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Beginning with Maxwell’s equations and assuming only that the wall interaction can be approximated by
a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat
geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking
the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These
equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models
of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show
that, for the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a
known result in the literature, a result that was derived from a very general formula by Henke and Napoly.
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I. INTRODUCTION

In linac-based x-ray free electron lasers (FELs), such as
LCLS-II at SLAC, electron bunches are accelerated to
energies on the order of GeV’s and compressed to lengths
of tens of microns before entering an undulator for lasing.
The undulator chamber typically has a small aperture
(a 5 mm vertical aperture in the case of LCLS-II), and the
resistive wall wakefields induced in the chamber can be
strong and result in significant head-to-tail energy variation;
this, in turn, can negatively affect the lasing process. Thus, it
is important to be able to performaccurate, short-rangewake-
field calculations in order to predict the FEL performance.
The cross section of the LCLS-II undulator beam pipe

has a racetrack shape, with a smaller vertical than hori-
zontal aperture, and in terms of the wakefield effects can
be well approximated by two parallel plates which we
designate as “flat” geometry. In a cylindrical pipe (“round”
geometry) the calculation of the resistive wall (rw) high
frequency impedances, or equivalently, the short-range
wakefields has long been well understood [1,2]. In flat
geometry the long-range rw wake—where by long range
we mean long compared to the characteristic distance s0,
which in the LCLS-II undulator case is ∼10 μm—is also
well understood [3]. For the case of arbitrary bunch lengths
in flat geometry, Henke and Napoly have obtained a general
solution for the longitudinal and transverse rw impedances
[4]. However, under the assumption of normal metallic
walls, it was shown in Ref. [5] that their solution for
longitudinal impedance can be greatly simplified.

In this paper, beginning with Maxwell’s equations and
assuming only that the wall interaction can be approxi-
mated by a surface impedance, we derive a formula for the
generalized longitudinal impedance in flat geometry. By
“generalized” we mean that the transverse positions of the
driving and test charges can be located anywhere between
the two plates. Note that Piwinski has derived generalized
impedances for round and flat geometries, but his results
are limited to low frequencies [3,6]. The generalized
impedance allows one to consider situations such as when
a beam is mis-steered far from the axis, or when a beam is
spread over an aperture as sometimes is the case with
collimators. In this paper we next show that for the special
case where both particles are located near the axis, where
the impedance is normally defined, the longitudinal imped-
ance agrees with the previously obtained result of Ref. [5].
Next we obtain the generalized transverse impedances,
and also the normal quadrupole and dipole impedances as
limits as the driving and test particles approach the axis.
In this paper, as specific examples, we generate plots of the
normal impedances and wakes for the special case where
the surface impedance represents resistive walls with dc
conductivity. The paper ends with conclusions.
In this paper most calculations are performed in Gaussian

units. To convert an impedance or wake to MKSA (meters,
kilograms, seconds, amperes) units, one needs to multiply
the cgs expression by Z0c=4π, with Z0 ¼ 377 Ω.

A. Round geometry

Consider a sinusoidally oscillating beam with wave
number k moving along the axis, in the þz direction, at
the speed of light c in a round metallic pipe. The interaction
with the resistance in the walls can be characterized by
the surface impedance ZsðkÞ≡ Z0Ez=Hϕ or equivalently
by the dimensionless surface impedance, ζðkÞ ¼ Zs=Z0 ¼
Ez=Hϕ. Here Z0 ¼ 4π=c is the impedance of free space,
and Ez and Hϕ are the longitudinal electric and azimuthal
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magnetic fields on the wall surface. One of the first to use
the surface impedance concept in the context of accelerator
impedance calculations was Dohlus (see e.g., Ref. [7]).
Known surface impedance models include dc [2], ac [1],
and anomalous skin models of wall resistance [8], all of
which can also be found in the classic paper of Reuter and
Sondheimer [9]; other surface impedance models devel-
oped for accelerator physics applications are a model of
wall roughness [10], and one for a pipe with small, periodic
corrugations [11].
In the round case the resistive wall impedance and

wakefield excited are well understood. The simplest “dc”
model takes ζ to be

ζðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k

2Z0σc

s
ð1 − iÞ; ð1Þ

with σc the dc conductivity of the metallic walls. The more
accurate “ac” model uses the same surface impedance
Eq. (1), but with the dc conductivity replaced by
~σc ¼ σc=ð1 − ikcτÞ, where τ is the so-called relaxation
time of the metal. (Note that in LCLS-II the undulator beam
pipe is made of aluminum, which has a relatively small
relaxation time, resulting in ac and dc wakes and imped-
ances that are similar.)
In the expressions for the longitudinal, dipole, and

quadrupole impedances in flat geometry that we derive
in this note, ζ is just an arbitrary function of k, and the same
expressions can be used with surface impedances other
than that of the resistive wall; for example, ζ can represent
the case of two metallic plates with small corrugations.
As numerical examples, however, we limit ourselves to the
dc resistive wall model. One nice feature of this model is
that the impedances and wakes can be written as universal
functions involving the characteristic distance s0,
defined as

s0 ¼
�
2a2

Z0σc

�
1=3

; ð2Þ

where a is the beam pipe radius. [For the LCLS-II
undulator beam pipe, if we take the chamber half-height
to be a ¼ 2.5 mm and σc ¼ 35 μΩ−1m−1 (Al), we obtain
s0 ¼ 9.8 μm.] For example, the longitudinal impedance in
round geometry is given by [2]

ZlðκÞ ¼ 2

�
s0
ca2

��
2

1 − i
1ffiffiffi
κ

p − i
κ

2

�
−1
; ð3Þ

where κ ¼ ks0; the longitudinal wake is also a universal
function, of s=s0, where s is the distance the test particle
trails the exciting particle. When the exciting particle
moves slightly off axis, the transverse (dipole) impedance
is excited, given by [2]

ZydðκÞ ¼ 4

�
s20

ca4κ

��
2

1 − i
1ffiffiffi
κ

p − i
κ

2

�
−1
: ð4Þ

Note that the function diverges at the origin as κ−1=2.

II. LONGITUDINAL IMPEDANCE

We begin by deriving a general formula for the
longitudinal impedance in flat geometry valid for high
frequencies assuming a given surface impedance ζðkÞ. The
material planes are located at y ¼ �a, and the beam is
at x ¼ x0 ¼ 0 and y ¼ y0 (>0). We start by allowing the
transverse positions of both the driving beam and the test
particle to be arbitrary, giving us a generalized longitudinal
impedance that we denote by ~Zl. At the end we set the test
particle position to x ¼ y ¼ 0 and the driving particle
position to y0 ¼ 0 to obtain the longitudinal impedance
on axis, Zl ≡ ~Zlðy0 ¼ 0; x ¼ 0; y ¼ 0Þ.
The beam current density in frequency representation is

jz ¼ IωδðxÞδðy − y0Þ. Assuming frequency representation,
the longitudinal electric field Ez on the metal surface is
related to Hx by Ez ¼ ζHx.

1 From Maxwell’s equations it
follows that ikEz ¼ ∂Hx=∂y, so we can write the boundary
condition at y ¼ �a as

∂Hx

∂y ¼ ikζHx: ð5Þ

One can derive from Maxwell’s equations the following
equation for Hx:

∂2Hx

∂x2 þ ∂2Hx

∂y2 ¼ −
4π

c
ð∇ × ~jÞx ¼ −

4π

c
IωδðxÞδ0ðy − y0Þ:

ð6Þ

We can take the Fourier transform over x to obtain

ĤxðqÞ ¼
Z

∞

−∞
dxHxðxÞeiqx;

HxðxÞ ¼
1

2π

Z
∞

−∞
dqĤxðqÞe−iqx: ð7Þ

In terms of ĤxðqÞ, Eq. (6) becomes

−q2Ĥx þ
∂2Ĥx

∂y2 ¼ −
4π

c
Iωδ0ðy − y0Þ: ð8Þ

This equation implies that Ĥx has a step discontinuity at y0,
Ĥxðyþ0 Þ − Ĥxðy−0 Þ ¼ −4πIω=c. The field can be written as

1The sign here is determined from the vector relation
~Et ¼ ζ ~Ht × ~n, where ~n is directed inside the metal.
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Ĥ�
x ðyÞ ¼ ∓ 2π

c
Iω cosh½qðy − y0Þ�

þ A sinhðqyÞ þ B coshðqyÞ; ð9Þ

where Ĥ�
x ðyÞ gives the field in the region y ≷ y0, and A and

B are constants.
The boundary condition at y ¼ �a [Eq. (5)] yields

q

�
−
2π

c
Iω sinh½qða−y0Þ�þAcoshðqaÞþBsinhðqaÞ

�

¼ ikζ

�
−
2π

c
Iωcosh½qða−y0Þ�þAsinhðqaÞþBcoshðqaÞ

�
;

q

�
−
2π

c
Iω sinh½qðaþy0Þ�þAcoshðqaÞ−BsinhðqaÞ

�

¼−ikζ
�
2π

c
Iωcosh½qðaþy0Þ�−AsinhðqaÞþBcoshðqaÞ

�
:

ð10Þ

Solving these equations simultaneously we obtain

A ¼ 2π

c
Iω coshðqy0Þ

q sinhðqaÞ − ikζ coshðqaÞ
q coshðqaÞ − ikζ sinhðqaÞ ;

B ¼ −
2π

c
Iω sinhðqy0Þ

q coshðqaÞ − ikζ sinhðqaÞ
q sinhðqaÞ − ikζ coshðqaÞ : ð11Þ

We can now find the generalized longitudinal impedance
as ~Zl ¼ −Ez=Iω:

~ZlðkÞ ¼ −
1

ikIω

�∂Hx

∂y −
∂Hx

∂y
����
ζ¼0

�
; ð12Þ

where the second term in the equation is needed to subtract
out the vacuum field of the charge; the expression with
ζ ¼ 0 represents the case of perfectly conducting planes,
where we know there is no longitudinal impedance.
Combining Eqs. (9), (11), and (12), we obtain the result:

~ZlðkÞ ¼
2ζ

c

Z
∞

−∞
dqqcsch3ð2qaÞfðqÞe−iqx; ð13Þ

where fðqÞ ¼ n=d, with

n ¼ qfcosh½qð2a − y − y0Þ� − 2 cosh½qðy − y0Þ�
þ cosh½qð2aþ yþ y0Þ�g − ikζfsinh½qð2a − y − y0Þ�
þ sinh½qð2aþ yþ y0Þ�g;

d ¼ ½qsechðqaÞ − ikζcschðqaÞ�½qcschðqaÞ − ikζsechðqaÞ�:
ð14Þ

[Note that the result is the same whether we take the
upper or lower value of Eq. (9).] Equation (13) gives

the general form of the longitudinal impedance, valid
for any combination of x, y, y0, within our geometric
domain.
The longitudinal impedance ZlðkÞ is normally defined

with the driving particle on the y axis, and with the test
particle following right behind it. From Eq. (13) we
obtain

ZlðkÞ≡ ~ZlðkÞjx¼y¼y0¼0

¼ 2

ca

Z
∞

0

dx
sechðxÞ

coshðxÞ=ζ − ika sinhðxÞ=x : ð15Þ

Note that the last expression, when applied to the dc rw
impedance, was given in Ref. [5]; there the expression was
derived from a more general result of Henke and Napoly
[4], under the assumption that s0=a ≪ 1—which is true for
normal metallic walls.
Using the dc resistive wall surface impedance, given in

Eq. (1), the flat resistive wall impedance becomes

ZlðκÞ ¼ 2

�
s0
ca2

�Z
∞

0

dxsechðxÞ

×

�
2

1 − i
1ffiffiffi
κ

p coshðxÞ − iκ
sinhðxÞ

x

�
−1
; ð16Þ

where the normalized wave number κ ¼ ks0 and the
characteristic distance s0 is given by Eq. (2). We see that,
as with the round case [Eq. (3)], the impedance is a
universal function of a and s0. We numerically calculated
ZlðkÞ using Eq. (16). In Fig. 1 we plot Re½ZlðkÞ� (the solid
curve); the dashed curve in the figure gives, for compari-
son, the result in a round beam pipe, with a representing the
pipe radius [given by the real part of Eq. (3)].

FIG. 1. Longitudinal resistive wall impedance on the axis
between two parallel plates separated by distance 2a (solid).
Note that the abscissa gives the scaled frequency κ ¼ ks0 and
the ordinate gives ðca2=s0ÞReðZlÞ. The round result, with a the
radius, is given by the dashed curve for comparison.
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From ReðZlÞ one can obtain the wake using the equation

WlðxÞ ¼
2c
πs0

Z
∞

0

Re½ZlðκÞ� cos κxdκ; ð17Þ

where x ¼ s=s0. Again using the dc resistive wall surface
impedance of Eq. (1), we obtain the longitudinal rw wake
in flat geometry (see Fig. 2, the solid curve). Note that
the value at the origin Wlð0þÞ ¼ ðπ2=16ÞðZ0c=πa2Þ. The
dashed curve in the figure gives, for comparison, the
wake in the round beam pipe, with a representing the pipe
radius.

III. TRANSVERSE IMPEDANCE

From the Panofsky-Wenzel theorem [12] the generalized
transverse impedance is obtained from the generalized
longitudinal one by

~Zy ¼
1

k
∂ ~Zl

∂y : ð18Þ

Using Eq. (13) we find that

~ZyðkÞ ¼ −
2ζ

ck

Z
∞

−∞
dqq2csch3ð2qaÞgðqÞe−iqx; ð19Þ

where gðqÞ ¼ n0=d, with

n0 ¼ qfsinh½qð2a− y− y0Þ�þ 2sinh½qðy− y0Þ�
− sinh½qð2aþ yþ y0Þ�g− ikζfcosh½qð2a− y− y0Þ�
− cosh½qð2aþ yþ y0Þ�g;

d¼ ½qsechðqaÞ− ikζcschðqaÞ�½qcschðqaÞ− ikζsechðqaÞ�:
ð20Þ

However, like the normal longitudinal impedance, the
normal transverse impedance is defined near the axis.
In round geometry, if the driving current is slightly off
axis, transversely the dipole impedance is excited. In flat
geometry, for transverse driving and test positions near
each other and near the (y ¼ 0) symmetry plane, both
dipole and quadrupole transverse impedances are excited,
with the total impedances given by

~Zy ¼ y0Zyd þ yZyq; ~Zx ¼ ðx0 − xÞZyq: ð21Þ

Here x0 and y0 (x and y) are the offsets of the driving (test)
particle, with Zyd (Zyq) the vertical dipole (quadrupole)
impedance. Note that the quad and dipole impedances are
normalized to particle offset. Note also that the correspond-
ing wake functions ~Wy, Wyd, Wyq, ~Wx, also satisfy the
relations of the impedances, Eq. (21).

A. The quadrupole impedance

The quadrupole impedance is due to the distortion of the
symmetric modes (those with nonzero Ez on axis). It is
antisymmetric and defocusing in y. For the calculation, we
first put the driving particle on the axis in Eq. (19) to get

~ZyðkÞjy0¼0¼
1

ck

Z
∞

−∞
dqqe−iqx

sechðqaÞsinhðqyÞ
coshðqaÞ=ζ− iksinhðqaÞ=q:

ð22Þ

Then the vertical quad impedance is defined with the test
particle at x ¼ 0 as a limit with small vertical offset:

ZyqðkÞ ¼ lim
y→0

1

y
~ZyðkÞjx¼y0¼0

¼ 2

cka3

Z
∞

0

dxx2
sechðxÞ

coshðxÞ=ζ − ika sinhðxÞ=x :

ð23Þ

We have numerically calculated the quad impedance
in flat geometry using as surface impedance that of the
dc rw wall [Eq. (1)]. The product

ffiffiffi
κ

p
ReðZyqÞ, is plotted as

function of κ ¼ ks0 in Fig. 3 (the green curve). We see that
the asymptote near the origin is given by

Re½ZyqðκÞ� ¼
π2

12

�
s20
ca4

�
κ−1=2: ð24Þ

From the real part of a transverse impedance, like ReðZyqÞ,
one can obtain the wake from the sine transform:

WyqðxÞ ¼
2c
πs0

Z
∞

0

Re½ZyqðκÞ� sin κxdκ; ð25Þ

FIG. 2. Longitudinal resistive wall wake on the axis between
two parallel plates separated by distance 2a (solid). Note that the
abscissa gives x ¼ s=s0 and the ordinate gives Wl=ðZ0c=πa2Þ.
The round result, with a the radius, is given by the dashed curve
for comparison.
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where x ¼ s=s0. The quad wake in flat geometry is
shown in Fig. 4 (the green curve). Note that the slope at
the origin

dWyq

ds
ð0þÞ ¼ 2Z0c

πa4

�
π

4

�
4

; ð26Þ

and that the peak is located near s ¼ s0.

B. The dipole impedance

The dipole impedance is due to the offset of the driving
charge. To obtain it we first put the test particle at x ¼ 0 and
on axis in Eq. (19):

~ZyðkÞjx¼y¼0 ¼
2

ck

Z
∞

0

dqq
cschðqaÞsinhðqy0Þ

sinhðqaÞ=ζ − ik coshðqaÞ=q :

ð27Þ
Then the vertical dipole impedance is defined as a limit for
small offset of the driving particle (at y ¼ y0) as

ZydðkÞ ¼ lim
y0→0

1

y0
~ZyðkÞjx¼y¼0

¼ 2

cka3

Z
∞

0

dxx2
cschðxÞ

sinhðxÞ=ζ − ika coshðxÞ=x :

ð28Þ
We have numerically calculated the dipole impedance in

flat geometry using as surface impedance that of the dc rw
wall [Eq. (1)]. The real part of the dipole impedance,
ReðZydÞ, is plotted in Fig. 3 (the blue curve), where the
dipole wake for a round pipe [dashed; given by the real part
of Eq. (4)] is also given for comparison. We see that, like
the quad wake, ReðZydÞ varies as κ−1=2 near the origin, but
with an asymptote that is twice as large,

Re½ZydðκÞ� ¼
π2

6

�
s20
ca4

�
κ−1=2: ð29Þ

From the real part of a transverse impedance one can again
obtain the wake from a sine transform, see Fig. 4 (the blue
curve). Note that the slope at the origin is the same as we
found for the quad wake. The sum of the two slopes is
2ðπ=4Þ4 ¼ 0.76 times the size of the slope of the dipole
wake in a round pipe (with a the beam pipe radius).

C. Application to LCLS-II undulator beam pipe

The longitudinal impedance formula, Eq. (15), has
previously been applied to LCLS-II undulator parameters,
taking the surface impedance to represent wall resistance
and roughness [10], and recently to represent wall resis-
tance at cryogenic temperatures, by using an anomalous
skin effect surface impedance [8].
The effects of the transverse impedance in the LCLS-II

undulator beam pipe have been characterized as weak,
because the bunch is very short. However, the new formulas
allow one to quantify the effects. In Ref. [13], using these
formulas, it is shown that—even for the long bunch, large
charge (300 pC) option—the quad and dipole wake effects
in the undulator of LCLS-II are negligibly small.

IV. CONCLUSIONS

In this paper, beginning with Maxwell’s equations and
assuming only that the wall interaction can be approxi-
mated by a surface impedance, we have derived formulas
for the generalized longitudinal and transverse impedance
in flat geometry, where by generalized we mean that the

FIG. 3. Transverse resistive wall impedance near the axis
between two parallel plates separated by distance 2a, showing
ReðZydÞ (blue) and ReðZyqÞ (green). Note that the abscissa
gives the scaled frequency κ ¼ ks0 and the ordinate gives
ðca4=s20Þ

ffiffiffi
κ

p
ReðZyÞ. The round result, with a the radius, is given

by the dashed curve for comparison.

FIG. 4. Transverse resistive wall wake between two parallel
plates separated by distance 2a, showing Wyd (blue) and Wyq
(green). Note that the abscissa gives x ¼ s=s0 and the ordinate
gives ða4=s0ÞWy. The round result, with a the radius, is given by
the dashed curve for comparison.
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(transverse) positions of the driving and test particle tra-
jectories can be located anywherewithin the region between
the two plates; from these, the corresponding point charge
wakefields can also be obtained. Then, from the generalized
impedance formulas, by limiting the driving and test particle
trajectories to be near each other and near the axis, we have
obtained the normal longitudinal, dipole, and quad imped-
ances in flat geometry. These equations can be applied to
any surface impedance, such as the known dc, ac, and
anomalous skin models of wall resistance, a model of wall
roughness, and a model for a pipe with small corrugations.
In this note, we have shown that—for the particular case

of dc wall resistance—the longitudinal impedance obtained
here agrees with a result found in the literature, a result
that was originally derived from a very general formula by
Henke and Napoly. We have here, in addition, produced
plots of the longitudinal and transverse impedances and
wakes for the case of dc wall resistance.
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