properties
of the charged particle, so that βy=β2 plays the role of n0y.
So, the spatial distribution of Smith-Purcell radiation at

oblique incidence (βy ≠ 0) is close to that for the conical
diffraction of light: in accordance with Eqs. (10) and (12)
the radiation is distributed over the conical surface [given
by Eq. (12)] as separate peaks with different orders
m ¼ 1; 2;…. This qualitative analysis shows the principal

FIG. 2. (a) Conical diffraction at the reflection of monochro-
matic light from a grating. Separated lines on the conical surface
refer to different diffraction orders m. (b) Conical diffraction:
reducing the cone to a plane in case of k0y ¼ 0 (for light
reflection) or α ¼ 0 (for radiation). The angle between velocity
v and axis x is α.
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features of radiation, but is insufficient to catch all
differences between SPR and conical diffraction of light.
Below we shall draw analytical expressions and then
analyze the conical diffraction effect in Smith-Purcell
radiation in more detail.

III. X-RAY SMITH-PURCELL RADIATION

In this section we construct the theory of Smith-Purcell
radiation at frequencies

ω ≫ ωp: ð13Þ

Here ωp is the plasma frequency, which usually has values
about 20–30 eV [28].
In practice, inequality

ω ≥ 3ωp ð14Þ

is enough. Therefore, this approach works for the
wavelengths

λ ≤ 2π
66 nm
ωpðeVÞ

ð15Þ

where ωp is taken in electron-volts and λ is measured in
nanometers. For example, for ωp ¼ 24; 4 eV (Mylar, [28])
we have λ ≤ 17 nm, for ωp ¼ 13; 8 eV (lithium, [28])
λ ≤ 30 nm. Hereafter talking of EUV/x-ray range we shall
mean frequencies satisfying Eq. (13) or (14).
We discussed in our previous article [17] that, construct-

ing the correct theory of DR and SPR, it is appropriate to
use the method applied by Durand [29] for calculation of
x-ray transition radiation and based (i) on consideration of
propagation of the radiation inside a medium and (ii) on
separate analysis of the process of refraction at the surface.
Indeed, the refraction was neglected in [29]. As we proved
later, this is correct only when we deal with one charged
particle and simple interface; for the beams or for periodic
structures the refraction of radiation at the surface of the
target should be taken into account. The theory of x-ray DR
was developed by this method in the papers [2,17–19,30]
for the single-particle case, and in papers [20,31] for
bunches of charged particles; for optical range this
approach was developed in papers [14,32,33].
For x-ray region the dielectric function of a medium εðωÞ

can be written as

εðωÞ ¼ 1þ χ0ðωÞ þ iχ00ðωÞ;
χ0ðωÞ ¼ −ω2

p=ω2: ð16Þ

For the sake of simplicity we shall neglect absorption, i.e.,
take χ00 ≪ jχ0ðωÞj below; the expansion of the theory is
possible as in paper [19], where x-ray Cherenkov radiation
in conditions of diffraction radiation (i.e., when the

trajectory of a particle does not cross the target) was
investigated. Note that in region ω ≫ ωp the value of
εðωÞ is close to the unity, and therefore any models dealing
with ideally conducting targets [15,34] are not applicable
for describing of UV and x-ray Smith-Purcell and diffrac-
tion radiation.
Let the charge e move with the constant velocity v ¼

ðvx; vy; 0Þ at a distance h from the target surface (impact
parameter)—see Fig. 1(b). The target is a grating consisting
of N strips with period d and vacuum between strips (air in
practice). The size of a strip is ða;∞; bÞ.
The Coulomb field of the charged particle decreases with

increase in impact-parameter h in the direction to the target
surface and the attenuation distance is γβλ=2π—see
Eqs. (4) and (5), γ ¼ E=Mc2 is the Lorenz factor which
equals the particle energy E divided by the energy of a
particle at rest Mc2.
Thus, it is easy to estimate the minimal energy of

electrons for which the radiation is intensive enough to
be observed in the frequency range ω ≫ ωp:

E > Emin ¼ 2πh=βλðMeVÞ: ð17Þ

Estimating the minimal frequency as ω ¼ 3ωp ¼ 78.3 eV
(beryllium [28]), which corresponds to the wavelength
λmax ¼ 15.7 nm, we obtain

E > ðh μmÞð4 × 102 MeVÞ; ð18Þ

where h is measured in micrometers, E in megaelectron-
volts. The value of impact-parameter h is bounded from
below by the beam size. Usually the transversal size of
ultrarelativistic beams is of the order of 10 μm and less.
Estimating the minimal value of h being about 10 μm, one
can see that the energy of electrons E should exceed 4 GeV
in order to DR and SPR in EUV and x-ray range would be
appreciable.
The Coulomb field of a moving charged particle pro-

duces dynamic polarization currents in medium. This leads
to arising of the radiation determined by Fourier image of
the current density jðr;ωÞ:

jðr;ωÞ ¼ ω

4πi
½εðωÞ − 1�E0ðr;ωÞ: ð19Þ

The Coulomb field of moving charge in vacuum E0ðr;ωÞ
can be found from Eqs. (3) and (4). Note, we take the
expression for the Coulomb field in vacuum—to take it in
form including contribution of polarization of medium
would be incorrect, see the discussion in Chapter 4 of
monograph [2].
The radiation field is determined by current density as

E0ðr;ωÞ¼ iω
c2

eik
0r

r

�
n0×n0×

Z
V

d3rjðr;ωÞe−ik0·r
�
; ð20Þ
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where it is integrated over the region of existence of
polarization currents, i.e., over the target volume V;
k0 ¼ n0 ffiffiffiffiffiffiffiffiffiffi

εðωÞp
ω=c is the wave vector inside the medium

[2]. The prime means that a variable is taken inside the
matter.
Equations (19), (20) and (4) permit one to calculate the

radiation field inside the medium:

E0ðr;ωÞ ¼ − eik
0r

r
e
4π

εðωÞ − 1

vx
e−ρ0h ω

2

c2
ð1 − e−bρ0þik0zbÞ

×

�
n0 × n0 ×

�
A0

ρ0
− iez

��

×
1

ρ0 − ik0z

XN
s¼1

�
eiφ

0sd e
iφ0a − 1

iφ0

�
: ð21Þ

Here

A0 ¼ ω − k0yvy
vx

ex þ k0yey − v
ω

c2
;

φ0 ¼ ðω − k0xvx − k0yvyÞ=vx;

ρ02 ¼
�
ω − k0yvy

vx

�
2

þ ðk0yÞ2 −
�
ω

c

�
2

: ð22Þ

Generally speaking, the radiation can be refracted and
reflected at the upper and forward facets (sides). In the
frequency region ω ≫ ωp one can neglect the reflection
dealing with a single particle [17–19,29]. However, when
interference and coherence phenomena can take place, the
weak effects can be accumulated, and taking the refraction
into account is important [20]. As we consider the radiation
from a grating, i.e., periodical structure, the interference
occurs, and refraction at the facets ought to be taken into
account. We consider the situation when polarization
currents are produced in a thin layer near the upper facet
of the target. When

n0z ≫ n0x
b�

a
;

b� ¼ min

�
γβλ

2π
− h; b

�
; ð23Þ

where b� is the thickness of effectively excited and
radiating part of the target, then the radiation goes out in
vacuum only through the upper facet.
If Eq. (23) is not satisfied, then results will be correct

only qualitatively; to obtain more accurate results one
needs to take into account the refraction of the radiation
at the forward facet. The case when radiation goes out
through both upper and forward facets was analyzed
in [30].
Applying the law of refraction for the upper facet we get

the connection between the unit wave vector in the matter
n0 and the unit wave vector in the vacuum n in the form

ffiffiffiffiffiffiffiffiffiffi
εðωÞ

p
n0 ¼

	
nx; ny;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ − 1þ n2z

q 

: ð24Þ

We would like to stress that at

nmin
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εðωÞ

p
ð25Þ

the z-component of the wave vector in medium k0z becomes
imaginary, which corresponds to the evanescent wave
expðzk0zÞ, z < 0. These waves turn to be the radiation field
expð−izkzÞ, z > 0, out of the medium, see Fig. 3. Usually,
talking of the evanescent surface waves one means the
waves decreasing exponentially on both sides of the
boundary. Contrary to that, the radiation under the angles
less than the angles satisfying Eq. (25) proves to be
described by rather unusual waves which decrease expo-
nentially on the one side of the boundary (expð−jzjk0zÞ,
z < 0) and are outgoing plane waves (expð−izkzÞ, z > 0)
on the other side of the boundary, see Fig. 3(b). This
solution of Maxwell equations, as far as we know, for the
first time was described by Brekhovskikh [35].

FIG. 3. X-ray radiation leaves the target refracting at its upper facet: (a) the “volume”wave expðizk0zÞ, z < 0, refracts at the surface and
goes out at the angle more than θcr that is defined by Eq. (25); (b) the evanescent wave expð−jzjk0zÞ, z < 0, gives the radiation
(expð−izkzÞ, z > 0) at the angle less than θcr.
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So, the radiation field outside the medium has the form

Eðr;ωÞ ¼− e
4π

εðωÞ− 1

vx
e−ρhω

2

c2
eikr

r
n0×n0× ðA=ρ− iezÞ
ρ− iωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ− 1þn2z

p
×

�
1− exp

�
−bρþ ib

ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ− 1þn2z

q ��

×
eiφa− 1

iφ

XN
s¼1

eiφsd: ð26Þ

Here

φ ¼ ω

c
1

βx
ð1 − nxβx − nyβyÞ;

ρ ¼ ω

cβγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2β−2x ðnyβ2 − βyÞ2

q
;

A ¼ ω

βxc
ð1 − nyβy − β2x; nyβx − βxβy; 0Þ; ð27Þ

and n0 is taken from the right part of Eq. (24).
Using Eq. (26) it is easy to find the energy of Smith-

Purcell radiation emitted per unit solid angle and frequency
in EUV/x-ray range:

d2Eðn;ωÞ
dΩdℏω

¼ d2E0ðn;ωÞ
dΩdℏω

4sin2
�
aφ
2

�
sin2ðNdφ=2Þ
sin2ðdφ=2Þ : ð28Þ

Here expression

d2E0ðn;ωÞ
dΩdℏω

¼ 1

137

�
εðωÞ − 1

4πβxφ

�
2

e−2ρhFb
ω4

c4

×
j½n0 × n0 × ðA=ρ − iezÞ�j2

jρ − iðω=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ − 1þ n2z

p
j2 ð29Þ

describes the radiation from one strip (slab) with sizes
ða;∞; bÞ, factor Fb describes the dependence of radiation
on the strip thickness:

Fb ¼
����1 − exp

�
−bρþ ib

ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ − 1þ n2z

q �����2: ð30Þ

Equation (28) in the particular case of N ¼ 1 coincides
with the results of paper [17], when corrections of the order

of ðωp=ωÞ2 ≪ 1 and γ−2 ≪ 1 are neglected. In the case of
βy ¼ 0 (α ¼ 0) the results are similar to those reported in
[36]. Close results for x-ray SPR at α ¼ 0 and small angles
of radiation were obtained in [37].

IV. SMITH-PURCELL RADIATION AT
OPTICAL AND LOWER FREQUENCIES

Now we shall consider the radiation from N thin strips
(thickness b → 0) for those very configuration as in Sec. III
[see Figs. 1(b) and 2(a)], but at the optical and lower
frequencies. We shall proceed from the results of
Potylitsyna-Kube and Artru [22], who managed to general-
ize the well-known theory of diffraction radiation for
infinitely thin and ideally conducting half-plane—the
model created by Kazantsev and Surdutovich [13] using
the Wiener-Hopf technique.
The expression for the field of the radiation EHðr;ωÞ

from an ideally conducting half-plane can be obtained from
the results of [22]. Let us consider the target as a grating of
N strips of width a, see Fig. 4(a). Each strip has two edges,
therefore the resulting radiation can be obtained from
simple geometrical consideration. The phase difference
Δa ¼ kΔr − ωΔt of the waves generated by each edge of
the strip is written in the form

Δa ¼
ω

c
a
βx

ðβn − 1Þ: ð31Þ

The field of radiation from a single strip in case a ≫ λ is

Eaðr;ωÞ ¼ EHðr;ωÞ −EHðr;ωÞ expðiΔaÞ: ð32Þ

Terms in Eq. (32) have opposite signs because for the first
edge the particle flies coming to the strip, and for the
second edge it flies getting away.
Writing the analogous expressions for each of N strips

ΔN ¼ ω

c
d
βx

ðβn − 1Þ; ð33Þ

ENðr;ωÞ ¼ Eaðr;ωÞ þ Eaðr;ωÞ expðiΔNÞ þ � � �
þ Eaðr;ωÞ exp½iðN − 1ÞΔN �; ð34Þ

FIG. 4. Scheme of generating of optical SPR.
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we can find the expression for distribution of emitted energy of SPR in the form of Eq. (28), where d2E0ðn;ωÞ=ðdΩdℏωÞ is
found from [22] after adapting it to the coordinate system taken in our paper:

d2Eðn;ωÞ
dℏωdΩ

¼ 1

137

1

4π2
βxð1 − βynyÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n2y
q �

ω

cβx

�
4 1

ρ2φ2
expð−2ρhÞ

×

2
64ð1 − 2βyny − β2x þ β2n2yÞ

0
B@1þ

βx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2y

q
1 − βyny

1
CA
0
B@1 − nxffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n2y
q

1
CA

þ ðβy − nyÞ2
0
B@1 − βx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2y

q
1 − βyny

1
CA
0
B@1þ nxffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n2y
q

1
CA
3
754sin2�aφ

2

�
sin2ðNdφ=2Þ
sin2ðdφ=2Þ : ð35Þ

Here ρ¼ ω
cβγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2β−2x ðnyβ2− βyÞ2

q
, φ ¼ ω

c
1
βx
ð1 − nxβx−

nyβyÞ are the same as in the x-ray range. Equation (35) in
the case of α ¼ 0 coincides with the expression obtained
earlier [2], and for N ¼ 1 coincides with the results of
papers [17,12].

V. ANALYSIS

A. Spatial distribution of Smith-Purcell radiation

According to Eqs. (28) and (35) the distribution of the
radiation both in x-ray and optical regions is proportional to
the exponent and the ratio of squared sines:

d2Eðn;ωÞ
dΩdℏω

∝
sin2ðNdφ=2Þ
sin2ðdφ=2Þ expð−2ρhÞ: ð36Þ

These are two multipliers that define the surface of
maximal SPR. When the target consists of many strips,
i.e., N ≫ 1, the ratio of squared sines goes to the sum of
delta functions:

sin2ðNdφ=2Þ
sin2ðdφ=2Þ →

N≫1

2πN
X
m

δðdφ − 2πmÞ: ð37Þ

The Smith-Purcell dispersion relation in the case of oblique
incidence follows from Eqs. (37) and (27):

d
λ

1

βx
ð1 − nxβx − nyβyÞ ¼ m; m ¼ 1; 2;…: ð38Þ

Designating the angle between the velocity and the direc-
tion of radiation as χ we write Eq. (38) in the form

d
cos α

ðβ−1 − cos χÞ ¼ λm; m ¼ 1; 2;…: ð39Þ

Index m is the diffraction order. Equation (38) coincides
with Eq. (10) obtained with the help of conservation laws.

Equation (39) was obtained also in works [15,38]. In
[38], the authors got it, but did not analyze. In [15] the effect
of conical diffraction in SPR was considered for low
frequency range and for nonrelativistic particles only. We
would like to notice that the model of van den Berg [10]
followed by the authors of paper [15] can be applied also for
the relativistic case, but with variable success. For example,
see the comparison with experimental data for energies of
electrons of 855 MeV in the paper of Kube et al. [16],
where, comparing theory and experiment, in Fig. 11 one
can see rather good agreement (deep grating), in Fig. 10 for
deep grating the agreement is satisfactory for λ ¼ 360 nm
and bad for λ ¼ 546 nm (discrepancy in ten times), and in
Fig. 12 contradiction between theory and experiment for
shallow grating (discrepancy in hundred times). In paper
[16] another problem of the van den Berg theory was also
mentioned: it requires extensive numerical calculations
until finally the numerical solution of the integral equations
converges, which is especially hard in the case λ ≪ d (see
also [39]). The interested reader can find in paper [40] the
comparison the theories of van den Berg [10], Brownell,
Doucas and others [11], and Potylitsyn [2,12]; see also the
short discussion in the Introduction.
The second multiplier expð−2ρhÞ in Eq. (36) has

maximum when ρ ¼ ρmin, which gives the condition

nmax
y ¼ βy=β2: ð40Þ

It follows from Eqs. (38) and (40) that the Smith-Purcell
peaks, corresponding to different values of the spectral
order m, in the case of oblique incidence are distributed
over the surface of the cone, centered along the axis y (i.e.,
the axis of rulings direction), like it was shown in Sec. II.
Choosing βx ¼ β cos α, βy ¼ β sin α we find the equation
of the cone, agreeing with Eq. (12):

x2

1 − sin2α
β2

þ z2

1 − sin2α
β2

− y2

sin2α
β2

¼ 0: ð41Þ
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From Eqs. (38) and (40) we can find the angles describing
positions of peaks on the cone. Assuming θ is polar angle
and ϕ is the azimuthal angle as it is shown in Fig. 5,

nx ¼ sin θ cosϕ;

ny ¼ cos θ;

nz ¼ sin θ sinϕ; ð42Þ

one can obtain a set of couples fθm;ϕmg—the angles
defining the direction of maximal radiation corresponding
to the mth diffraction order:

( θm ¼ arccosðβ−1 sin αÞ
ϕm ¼ arccos

	
1
β

cos α−λmβ=dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðβ−1 sin αÞ2

p

 ; m ¼ 1; 2;…: ð43Þ

It follows from Eqs. (43) and (42) that for orders

m ≥
d
λ

cos α
β

ð44Þ

the radiation is distributed in half-space with negative value
of x. Diffraction and transition radiations are usually
thought to be concentrated near the direction of the charged
particle velocity. The radiation propagating in the direction
of mirror reflection of particle velocity relative to the
rulings direction is called “backward radiation”—backward
TR or backward DR. As opposed to them, SPR represents
the peaks (rays) of radiation distributed in space over the
conical surface. Let us find a condition of existing of a SPR
peak in the direction of mirror reflection relative to the
rulings direction for each SPR peak. First, we write the
dispersion relation Eq. (38) for the peak of SPR ofm1 order
in the “forward” direction, i.e., for nx > 0; and for the peak
of SPR of m2 order in the direction of mirror reflection to
m1, i.e., for nx < 0. Summing up these two equations we
find

2
d
λ

1

βx
ð1 − nyβyÞ ¼ m1 þm2: ð45Þ

Designating m2 þm1 ¼ l, l ¼ 2; 3;…, with help of the
condition for the cone ny ¼ βy=β2 one can see that in the
case of

d
λ
¼ β

2 cos α
l; l ¼ 2; 3… ð46Þ

there is a peak in the direction of mirror reflection (x → −x)
for each peak (spectral diffraction order) on the conical
surface.
Except for multipliers analyzed in this section, see

Eq. (36), the distributions given by Eqs. (28) and (35)
contain the additional multiplier which depends on the
angles of radiation. This leads to decreasing of the intensity
of the peaks and their shifting, which we consider below.

B. Spectral and angular distribution
of Smith-Purcell radiation

Let us consider the distributions of the radiation obtained
in Secs. III and IV, see Eqs. (28) and (35). Figures 6–8
demonstrate EUV/x-ray, optical and THz radiation
distributions on the conical surface, i.e., for the fixed angle
θ ¼ arccosðβ−1 sin αÞ.
Figure 6 shows the distribution of x-ray SPR for two

values of α. Equation (23) gives the value of the angle
dividing the angular region into two parts—I and II in
Fig. 6. The value of this angle is shown as thick vertical tall
lines (black and dashed red). For the angles in part I [i.e.,
the region where Eq. (23) is not satisfied] our results should
be considered as only qualitative, because these do not take
into account the refraction of radiation going out through
the front facet of the target. For the angles in part II [or
region where Eq. (23) is satisfied] the results are exact.
It follows from Eq. (16) that in the EUV/x-ray frequency

region any substance is optically less dense than vacuum.

FIG. 5. Schematic convention of the axes.

m 5

m 3
m 1

I II27º
35º

0.0 0.1 0.2 0.3 0.4 0.5
rad

5

10

15

20

25

d2 E

d d

FIG. 6. The distribution of x-ray SPR over the conical surface,
i.e., at θ ¼ arccosðβ−1 sin αÞ[see Eq. (28)]. Here γ ¼ 4 × 104

(electron energy of FACET, SLAC: E ¼ 28 GeV), ℏωp ¼
26.1 eV (beryllium), d ¼ 0.9 μm, a ¼ 0.45 μm, b ¼ 0.1 μm,
λ ¼ 12 nm, h ¼ 60 μm, εðωÞ ¼ 1 − ω2

p=ω2, N ¼ 20. For the
black curve α ¼ 27°, for the dashed red curve α ¼ 35°. The thick
tall lines correspond to the value dividing angles into two parts–I
and II, where Eq. (23) is satisfied and not satisfied, respectively.
The thin lines with arrows correspond to the ϕmin from Eq. (25) or
Eq. (47). For the black curve ϕmin ≈ 0.31 rad, for the red dashed
curve ϕmin ≈ 0.34 rad.
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Therefore, the minimal angle of refraction exists that can be
obtained from Eqs. (25) and (42) for real n0z:

ϕ > ϕmin; sinϕmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εðωÞp
sin θ

: ð47Þ

In the general case, when we are not restricted by
Eq. (47), there is a narrow high peak described by the
multiplier in Eq. (28):����ρ − i

ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞ − 1þ n2z

q ����−2: ð48Þ

Actually, Eq. (48) has maximum when εðωÞ − 1þ n2z ¼ 0
and when Eq. (40) is fulfilled. For the sake of clarity, we
show the position of this peak in Fig. 6 as the thin vertical
lines with arrows [see also peaks in Fig. 9(b)]. This peak
corresponds to forward diffraction radiation rather than
SPR. By its nature it is defined by the (evanescent) waves
which we discussed after Eq. (25). Using Eq. (48) it is not
hard to estimate that the half-width of this peak (at γ ≫ 1,
ω ≫ ωp) is

δ ~ϕ ¼ 0.6
ω

ωp

γ−2
cos α

; ð49Þ

where it is supposed that the reasonable conditions
ωp < ω < γωp, π=2 − α ≫ γ−1 are fulfilled.
It is important that this peak can influence on the

intensity of SPR. In Fig. 6 for α ¼ 27° (black curve) this
peak and the SPR peak of the third order (m ¼ 3) are
close to each other and as a result the intensity of the
third SPR peak is considerably higher than the expected
one. For α ¼ 35° (red dashed curve) this peak is situated
far from the SPR peaks and its influence is insignificant.
Both for optical and for THz regions the intensities of

radiation slowly decrease from the first to last diffraction
orders. Notice that intensity of radiation at ϕ ¼ 0 equals
zero (see Fig. 7). This is because the normal component
of the surface currents is not taken into account in the
model of Kazantsev and Surdutovich [13]. Such approxi-
mation might be of common sense for infinitely thin and
ideally conducting targets, but for real targets it is just a
model. However, this model is not that bad, and real
metal targets with a finite thickness and conductivity are
satisfactory described with it [2], except for some special
situations, e.g., when the radiation propagates under the
angle about 90° relative to the plane of a target. Good
agreement between the theory based on the results of [13]
and experimental data for γ ¼ 2500 was demonstrated in
paper [41]. Discussion of validity for the model of
infinitely thin and ideally conducting targets without
normal component of surface currents is contained in
the paper of Karlovets and Potylitsyn [42]. This imper-
fection is absent in the theories taking into account

the finite dielectric permittivity of the target more
consistently—see our consideration above for x-ray
SPR, or papers [14,19,20,32].
The distributions for the THz, optical and x-ray Smith-

Purcell radiation are plotted in Figs. 8(a) and 8(b) starting
from the fifth order peaks, where angles satisfy Eq. (23).
For parameters of Fig. 8(b) this region starts with value of
the angle ϕ ≈ 0.38 rad and here there are the fifth and more
spectral diffraction orders of x-ray SPR. In the x-ray region
[Fig. 8(b)] the directions corresponding these spectral
orders are closer to the grating plane xy than in optical
and THz regions [Fig. 8(a)], which is in agreement
with Eq. (38).
The multiplier 4sin2ðaφ=2Þ for a given diffraction order

goes to 4sin2ðπma=dÞ. If a=d ¼ l=m, l ¼ 1; 2;… this
multiplier equals zero. To plot Figs. 6–8 it is taken
a=d ¼ 1=2, that is why one can see only odd peaks of SPR.
Now let us consider how the distribution of the radiation

for separate SPR peaks (i.e., for separate spectral diffraction
orders) depends on the angle α. For example, Figs. 9(a)
and 9(b) demonstrate this dependence for THz, optical and
x-ray frequency regions for fifth and seventh SP peaks.
Here we limit angles α to

αmax ¼ min

�
arccos

�
dβ
2mλ

�
1

β2γ2
þ λ2m2

d2

��
; arcsin β

�
:

ð50Þ

This inequality follows from Eq. (43) due to the simple fact
that cosine is a limited function.
The sharp peaks in Fig. 9(b) are defined by the maximum

of Eq. (48); the remainder of the graph after these peaks is
caused by contribution of the evanescent waves dis-
cussed above.

m 1

m 3

Optics
THz

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
rad

1
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3

4

5

d2 E

d d

FIG. 7. The distribution of SPR over the conical surface, i.e., at
θ ¼ arccosðβ−1 sin αÞ. Red dashed curve is the distribution for the
optical frequency region. It is plotted using Eq. (35) for γ ¼ 1710
(electron energy of Mainz Microtron MAMI: E ¼ 855 MeV),
d ¼ 9 μm, λ ¼ 546 nm, h ¼ 127 μm. The black curve is the
distribution for the THz frequencies, plotted using Eq. (35) for
γ ¼ 13, d ¼ 10 mm, λ ¼ 0.5 mm, h ¼ 0.5 mm. For both curves
N ¼ 20, α ¼ π=6, a ¼ d=2.
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C. Number and width of the Smith-Purcell peaks

Now we consider some characteristics of the radiation
following from Eq. (43).
First, the number of the diffraction orders is limited and

values of minimal/maximal diffraction orders can be found
from inequality:

d
λ

 
cos α
β

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sin α
β

�
2

s !

≤ m ≤
d
λ

 
cos α
β

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sin α
β

�
2

s !
: ð51Þ

This inequality is analogous to the inequality known in
optics [27]. In our case the number of diffraction orders m
depends on a direction of the particle velocity, see Fig. 10.
Note that the range of angles α exists, in which there are no
any diffraction orders—have a look at the area between α1
and αmax in Fig. 10. Here α1 is the maximal angle for which
only the first diffraction order exists; αmax is the maximal
admissible angle defined by Eq. (50).
The value of αmax depends on the particle energy. For

parameters of Fig. 10: αmax ¼ 81.8°. By the way, the

authors of paper [26], considering reflection of light from
a grating under grazing incidence, also noticed that some
extreme angle exists, and estimated them as 80° and more,
which is in agreement with our results.
Second, as we said above, besides the exponent and

the ratio of squared sines in Eqs. (28) and (35) there is
the multiplier depending on the angles of radiation. It
leads to the shift of peaks on the conical surface. The

m 7
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d d
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FIG. 9. The distribution of the radiation for fifth and seventh SPR peaks (diffraction orders) depending on α for (a) THz and optical
and (b) x-ray frequency regions. The parameters are the same as in Fig. 7. It is taken into account that for radiation on the conical surface
Eq. (43) is satisfied.

0.2 0.4 0.6 10.8 1.2 1 max
rad

1
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4
m

FIG. 10. A number of diffraction orders. Here α1 is the minimal
particle velocity for which only the first diffraction order exists;
αmax is the maximal admissible angle [Eq. (50)]. It is plotted using
Eq. (51) for γ ¼ 7, d=λ ¼ 2.
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FIG. 8. The distribution of SPR over the conical surface, i.e., at θ ¼ arccosðβ−1 sin αÞ [see Eqs. (28) and (35)]. (a) THz and optic
frequency regions. Parameters are the same as in Fig. 7. (b) X-ray frequency region. Here γ ¼ 4 × 104 (electron energy of FACET,
SLAC: E ¼ 28 GeV), ℏωp ¼ 26.1 eV (beryllium), d ¼ 0.9 μm, a ¼ 0.45 μm, b ¼ 0.1 μm, λ ¼ 12 nm, h ¼ 60 μm,
εðωÞ ¼ 1 − ω2

p=ω2, α ¼ π=6, N ¼ 20. The minimal value of the horizontal axis is the angle satisfying Eq. (23) or Eq. (47):
ϕ ≈ 0.38 rad.
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maximal possible shift is equal to a half-width of a peak,
which for

λ=ðdNÞ ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðβ−1 sin αÞ2

q
ð52Þ

proves to be

δϕ ¼ λ

dN

�
1 − sin2α

β2
−
�
cos α
β

−mλ

d

�
2
�−1=2

: ð53Þ

In the general case, when Eq. (52) is not satisfied, the
half-width is

δϕ¼ arcsin

�
1

β

cosα−mλβ=dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðβ−1 sinαÞ2

p �

−arcsin

�
1

β

cosα−mλβ=dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðβ−1 sinαÞ2

p − λ

dN
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ðβ−1 sinαÞ2
p �

:

ð54Þ

For the optical region and parameters of the black curve in
Fig. 7 (THz) for m ¼ 1 we have δϕ ¼ 8.8 mrad or for
m ¼ 7 we have δϕ ¼ 3.6 mrad; the red curve in Fig. 7
(optics): δϕ ¼ 9.4 mrad for m ¼ 1, or δϕ ¼ 4.1 mrad for
m ¼ 7; in the x-ray region and parameters of Fig. 8(b) we
have δϕ ¼ 4 mrad for m ¼ 1 and δϕ ¼ 1.7 mrad for
m ¼ 7, correspondingly. In the x-ray range the peaks are
considerably narrower.
Third, as we discussed above, the directions of the

spectral orders of SPR are distributed over the conical
surface defined by Eq. (40). Let us estimate possible
deflection of the direction of radiation from the conical
surface. For this one should deal with exponent

exp

�
− 2hω

cβγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2β−2x ðnyβ2 − βyÞ2

q �
ð55Þ

and demand that

ny ≤
γ−1βx þ βy

β2
: ð56Þ

The angle θm defining the opening angle of this cone is
given by cos θm ¼ βy=β2. Representing the angle of radi-
ation as θ ¼ θm − Δθ we have

ny ¼
γ−1βx þ βy

β2
¼ γ−1βx

β2
þ cos θm: ð57Þ

Supposing Δθ ≪ θm we have

ny ¼ cosðθm − ΔθÞ ¼ cos θm þ Δθ sin θm: ð58Þ

It is easy to see from Eqs. (57) and (58) that

Δθ ¼ γ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2=cos2α

p : ð59Þ

Note that in case α ¼ 0 Eq. (59) gives the usual width of
angular distribution of SPR and DR: Δθ ¼ ðβγÞ−1.

D. Angular distribution of Smith-Purcell radiation

Figure 10 demonstrates decrease in the number of peaks
with growth of the incidence angle α. Notice that the
distributions of the radiated energy demonstrate rather
sharp behavior as a function of the diffraction order m.
On this account we shall consider the distributions for given
m separately.
To consider the changing of intensity of the peaks

(spectral orders m) with growth of α, it is convenient to
deal with angular distribution. Integrating Eqs. (28) and
(35) over the ranges of frequencies in which they are valid,
we obtain two different angular distributions in general
form:

dEðnÞ
dΩ

¼ e2

c
sin2
�
a
d
πm

�
2πNcβ3xm2

d3ð1 − nxβx − nyβyÞ5
e−2ρmhPm;

ð60Þ

where for ωm > ωp in EUV/x-ray range

Pm ¼ Fbm ðεm − 1Þ2
����
�
n0 × n0 ×

�
Am

ρm
− iez

������2

×

����ρm − i
ωm

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εm − 1þ n2z

q ����−2 ð61Þ

and n0 is taken from the right part of Eq. (24); for the long-
wavelength region ωm < ωoptical (ωoptical is the upper bound
of the visible range)

Pm ¼ 1

βxρ
2
m

ð1 − βynyÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2y

q
2
64ð1 − 2βyny − β2x þ β2n2yÞ

×

0
B@1þ

βx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2y

q
1 − βyny

1
CA
0
B@1 − nxffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n2y
q

1
CA

þ ðβy − nyÞ2
0
B@1 − βx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2y

q
1 − βyny

1
CA
0
B@1þ nxffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n2y
q

1
CA
3
75:

ð62Þ

Here it is denoted
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εm ¼ 1 − ω2
p

ω2
m
; ωm ¼ 2πmcβx

dð1 − nxβx − nyβyÞ
;

ρm ¼ ωm

cβγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2β−2x ðnyβ2 − βyÞ2

q
;

Am ¼ ωm

cβx
ð1 − nyβy − β2x; βxðny − βyÞ; 0Þ;

Fbm ¼
����1 − exp

�
−bρm þ ib

ωm

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εm − 1þ n2z

q �����2: ð63Þ

The angular distribution for the fifth order of SPR is shown
in Fig. 11. One can see that up to some definite value of
angle the intensity increases, after this decreases, and this
behavior is the same for two different physical models valid
for two different ranges of frequencies. However, the theory
may lose its applicability at the angles less than that
corresponding to maximum of the radiation, and in this
case the function can increase over all the range of permit
angles—see the red curve in Fig. 11. The distributions in
Fig. 11 are plotted for two different gratings and parameters
of beam for optical and lower frequencies and for UV and
x-ray frequencies, respectively.

VI. SUMMARY AND CONCLUDING REMARKS

The theory of Smith-Purcell radiation has been con-
structed for x-ray, EUV, optical, and THz ranges. For high-
frequency range (EUV/x-rays) the analytical expressions
have been obtained directly from Maxwell’s equations and
are presented here for the first time. For the lower
frequencies of optical and THz ranges we constructed
the theory of SPR proceeding from the known generaliza-
tion [22] of one of the most powerful approaches in the
theory of diffraction radiation [13]. Our results are valid for

arbitrary energies of the charged particles, from nonrela-
tivistic to ultrarelativistic. We stress the conical effect in
SPR—the strong spatial redistribution of the SPR peaks
(spectral orders) over a conical surface. This effect was first
investigated by Haeberle et al. [15] proceeding from the
well-known van den Berg approach [10], which, however,
does not always work well for ultrarelativistic energies
[16], and demands additional difficult numerical calcula-
tions into the bargain. In contrast with that we suggest a
fully analytic description displaying important new features
of radiation.
The spectral and angular distributions of SPR show

strong dependence on the angle α between a particle
velocity and the normal to the rulings direction. Spatial
distributions of the SPR peaks for different spectral ranges
are proved to have a lot in common; on the other hand, there
are also some differences, which were analyzed in detail in
Sec. V. The angular distribution of SPR as a function of α
has a maximum (Fig. 11); the spectral and angular
distribution in the EUV/x-ray region has a sharp maximum
[Fig. 9(b)] owing to the contribution of evanescent waves:
see the discussion after Eqs. (25) and (48). We cannot assert
that the same behavior—sharp peaks due to evanescent
waves—will occur in other spectral ranges, but for non-
metal targets we believe it to be so.
Redistribution of radiation from the plane to the cone

occurs when α ¼ 0 becomes α ≠ 0 and therefore will play a
vital part for divergent beams.Modern and prospective high-
brightness electron beams having small transverse dimen-
sions, the beams from laser-plasma sources, and nonrelativ-
istic beams—all these need allowance to be made for
divergence in order to construct a correct theory. Also, the
distribution of radiation caused by the interaction of charged
particles with photonic crystal (including targets made of
metamaterial, which often is a crystal) should be strongly
influenced by the conical effect considered here in detail.
EUV and x-ray SPR have not been observed experimen-

tally so far, but we are sure that shortwave DR and SPR have
great potential for submicron noninvasive beam diagnostics
of high-brightness ultrarelativistic beams. Also, our theory
of x-ray SPR is valid in the water-window range
(λ ¼ 4.47–2.36 nm) where x-ray radiation is not absorbed
by water vapor; development of radiation sources with
tunable radiation spectrum in this frequency range is impor-
tant in practical applications in medicine and biology. Also,
noninvasive beam diagnostics in this frequency range is very
attractive for ultrarelativistic super high-brightness beams.
For example, the size of the focal spot in ILC is expected to be
about 8 nm, needing detection with an accuracy of some
nanometers, which is not provided by existing techniques
and demands developing short-wave schemes of diagnostics.
Thus, our results may be of importance for beam

diagnostic systems and for designing of new sources of
electromagnetic radiation in different frequency ranges,
including free-electron lasers.
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FIG. 11. Angular distribution of the fifth peak (fifth order) of
SPR for optical region (red dashed curve) and for x-ray region
(black curve). It is plotted using Eqs. (60)–(63) for optical region
γ ¼ 1710 (energy of Mainz Microtron MAMI), d ¼ 9 μm,
h ¼ 127 μm, ϕ ¼ 0.9 rad; and for x-ray region γ ¼ 4 × 104

(energy of SLAC), ℏωp ¼ 26.1 eV (beryllium), d ¼ 0.9 μm,
h ¼ 60 μm, ϕ ¼ 0.3 rad, εðωÞ ¼ 1 − ω2

p=ω2
m. For both of the

curves N ¼ 20, m ¼ 5, a ¼ d=2, θ ¼ arccosðβ−1 sin αÞ. The
dashed line corresponds to the angles breaking the inequality
ωm < ωoptical for λoptical ¼ 2πc=ωoptical ¼ 380 nm.
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