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We present an experimental study aimed at exploring integer resonance crossing with a focus on
nonscaling fixed field alternating gradient accelerators. The method uses the Simulator of Particle Orbit
Dynamics system at Hiroshima University based on a compact ion trap known as a Paul trap. In a setup that
mimics the Electron Model for Many Applications nonscaling fixed field alternating gradient accelerator,
we have verified the theoretical prediction of the coherent excitation of dipole motion over a wide range of
errors and crossing speeds. In addition, the cancellation of amplitude growth dependent on the relative
betatron oscillation phase between two consecutive resonances is observed and studied. We also explore
nonlinear effects and, in particular, the effects of amplitude-dependent tune shifts and find that these
nonlinear effects are a key factor in understanding our experimental results.

DOI: 10.1103/PhysRevSTAB.18.034001 PACS numbers: 29.20.-c, 41.75.-i

I. INTRODUCTION

The nonscaling fixed field alternating gradient
(NS-FFAG) accelerator concept was invented in the 1990s
[1–4] primarily for the acceleration of muons [5,6]. These
accelerators are distinct from the original scaling FFAG
invented in the 1950s and 1960s [7], as they employ
magnetic fields that do not adhere to the scaling properties
of orbit and optics. In particular, the orbits of different
momenta are no longer photographic enlargements of each
other (i.e., geometric similarity) and focal length no longer
scales with the orbit radius (i.e., constant field index k at
corresponding orbit points) in the nonscaling version. Both
varieties of FFAG have since gained attention for their
potential use in other applications including hadron therapy
and as high power drivers for neutron production [8–13].
The scaling properties satisfied by the magnetic field

By ¼ B0ðr=r0Þk maintain a constant betatron tune, where
By is the vertical magnetic field, r is the distance from the
machine center, B0 is the vertical magnetic field at r ¼ r0,
and k is the field index. By combining a time-independent
magnetic field with the stability of alternating gradient
focusing, the scaling FFAG achieves a large dynamic
aperture and large acceleration range. The orbits in a

scaling FFAG are similar from injection to extraction,
and the beam moves radially outward during acceleration
unless k is chosen to be negative.
By choosing to ignore the scaling restriction, an accel-

erator lattice designer may introduce attractive properties
such as magnet simplicity, design flexibility, and compact
orbits. This violation of the scaling properties can be
achieved in a number of ways, and as such the NS-FFAG
covers a wide spectrum of possible designs [14,15]. The
linear nonscaling version of the FFAG was proposed in
order to simplify the design to the extent that only linear
(quadrupole) fields were required, easing the magnetic
construction. This is the type of accelerator recently
constructed and commissioned in the United Kingdom at
Daresbury Laboratory, called EMMA, the Electron Model
for Many Applications [16,17].
This violation of the scaling properties naturally leads

to consequences in the beam dynamics of the NS-FFAG.
One consequence is flexibility in the time of flight variation
with momentum, allowing a novel rapid acceleration
scheme called “serpentine acceleration” in some cases [18].
A further feature of the linear NS-FFAG is that the radial
orbit excursion can be reduced compared to its scaling
counterpart. However, the most relevant beam dynamics
feature for this work is that the scaling violation leads to a
variation of betatron tune with momentum, or a large
uncorrected chromaticity. This leads to resonance-crossing
phenomena during acceleration.
While other accelerators may routinely or experimentally

cross low-order resonances [19], linear NS-FFAGs includ-
ing EMMA are unique in routinely crossing multiple
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first-order integer resonances, in some cases more than ten
times per acceleration cycle. Naturally, one should expect
negative consequences of such a design feature. It is,
however, widely held that, in the case of fast resonance
crossing, betatron amplitudes will not grow significantly
and the beam will not deteriorate. Successful fast accel-
eration in EMMA using the serpentine channel has indeed
been demonstrated [17]. However, the parameter space that
EMMA may explore experimentally is limited due to the
present acceleration scheme (serpentine acceleration) and
the fixed rf of the installed cavities [20].
Many potential applications of NS-FFAGs rely on the

acceleration of protons or other hadrons. In such designs,
fast acceleration in very few turns is not always feasible,
and slower resonance crossing may deteriorate the beam
quality or necessitate extremely small alignment tolerances.
The two fundamental parameters driving such resonances
are the level of dipole imperfections and the rate of change
of the tune, or resonance-crossing rate [21,22]. A more
fundamental understanding of integer resonance crossing
over a wide range of operational parameters is required
to explore the application of NS-FFAG accelerators with
slower acceleration rates. Theoretical predictions of the
coherent excitation of dipole motion exist but are difficult
to evaluate experimentally. Investigating this phenomenon
in a real accelerator is problematic over the necessary
parameter range, and, even if it were possible, such a study
would be extremely time consuming. Likewise, simulations
are a very useful tool but cannot be substituted for exper-
imental verification. Establishing such an understanding
experimentally is the purpose of this work.
In order to make a systematic experimental study of

resonance crossing over a wide range of parameters, we
employ a tabletop experimental tool Simulator of Particle
OrbitDynamics (S-POD)developed atHiroshimaUniversity.
S-POD is a compact non-neutral plasma trap facility based on
the idea first proposed in Ref. [23] for fundamental beam
physics purposes. This unique apparatus provides, in the
laboratory frame, a many-body Coulomb system physically
equivalent to a charged particle beam in an alternating
gradient focusing channel, thus enabling the exploration of
important beam dynamics issues without relying on large
scale accelerators [24–29]. It should be noted that one
limitation of such a trap is the absence of any momentum
dispersion effects. However, these are not expected to play a
large or dominant role in the present studies.
While the application of two different types of plasma

trap has been discussed in Ref. [23], we here choose the
so-called linear Paul trap (LPT) where a rf quadrupole
field is used for particle confinement [30]. Figure 1 shows
an overall view of the S-POD employed for the present
resonance-crossing experiment [31]. The multisectioned
LPT of about 20 cm in length is operated at 1 MHz and
located in a vacuum chamber. A similar LPT-based
apparatus has been constructed and employed for beam

physics at Princeton Plasma Physics Laboratory [32–35].
Since a detailed explanation of the operation of S-POD has
been given in past publications [23–28], we do not repeat
it here.
In our previous work [27], extensive experimental and

numerical results were reported on linear (quadrupole-
driven) and low-order nonlinear (sextupole- and octupole-
driven) resonance crossing. We now pay particular
attention to integer resonance crossing. Such resonances
do not generally occur in a regular LPT because of the
symmetric excitation of the four LPT electrodes, which
eliminates a periodic dipole component in the plasma
confinement field. Here we intentionally introduce an rf
dipole field to generate stop bands of integer resonances
[28,35]. Considering the typical low-intensity conditions
of EMMA operation, a relatively small number of ions
are confined in the LPT, to ensure that collective space
charge effects remain negligible. As in past experiments,
we choose 40Arþ among possible candidates of ion species.
In principle, it does not matter which ion species is used,
because the ion mass and charge state are simply scaling
parameters in S-POD experiments [23,24].
In Sec. II, we start by describing the EMMA parameters.

This section is also devoted to justifying the applicability
of S-POD to the present purpose. After explaining the
correspondence between plasma parameters in S-POD and
beam parameters in the NS-FFAG, we show experimentally
that resonant instabilities can be excited at integer bare
tunes with the addition of a rf dipole field. Results of
resonance-crossing experiments are then given in Sec. III.
These results first verify the theory of integer resonance

FIG. 1. An overall view of the S-POD system employed for the
present resonance-crossing experiment. A compact LPT (lower
left corner) has been installed in the chamber inside which the
vacuum pressure is kept lower than 10−7 Pa. The main S-POD
components, including an electron gun for neutral gas ionization,
data-taking system, and ac and dc power supplies, are controlled
by a personal computer, so that all the necessary experimental
procedures are executed automatically.
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crossing by making the beam cross a single resonance. We
then show the more realistic situation in a linear NS-FFAG,
that is, the case of multiple resonance crossing. In Sec. IV,
we discuss the interpretation of the experimental results
and the effects of nonlinearities. Concluding remarks are
addressed in Sec. V.

II. EMMA AND ITS MODEL S-POD

A. Linear NS-FFAG EMMA

EMMA is a linear NS-FFAG for electrons, the main
parameters of which are given in Table I. The design
consists of 42 doublets of quadrupoles in which the dipole
component is achieved by simply sending the beam
through the quadrupoles off axis. The magnets are mounted
on precise slider mechanisms in order to vary the bending
and focusing field components independently. In general,
the predominant driving forces for integer resonances in a
linear NS-FFAG are alignment errors of the quadrupole
magnets that cause dipole field errors and errors in the
dipole magnetic field itself if such a field is present [36].
The transverse closed orbit distortion (COD) in a circular

accelerator due to a dipole error field ΔB=B is well known
and obeys the differential equation

d2xCOD
ds2

þ KxðsÞxCOD ¼ −ΔB
Bρ

; ð1Þ

where ρ is the local curvature of the design beam orbit,
s is the path length, and Kx is the magnetic quadrupole
focusing function determined by the machine lattice. When
the average radius of the machine is R, application of the
smooth approximation to Eq. (1) yields

d2xCOD
dθ2

þ ν20xCOD ¼ −R2
ΔB
Bρ

; ð2Þ

where ν0 is the bare tune and the angle dθð¼ ds=RÞ
increases by 2π every single turn. The dipole error is
periodic and can thus be expanded into a Fourier series
as ΔB=Bρ ¼ P

jbj cosðjθ þ ϕjÞ, where bn and ϕn are
constant parameters. The solution to Eq. (2) diverges when
ν0 is an integer (integer resonance).

B. Determination of the rf dipole amplitude

As mentioned above, the LPT is, in principle, free from
integer resonances. A dipole driving force can, however, be
provided by applying additional rf voltages to one or two of
the four quadrupole electrodes [28,35]. We apply either
pulsed or sinusoidal perturbing voltages of opposite signs
to two horizontal electrodes, as illustrated in Fig. 2. By
neglecting nonlinearity of the transverse rf focusing fields
and the space charge potential, the equation of the trans-
verse ion motion in a LPTwith a dipole driving field can be
written as

d2x
dτ2

þ KrfðτÞx ¼ − qξ
mc2r0

VDðτÞ; ð3Þ

where m and q are the mass and charge state of confined
ions, respectively, r0 is the minimum distance to the
electrode surface from the trap axis (in other words,
the radius of the LPT aperture r0 ¼ 5 mm), τ ¼ ct with
c the speed of light, Krf is the rf quadrupole focusing
function, ξ is a constant factor depending on the geometry
of the quadrupole electrodes (ξ ¼ 0.795 in this case),
and VD is the dipole perturbation voltage indicated in
Fig. 2. When the amplitude of the rf quadrupole voltages
applied to the four electrode rods is VQ, Krf is equal
to KrfðτÞ ¼ 2qVQðτÞ=mc2r20.
We now consider a NS-FFAG composed of P identical

doublet focusing cells. In the EMMA case, P ¼ 42.
A single turn around the machine then corresponds to P
sinusoidal periods in the function Krf (see Fig. 3). The time
dependence of Krf in Eq. (3) is smoothed to give

d2x
dθ2P

þ ν20x ¼ −
�
Pλ
2π

�
2 q
mc2r0

VDðθPÞ; ð4Þ

where λ is the wavelength of single rf focusing period in the
LPT and the angle θPð¼ 2πτ=PλÞ increases by 2π every
turn. In general, the dipole perturbation VD is periodic with
a periodicity of 2π and can be expressed, similarly to
ΔB=B, as VD ¼ P

jwj cosðjθP þ ϕjÞ, where wj and ϕj are

TABLE I. Main parameters of the EMMA NS-FFAG.

Energy range 10–20 MeV
Cell type FD doublet
Number of cells 42
rf 1.301 GHz
rf voltage 0.2–2.0 MV with 19 cavities
Integrated quadrupole gradient 0.402=−0.367 T (QF=QD)
Cell length 394.481 mm
Ring circumference 16.568 m

FIG. 2. rf voltages applied to the quadrupole electrodes of the
LPT. In addition to the regular rf power of quadrupole symmetry
(left), we simultaneously introduce the dipole rf perturbation
(right) to excite integer resonance.
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constants. The on-resonance solution to Eq. (4), i.e., the
diverging orbit under the condition ν0 ¼ n, is given by

x ¼ x0 cosðnθP þ αÞ

− 1

2

�
Pλ
2π

�
2 q
mc2r0

wnθP
n

sinðnθP þ ϕnÞ

−
�
Pλ
2π

�
2 q
mc2r0

X
j≠n

wj

n2 − j2
cosðjθP þ ϕjÞ; ð5Þ

where x0 and α are constant. Comparing the driving term in
Eq. (4) with that in Eq. (2), we find that the physical orbit
distortions in these systems are similar when

VD ≈
mc2r0
qξ

�
2πR
Pλ

�
2ΔB
Bρ

: ð6Þ

This formula allows us to make a quick estimate of the
dipole rf voltage VD equivalent to the strength of a certain
error field ΔB=B.

C. Excitation of resonances

To verify that we can excite and control integer reso-
nance stop bands in S-POD, two different rf waveforms as
shown in Fig. 3 were employed for VD. In the upper case,
the dipole perturbation is piecewise constant within a
narrow range, which emulates a once-per-turn dipole field
error like the local septum leakage field in EMMA. Only
one of many Fourier harmonics (the eighth harmonic in this
example, namely, wn ¼ 0 except when n ¼ 8) is extracted
from VD in the lower case. For the primary quadrupole
focusing potential, we use a sinusoidal waveform for the

sake of simplicity to approximate the doublet lattice. Since
EMMA is composed of 42 identical doublet cells,
42 consecutive sinusoidal rf periods correspond to a single
turn around the ring. It has been demonstrated numerically
and experimentally that sinusoidal focusing has a reso-
nance feature analogous to that of discrete doublet focusing
[29]. Note also that symmetric transverse focusing has been
assumed throughout this work. Thus, the horizontal and
vertical tunes are always equal. We employ this simplest
experimental case in order to study the fundamental beam
dynamics effects of integer resonance crossing.
First of all, we experimentally determine the stop-band

distribution without the dipole perturbation. About 10 000
40Arþ ions are initially trapped in the LPT and stored for
10 ms at a certain fixed value of bare tune ν0. The number
of ions surviving after the 10 ms storage is measured with a
microchannel plate (MCP) positioned at the one end of the
LPT. The same experimental procedure was repeated many
times, changing ν0 in small steps over a wide range.
Figure 4(a) shows the stop-band distribution measured in
S-POD without the dipole perturbation. We observe three
clear stop bands near ν0 ≈ 42=6, ν0 ≈ 42=4, and ν0 ≈ 42=3,
corresponding, respectively, to sixth-, fourth-, and third-
order resonances. The primary source of these resonances
is weak nonlinear focusing components induced mostly by
the misalignment of the quadrupole rods. We confirm in
Fig. 4(b) that the application of the piecewise constant
dipole perturbation in Fig. 3(a) generates stop bands at
every integer tune, in addition to the three original stop
bands in Fig. 4(a). In this example, the height and width of
the dipole pulse are fixed at 1 Vand 1 μs, respectively. The
use of the sinusoidal perturbation in Fig. 3(b) eliminates
all integer stop bands except for the one located at ν0 ¼ 8,
as experimentally verified in Fig. 4(c). We can readily
excite an arbitrary number of stop bands at arbitrary integer
tunes by applying several sinusoidal perturbation waves of
different harmonics simultaneously.

D. Ion losses on resonance

Before proceeding to resonance-crossing experiments,
we first check how quickly the amplitude of the transverse
plasma oscillation grows on resonance. We can estimate the
growth rate of the transverse amplitude by measuring the
number of ions after a certain period of time with the MCP
detector. An ion plasma is initially produced through the
electron bombardment process. After an ionization process
that lasts for many rf periods (typically 200 ms), we wait
for another 50 ms so that the plasma approaches a steady
state. We thus assume that the initial ion distribution is
approximately Gaussian.
As an example of on-resonance loss, let us take a look at

the ion loss behavior on the integer resonance driven by the
eighth harmonic, namely, the time evolution of ion losses
when the LPT operating point is in the middle of the stop
band at ν0 ¼ 8 in Fig. 4(c). To ensure there is no systematic

Quadrupole

Quadrupole

harmonic number n = 8

FIG. 3. Typical waveforms of the driving rf voltages applied to
the LPT electrodes. The doublet focusing is approximated by a
sinusoidal waveform oscillating at 1 MHz. As for the dipole
perturbation, two different rf waveforms are considered, namely,
(a) a piecewise constant voltage emulating the local dipole field
error such as a leakage field from the septum magnet in EMMA
and (b) a sinusoidally varying voltage corresponding to a single
Fourier harmonic of the pulse voltage in (a).
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error in setting the primary focusing frequency, an initial
tune scan is performed. The selected tune is that which
produces maximum ion losses corresponding to the center
of the stop band. The results of S-POD measurements
are given in Fig. 5 together with the corresponding WARP

simulation data plotted by a solid line [37]. (Three
independent approaches were used to cross-check numeri-
cal results and are discussed in more detail in Appendix A.)
The abscissa is not the simple time variable but has been
scaled by the amplitude wn of the eighth dipole harmonic,
because the diverging term in Eq. (5) is proportional to

wnθP. Various different values of wn are considered
corresponding to different strengths of a dipole error source
in EMMA.
In Fig. 5, we have chosen wn to be sufficiently low to

avoid instant ion losses. We find that the loss behavior is
always similar [as predicted by Eq. (5)] and agrees well
with the WARP simulation unless the dipole perturbation is
very small. The WARP simulations were done with a much
wider range of choices of wn, but no substantial difference
was found. By contrast, the experimental results with very
low wn (less than 0.1 V) are clearly different from the
others. The deviation from the ideal numerical result
becomes larger as wn is lowered. This could be caused
by nonlinearity of the focusing in the trap, which introduces
an amplitude-dependent tune shift. Without the perturba-
tion, there is no beam loss on the time scale of a few
milliseconds as shown in Fig. 4(a). More detail on this
effect is discussed in Sec. IV.

E. Amplitude growth off resonance

The typical time evolution of an on-resonance transverse
plasma profile observed on a phosphor screen is shown in
Fig. 6, where w8 ¼ 0.1 V. As the image is axially inte-
grated over many rf periods during plasma extraction, it is
expected that the transverse closed orbit distortion will be
observed as an increase in transverse size even when the
tune is not at an integer. To verify this, first the dipole
perturbation is ramped up slowly over a period of 0.1 ms in
order to minimize coherent oscillations around the distorted

FIG. 5. Time evolution of ion losses when the LPT operating
point is fixed exactly on the integer resonance at ν0 ¼ 8 in
Fig. 4(c). Five different sinusoidal amplitudes are considered to
change the resonance strength. The solid curve represents the
corresponding WARP simulation result in which perfectly aligned
quadrupole rods have been assumed, and the dashed curve where
nonlinearities have been introduced. The initial plasma temper-
ature is set at 0.5 eV.

FIG. 4. Resonance stop bands identified by the S-POD system.
Starting with roughly 104 ions in the LPT, we measured the
final ion number after 10 ms at various fixed tunes. There are
140 data points of independent measurements in the tune range
5 ≤ ν0 ≤ 17. (a) Stop-band distribution with no dipole perturba-
tion, (b) stop-band distribution with a piecewise constant dipole
perturbation whose pulse height and width are 1 V and 1 μs,
respectively, and (c) stop-band distribution with a sinusoidal
dipole perturbation as shown in Fig. 3(b). For reference, the data
of the case (a) is replotted with a black solid line in the middle and
lower pictures.
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closed orbit. We then experimentally observe the change in
the integrated phosphor screen image after a given accu-
mulation time while the tune is set to a fixed value, some
distance from the integer.
As the perturbation strength is increased, we see a

corresponding increase in the closed orbit distortion as a
widening of the horizontal FWHM of the integrated
distribution. Further from the resonance, no widening is
observed.
This method is repeated for a range of perturbation

voltages for a set tune value of ν0 ¼ 8.1, and the results are
shown in Fig. 7. Each experimental data point is the mean
of 40 repeated experiments to ensure the results are not
affected by any statistical fluctuations in the focusing
waveform voltage or extraction timing.
The fact that the bunch oscillates during extraction

means the theoretical comparison to the horizontal
FWHM is not trivially the same as the COD amplitude.
To establish the relationship between theoretical FWHM
and COD amplitude, we start by assuming a Gaussian
bunch whose width is calculated from the zero perturbation

experimental case. This Gaussian is then integrated numeri-
cally with the mean following a time-dependent COD
trajectory for many oscillation periods. The resulting
translation from perturbation strength to amplitude and
then to FWHM using this method is shown as the “lossless
theory” curve in Fig. 7.
We note that the experimental FWHM is slightly smaller

than that predicted by theory, which may be caused by the
aperture of the trap removing large-amplitude particles in
the distribution tails. A 2D simulation with WARP including
particle loss on the aperture produces a qualitatively similar
result to the experimental data, although the simulated
FWHM is lower for each point due to the initial plasma
temperature assumption of 0.5 eV, which produces a
slightly different FWHM for the initial distribution
compared to the zero perturbation experimental case.
Coupling effects between the horizontal and vertical

planes may also be playing a role, and preliminary data
suggest that for high perturbation strength there may be a
small increase in vertical amplitude also. While this effect
does not impact significantly on the results contained
herein, a detailed study of coupling effects is a topic of
ongoing work.

III. INTEGER-RESONANCE-CROSSING
EXPERIMENT

Having established the excitation of integer resonance
stop bands and observed the resulting amplitude growth,
we now proceed to integer-resonance-crossing experi-
ments. In S-POD, the operating point can be ramped at
a given speed from an initial tune to another final tune by
ramping the rf quadrupole amplitude VQ from one value to
another. Unlike in previous sections, this tune-ramping
process is dynamic rather than a series of static tune
experiments. While either direction of tune variation,
upward or downward, is feasible in S-POD, here we
consider only the downward resonance crossing that occurs
during acceleration in linear NS-FFAGs. Following
Ref. [27], we define the resonance-crossing speed u as
the ratio of δ (the width of tune variation per single focusing
cell) to nrf (number of rf periods for the bare tune to go
across the width δ) in units of cell tune per cell. For

0.00 0.05 0.10 0.15 0.20 0.25

3

4

5

6
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8

9

w8 [V]

FW
H

M
[m

m
]

: Lossless theory

: Warp simulation

: Experiments

FIG. 7. Measured growth in horizontal FWHM as a function of
perturbation strength w8 calculated from integrated phosphor
screen images. The tune is set to ν0 ¼ 8.1, and the dipole
perturbation is excited at the eighth harmonic.

FIG. 6. Time evolution of a transverse plasma profile on the phosphor screen measured with a CCD camera. The bare tune of the LPT
and the perturbation amplitude are set, respectively, at ν0 ¼ 8 and w8 ¼ 0.1 V. The initial number of Arþ ions is increased to 3.2 × 105

in order to enhance the phosphor images. Note that each image does not reflect the plasma profile at a specific moment but is an axially
integrated signal over many rf periods. The two electrode rods with the dipole perturbation are located in the horizontal direction
(see Fig. 2).
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example, a single ring of the proton therapy design in [11]
with 1000-turn acceleration has u ≈ 4 × 10−6. In the case
considered here, we assume 10-turn extraction of an
electron beam from EMMA, where u is roughly 5×10−4
if the tune per cell decreases by 0.2 during acceleration.
First we verify the theory of integer resonance crossing by
making the plasma cross a single resonance. We then
present the results of the more realistic multiple resonance-
crossing case in a linear nonscaling FFAG.

A. Single resonance crossing

We first explore what happens when the LPT operating
point crosses a single integer resonance stop band. In
order to see the effect from a single stop band, the single
harmonic perturbation case (c) in Fig. 4 was adopted
instead of the general case (b). The integer stop band at
ν0 ¼ 8 is almost completely isolated in this case, except for
a weak nonlinear resonance at ν0 ¼ 42=6. The operating
bare tune ν0 is varied from the initial value of 9.5 down to
7.5 at various speeds. The rate of Arþ ions surviving after
resonance crossing is plotted as a function of the crossing
speed u in Fig. 8. Several different rf amplitudes are chosen
for the dipole perturbation. Filled symbols are experimental
results, while open symbols come from numerical simu-
lations by the WARP code [37]. The numerical data are in
good agreement with the experimental observation. The
slightly higher results from the simulation arise due to the
sensitivity of ion loss to assumptions about the exact initial
ion distribution. A similar systematic experiment of single
resonance crossing was done with the twelfth harmonic w12

to excite another isolated stop band to cross-check this
result. Essentially the same results as shown in Fig. 8 were
obtained for crossing the stop band at ν0 ¼ 12.
Guignard derived a formula to estimate coherent ampli-

tude growth after a single integer resonance crossing [38]:

Δ
ffiffiffi
ε

p ¼ πffiffiffiffiffiffi
Qτ

p 2R
Bρ

���� 1

2π

Z
2π

0

ffiffiffi
β

p
ΔB expðinθÞdθ

����; ð7Þ

where ε is the amplitude of the coherent excitation of the
dipole motion, Qτ is the rate of change of tune per turn,
and β is the betatron amplitude parameter. Appendix B
discusses the nonsmooth and smooth approximations to
estimate coherent amplitude growth. Using the relation
(6) together with the Fourier coefficients wn and bn,
we eventually obtain the following approximate dipole
oscillation amplitude in terms of S-POD:

ΔAn ¼ gGn
wnffiffiffi
u

p ; ð8Þ

where gGn ¼ qλ
2πmc2r0

maxð ffiffiffiffiffiffi
βrf

p Þj R 2π
0

ffiffiffiffiffiffi
βrf

p
sinðnθPÞ exp×

ðinθPÞdθPj with βrf defined by βrf ¼ ðPλ=2πRÞβ.
Figure 9 shows how ΔA8 depends on the crossing speed.
The solid curve is based on Guignard’s formula when the
maximum dipole oscillation amplitude reaches the LPT
aperture of 5 mm. Results of S-POD measurements are
plotted with black dots. Here, the experimental critical
perturbation voltage corresponding to the centroid of
plasma oscillations reaching the aperture limit of 5 mm
in S-POD is estimated from the experimental ion loss at a
particular crossing speed as follows: As the plasma centroid
starts to oscillate on an integer resonance, the plasma is

FIG. 8. Fraction of ions remaining after integer resonance
crossing. Fractional ion losses obtained with various dipole
perturbation strengths are plotted as a function of crossing speed
u. The bare tune ν0 is reduced from 9.5 to 7.5. Filled and open
symbols show, respectively, experimental data and WARP sim-
ulation results in which the initial ion distribution is Gaussian
with a temperature of 0.5 eV.

FIG. 9. Crossing-speed dependence of the critical perturbation
voltage at which the maximum transverse shift of the plasma
centroid reaches 5 mm (the LPT aperture) after single resonance
crossing at ν0 ¼ 8. The solid curve is a theoretical estimate with
the nonsmooth formula. Black dots are experimental data from
S-POD.
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scraped by the two horizontal electrodes. Since the oscil-
lation frequencies of individual ions are identical to that
of the plasma centroid oscillation about the trap axis, the
ions remain in synchronous rotation about the trap axis.
Therefore, roughly half of the ions confined in the LPT
should hit the electrode surface when the horizontal shift of
the original plasma approaches the aperture size (5 mm in
radius). The black dots in Fig. 9 represent the measured
perturbation voltage VD at which 50% of initial ions are
lost after crossing the stop band at ν0 ¼ 8. We confirm
that the theoretical estimate from Eq. (8) agrees fairly well
with S-POD data.

B. Additional effects of multiple resonance crossing

In practice, the operating point of a NS-FFAG crosses
not one but more likely several integer stop bands. It is thus
important to ask whether any new features appear when
a few stop bands are crossed consecutively. Previous
simulation studies have shown interesting beam behavior
expected in multiple resonance crossing [39] in which the
phase of errors may not add and in some instances may
even cancel. To investigate this issue systematically, we
now introduce the ninth dipole harmonic in addition to the
eighth considered in the last section. The amplitudes of
both harmonics are always set equal here for simplicity.

The operating tune is swept from 9.5 to 7.5 traversing
the two stop bands. Three independent series of S-POD
experiments were carried out with three different strengths
of the dipole perturbation and are summarized in Fig. 10.
The ion loss rate has been clearly enhanced compared to the
case of single resonance crossing.
We recognize in Fig. 10 that the ion loss curve is not

very smooth but has small oscillatory structure at particular
crossing speeds. The mechanism of this phenomenon
can be understood by considering the effect of the second
integer tune crossing at ν0 ¼ 9 on the transverse plasma
oscillation excited by the first integer tune crossing at
ν0 ¼ 8. After the first crossing, the whole plasma starts to
execute a centroid coherent oscillation whose tune is
gradually changing from 9 toward 8. The change in phase
of the oscillations during the shift of operating point
depends on the crossing speed u. The effect of a second
crossing on the dipole motion depends on the oscillation
phase. This phase dependence has been studied in more
detail in Sec. IV B and also with simulations discussed in
Appendix C.

IV. DISCUSSION

A. On-resonance ion loss plateau

In Sec. II D, when the tune of the trap is set to an integer
resonance and a finite perturbation is applied, we expect
the amplitude of the plasma oscillation to grow without
bound. In fact, Fig. 5 shows this does not happen when the
dipole perturbation strength is sufficiently low. Instead, the
amplitude initially increases and then reaches a plateau.
We consider two possible explanations for this. The first

is that an amplitude-dependent tune shift results in the tune
moving away from the resonance. This may be caused by
electrode imperfections or misalignments exciting higher-
order multipoles, where an octupole term would give rise to
detuning with amplitude. The second very simple explan-
ation is that a systematic operating error has caused the tune
to be set slightly away from the resonance and the plateau
we observe corresponds to the resulting finite COD.
In the first scenario, we can assume a linear detuning

with action

νx ¼ νx0 þ μDIx; ð9Þ
where μD is the detuning parameter, νx0 is the tune at
zero action, Ix is the action, and the altered tune is νx.
It has been shown in this case that the centroid amplitude
xC ∝ ðwn=μDÞ1=3 [40]. On the other hand, in the case of
an operating tune error, the COD grows linearly with
perturbation voltage: xC ∝ wn.
The two hypotheses can be tested by measuring how xC

varies with wn experimentally. We cannot measure the
centroid amplitude directly, so we have to infer it from the
ion loss data, assuming the plasma can be represented by a
transversely shifted 1D Gaussian. Since the tune is on an

FIG. 10. Results of double resonance-crossing experiments.
Two integer resonances at ν0 ¼ 8 and 9 are consecutively crossed
at various speed u. The amplitudes of the eighth and ninth dipole
driving harmonics are set equal to 0.05 (triangle), 0.1 (circle), and
0.2 V (square). The rf phases of both sinusoidal waves are fixed at
0° at the beginning. The tune variation range is the same as that
considered in the previous single resonance-crossing experiment
in Fig. 8; namely, the initial tune is 9.5 eventually reduced to 7.5.
For reference, the corresponding experimental data of single
resonance crossing are plotted with black symbols.
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integer resonance or close to it, the plasma can be assumed
to oscillate synchronously around the trap axis. In that case,
the fraction of ions ζ that remain within the aperture is
given by the complementary error function:

ζ ¼ 1 − 0.5erfc

�
r0 − xCffiffiffi

2
p

σx

�
; ð10Þ

where the size of the plasma distribution σx is obtained
from CCD measurements. Rearranging in terms of ζ, one
obtains

xC ¼ r0 −
ffiffiffi
2

p
σxerfc−1ð2 − 2ζÞ: ð11Þ

Using this equation, the evolution of the centroid amplitude
can be obtained from the ion survival data in the plateau
phase. An extended set of ion loss data and the resulting
fit are shown in Fig. 11 (lower) along with a power law
fit to the function xc ¼ awb

n, where a and b are fitting
parameters. The highest three perturbation voltages were

excluded from the fit, since the low number of ions that
remain in these cases results in an unreliable measurement
of xC. The exponent found by the fit is b ¼ 0.24� 0.03.
This is clearly in disagreement with the expected value of
1.0 that the simple operating tune error hypothesis predicts.
It is much closer to the 1=3 value predicted by our
first hypothesis of linear detuning, although there is a
discrepancy that is unaccounted for at present.
Separately, we confirmed by numerical simulation that

in the presence of nonlinearities it is possible to reproduce a
similar plateau effect in ion loss observed in the exper-
imental data, which is also shown in Fig. 5. In these
simulations, sextupole and octupole terms were introduced
at the level of about 0.5% of the quadrupole field.
From this experiment and simulation-based evidence,

we can surmise that nonlinearities must play a role in the
observed ion loss plateau behavior. In the future, it may be
possible to investigate this effect in more detail if control
over trap nonlinearities could be achieved.

B. Phase-dependent resonance-crossing effects

In Sec. III B, it was noted that the effects of resonance
crossing are phase dependent in the situation where more
than one integer resonance is crossed during an acceleration
cycle. We made a conjecture that the amplitude of the
coherent oscillation excited by the first integer resonance
crossing could be subsequently enhanced or reduced
depending on the phase of the coherent oscillation when
the beam comes to the second integer resonance. To
investigate this more thoroughly, the dependence on the
relative initial phase was investigated experimentally for a
fixed perturbation with varying crossing speed in Fig. 12.
The abscissa represents the relative initial phase of the two
sinusoidal dipole perturbation waves. The relative phase of
zero degrees means that both perturbations start to grow
from zero voltage at the same time. A period of oscillation
is observed in the ion survival fraction, which depends on
the relative phase between the first and second integer
resonances, confirming the idea that observed ion loss
fluctuates depending on the phase relation.
With a fixed crossing speed, the ion survival fraction

depends on the dipole perturbation strength, as expected,
but also the relative phase as seen in Fig. 13. In the best
case, the effects of resonance crossing could be almost
canceled even with a sizable dipole perturbation such as
0.2 V if the relative phase between the two resonances is
arranged to be 130°.
However, in the case where a certain level of nonlinearity

exists like in this LPT, the resultant incoherent tune spread
gives rise to a smearing in the phase space. Note that the
amplitude-dependent tune shift is small in a linear NS-
FFAG like EMMA, where the major source of incoherent
tune spread is the natural chromaticity and finite momen-
tum spread, but the effects are analogous. The coherent
dipole motion of the whole plasma is then diluted before

FIG. 11. The upper part of the figure shows the time evolution of
the centroid amplitude calculated from ion loss data using Eq. (11).
The measured size of the plasma distribution σx is 1.43 mm. The
measured maximum centroid values are given by the mean of the
centroid data from 40 V μs onwards, shown in the lower figure
(black dots) together with the power law fit (solid black line).
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the second stop band is reached. Naturally, the smearing
should be enhanced as the crossing speed is decreased
(because it takes the operating point a longer period to
move from one stop band to the next).
Experimental data in Fig. 10 support these expectations of

double resonance crossing. Namely, the fine structure due

to the relative phase almost disappears when the crossing
speed is low. Therefore, the mechanism of enhancement or
reduction of the centroid oscillation amplitude is relevant
only when the smearing can be ignored on the time scale of
the accelerator cycle. It is inadvisable for a machine to be
operated in the parameter regime where sizable smearing
occurs. The emittance would grow owing to smearing every
time a beam traversed an integer resonance, and this is not
tolerable in practical operation.

V. CONCLUDING REMARKS

In summary, we have first verified the theory of integer
resonance crossing experimentally over a wide range of
resonance strengths and crossing speeds. We have found
that the mechanism of resonance crossing in terms of
parameter dependence agrees with previous theoretical
works. Additionally, we have found that the relative
advance in the betatron phase between consecutive integer
tunes needs to be considered when determining effects of
amplitude growth from multiple resonance crossing.
Nonlinear effects either due to the alignment of the trap
in S-POD or due to chromaticity and momentum spread in a
FFAG are unavoidable. This means there is an interplay
between the relative phase effects and nonlinear effects
which will result in a real emittance growth after integer
crossing, not just the excitation of dipole oscillations. As
such, when the decoherence time is short relative to the
traversal time from one integer to another, cancellation from
consecutive excitations cannot be expected. The interplay
between these various effects needs to be considered in the
design of proton and ion NS-FFAGs or other accelerators
that routinely perform integer resonance crossing.
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APPENDIX A: SIMULATIONS OF AMPLITUDE
GROWTH ON RESONANCE

Three independent approaches were used to cross-check
numerical results in Sec. II D; these are (a) multiparticle
simulations with the WARP code in 2D ignoring the space
charge potential, as we are interested only in low-intensity
effects in this case [37], (b) one-dimensional (1D) simu-
lations based on Eq. (3), and (c) theoretical estimation from
a rigid Gaussian model. Unlike the quadrupole and other
nonlinear resonances, integer resonances do not give rise to
a deformation of the initial ion distribution but simply cause
a spatial shift of the whole plasma. Recalling this fact, in
approach (c) we make a Gaussian plasma oscillate about
the trap axis and calculate how much of the Gaussian tail
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FIG. 13. Dependence of ion losses on the relative initial phase
of the two sinusoidal dipole perturbations of various strengths
(S-POD data). The crossing speed has been fixed at u¼1.6×10−4.
The range of tune sweeping is the same as assumed in Fig. 10.

FIG. 12. Dependence of the ion survival fraction on the relative
initial phase of the two sinusoidal dipole perturbations of a
fixed strength. Three different speeds of resonance crossing
are considered, namely, u ¼ 1.6 × 10−4, u ¼ 2.4 × 10−4, and
u ¼ 4.8 × 10−4. The range of tune sweeping is the same as in
Fig. 10. The amplitudes of the eighth and ninth dipole harmonics
are fixed at 0.2 V.
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crosses the circular boundary of 5 mm in radius. The time
evolution of the centroid oscillation is determined by
solving Eq. (1). Comparison between the three numerical
models is shown in Fig. 14. We have confirmed that these
approaches produce similar results as long as the trap has
perfectly linear focusing.

APPENDIX B: SIMULATIONS OF SINGLE
RESONANCE CROSSING

Figures 5 and 8 indicate that the numerical simulations
can explain the experimental observations. This fact jus-
tifies the use of WARP or even a simpler 1D code for a quick
estimate of the transverse amplitude of the plasma centroid
after resonance crossing unless the nonlinear effect is too
strong. The maximum centroid shifts ΔAn numerically
evaluated with various dipole perturbation strengths are
plotted in Fig. 15 as a function of crossing speed u. The
existence of the quadrupole electrodes is ignored in this
simulation, so that we can maintain all initial particles even
after the oscillation amplitude exceeds the LPT aperture
size. A pure rf quadrupole focusing field is assumed to
eliminate nonlinear effects. The fitting lines in Fig. 15
indicate that ΔA8 scales as ΔA8 ¼ g8w8=

ffiffiffi
u

p
, where the

constant g8 is close to 0.30. This is consistent with Eq. (8)
derived without the smooth approximation [38] as well
as the smooth-approximated formula in Refs. [41,42].
Under the smooth approximation, we have the same scaling
formula as Eq. (8) with a different coefficient, namely,

ΔAn ¼ gBn
wnffiffiffi
u

p ; ðB1Þ

where gBn ¼ ðPqλ2=4πmc2r0Þ=n. Putting n ¼ 8, we have
gB8 ≈ 0.20, for example. In Fig. 16, we have compared this

coefficient gBn with the nonsmoothed coefficient gGn and
with WARP simulation results. The enhanced disagreement
for a higher n value is found in gBn . We have confirmed that
the prediction from the nonsmooth formula results in better
agreement with numerical simulation results over a wide
range of n value.

FIG. 14. Comparison of ion loss fractions evaluated from three
independent numerical models.

FIG. 15. Numerical results obtained from 2DWARP simulations
without space-charge interactions and external nonlinear fields.
The maximum transverse amplitude of an ion plasma after
crossing the integer resonance stop band at n ¼ 8 is plotted as
a function of crossing speed u. The tune-variation range is chosen
the same as in Fig. 8. The solid lines are given by the scaling law
ΔA ¼ g8w8=

ffiffiffi
u

p
with g8 ¼ 0.30.
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FIG. 16. Comparison of the coefficient gGn in the nonsmoothed
scaling formula (8) and gBn in the smoothed scaling formula (B1).
The values of gGn at different harmonic numbers n are plotted
with black dots. The solid line comes from the definition of gBn
in Eq. (B1). Open circles represent the corresponding WARP

simulation results.
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APPENDIX C: PHASE DEPENDENCE
SIMULATIONS

Numerical simulations based on a simple linear focusing
model have shown strong oscillatory dependence of ion
losses on the crossing speed as shown in Fig. 17. When the
second kick is given at the optimal timing, the ion losses
from the second resonance crossing can be suppressed
almost completely. Such a favorable effect can, however, be
expected only when the external nonlinearity is negligible,
as stated in Sec. IV.
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