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A two-dimensional finite element beam coupling impedance solver for arbitrary transverse geometries
and material distribution is presented. The solver is based on open source software and is applicable to
space charge and resistive wall longitudinal and transverse impedances. The frequency and the beam
velocity can be chosen arbitrarily and also dispersively lossy materials are supported. Space charge
impedance, a thin resistive beam pipe, a ferrite ring, and a carbon collimator are presented as application
examples.
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I. INTRODUCTION

The concept of beam coupling impedance describes the
electromagnetic interaction of a particle beam with the
surrounding equipment in the frequency domain (see, e.g.,
[1,2]). Particularly in circular accelerators, the frequency
domain description is advantageous. For modern synchro-
trons of large circumference, increasingly lower frequen-
cies become important. Also, due to shorter bunch lengths,
one has to focus on higher frequencies. For the estimation
of coherent instability thresholds, an impedance model of
the machine, such as the one presented in [3], is required.
On the one hand, at high frequencies, time domain methods
such as finite integration technique (FIT) or finite
differences time domain (FDTD) are very efficient (see,
e.g., [4,5] and references therein) and commercial codes are
available. On the other hand, at low and medium frequen-
cies, involved geometry approximations together with
analytic calculations are widely used. Examples are [6,7]
and the Mathematica® [8] script Rewall [9] developed by
Mounet et al. at CERN. Numerical impedance computa-
tions in the frequency domain were performed by Doliwa
et al. [10,11] and Niedermayer [12] using staircase FIT,
which suffers from slow convergence when curved boun-
daries are present in the geometry. This is particularly
problematic for nonultrarelativistic beams, since the source
has to be modeled properly to remove direct (transverse)
space charge fields. Macridin et al. [13] presented an
approach using the boundary element method (BEM). This
approach does not include the space charge impedance

since the beam is modeled pointlike. Meshing different
material domains is possible, but yet involved to automate.
An approach to obtain the longitudinal space charge
impedance from the electrostatic potential calculated by
finite element nodal shape functions is presented by Li and
Wang [14].
This paper presents a general 2D longitudinal and

transverse impedance computation tool for arbitrary fre-
quency and beam velocity. It is based on the finite element
method (FEM) on an unstructured triangular mesh. This
means that the mesh can be adapted to resolve field
penetration depths in different materials. Also, a surface
impedance boundary condition (SIBC) is included, to avoid
meshing extremely small skin depths in good conductors at
high frequency. The full Maxwell equations are solved, for
an assumed infinitely long structure of arbitrary transverse
geometry.
The algorithm works as follows: In order to properly

represent discontinuities on material interfaces, the electric
vector field in frequency domain is represented by vector
valued, tangentially continuous edge functions. These edge
functions of lowest order are incapable of representing the
irrotational part of the electric field. Therefore, a Helmholtz
split is applied and those field components are obtained
separately by solving the Poisson equation for the complex
valued scalar potential with nodal functions. The imped-
ance is finally obtained from the sum of the solenoidal and
irrotational field solutions by a post-processing functional.
The implementation is done using the open source finite

element toolbox FEniCS [15] (see also [16]). It provides a
mathematical framework to work with function spaces that
have been created on the mesh. The PYTHON source code is
compiled just in time (JIT) to obtain C++ code that runs a
powerful linear algebra backend such as PETSc [17].
FEniCS does not provide complex numbers, but this
drawback is overcome by coupling multiple function
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spaces together. The mesh originates from GMSH [18] and
it is imported using DOLFIN-CONVERT [19]. Since only
open source software is involved, we decided to publish our
code as well. It can be downloaded from [20].
The paper is structured as follows: In Sec. II the beam

coupling impedance definition is given and the problem is
stated. Section III describes how Maxwell’s equations are
recast to obtain a weak formulation suited to 2D FEM
computation. In Sec. IV the solver is benchmarked fol-
lowed by the conclusion in Sec. V.

II. PROBLEM STATEMENT

The beam with total charge q is modeled as a disc with
radius a and surface charge density σ, traveling with
velocity ~v ¼ βc~ez. The displacement dx; dy of the beam
in x or y direction (i.e., a coherent dipole oscillation) can be
approximated in cylindrical coordinates ðϱ;φÞ by

σðϱ;φÞ ≈ q
πa2

½Θða − ϱÞ þ δða − ϱÞðdx cosφþ dy sinφÞ�;
ð1Þ

where Θ and δ denote the Heaviside step and Dirac
δ-function, respectively. The current density reads in the
time domain

~JsðtÞ ¼ σδðz − vtÞ~v; ð2Þ

resulting in frequency domain as

~JsðωÞ ¼
Z

∞

−∞
~JsðtÞe−iωtdt ¼ σe−iωz=βc~ez

¼ ~J∥ðωÞ þ ~JdxðωÞ þ ~JdyðωÞ: ð3Þ

The coherent force acting back on the beam is described by
the coupling impedance [2]

Z∥ðωÞ ¼ −
1

q2

Z
beam

~E · ~J�∥dV ð4Þ

Z⊥;xðωÞ ¼ −
βc

ðqdxÞ2ω
Z
beam

~E · ~J�dxdV ð5Þ

Z⊥;yðωÞ ¼ −
βc

ðqdyÞ2ω
Z
beam

~E · ~J�dydV; ð6Þ

i.e., the beam’s power loss into the particular azimuthal
mode. Note that ~E and ~J are to be understood as spectral
densities in units of V=m=Hz and A=m2=Hz, respectively.
Since the impedance as given in Eqs. (4)-(6) describes

coherent effects, it depends only marginally on the beam
shape [21]. Therefore we use the uniform beam distribution
as given in Eq. (1). For particular cases, such as the
longitudinal space charge impedance, direct and indirect

effects cannot be decoupled. Then it makes sense to use the
real beam distribution, e.g., a Gaussian transverse profile.
Also, the excitation can be extended to higher multipoles
by substituting φ → mφ in Eq. (1). Evaluations of the
fields at particular points in space, as necessary for a
direct evaluation of the detuning impedance as defined in,
e.g., [22], are numerically not robust and therefore not
attempted here.
The task is to solve Maxwell’s equations subject to

excitation by Eq. (3), including the charge that can be
obtained by the continuity equation. The impedance is then
evaluated by Eqs. (4), (5), and (6), interpreted as func-
tionals of the solution of Maxwell’s equations.

III. 2D IMPEDANCE FEM SOLVER

The electric field ~E∶ R2 → C3 required to determine the
coupling impedance is the solution of

∇ × ν∇ × ~E − ω2ε ~E ¼ −iω~Js ð7Þ

with the complex valued reluctivity ν ¼ μ−1 ¼
ðμ0 þ iμ″Þ=jμj2, and the complex valued permittivity ε ¼
ε0εr − iκ=ω (conductivity κ) as functions of position and
frequency. On the sufficiently smooth boundary ∂Ω of the
computational domain Ω ⊂ R2, see Fig. 1, a Dirichlet

condition, i.e., ~n × ~E ¼ 0, is applied. Later, this will be
replaced by a metallic surface impedance boundary con-
dition, relating the electric and magnetic field in the two
directions tangential to the boundary.
For a two-dimensional (infinitely long) structure, the

Fourier correspondence ∂z → −iω=v, arising from Eq. (3),
motivates splitting the electric field as

~E ¼
� ~Er

⊥
Er
z

�
þ i

� ~Ei
⊥

Ei
z

�
ð8Þ

where the upper indices denote real and imaginary parts. If
the vectorial (transverse) parts of the field would be
discretized using nodal elements, a jump of the normal
field component on a material interface would be impos-
sible. In order to avoid this “too much continuity” phe-
nomenon, Nédélec edge-elements [23,24] are used for the
vector fields.
Since the lowest order Nédélec elements are not suited to

compute the divergence of a field, the irrotational part is
calculated separately by applying a Helmholtz split ~E ¼
~Ecurl þ ~Ediv to Eq. (8) on the simply connected domain Ω.
Demanding ∇ · ε~Ecurl ¼ 0 and ∇ × ~Ediv ¼ 0 determines
the two uniquely (see [25], p. 86, and p. 170 for the discrete

version). From the ansatz ~Ediv ¼ −∇Φ the Poisson equa-
tion for the complex potential is found,
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−∇ · ε∇Φ ¼ ϱ
s
¼ 1

βc
Js;z: ð9Þ

It represents a coupled electrostatic and stationary current
problem. For the solenoidal part the same curl-curl equation
as Eq. (7),

∇ × ν∇ × ~Ecurl − ω2ε~Ecurl ¼ ~R; ð10Þ

is found, but with a divergence free right-hand side

~R ¼ ω2ε~Ediv − iω~Js; ð11Þ

as visible from the continuity equation.
The continuous fields are elements of their respective

Sobolev-spaces (see, e.g., [25,26]), i.e., Er=i
z;div=curl ∈ H1ðΩÞ

and ~Er=i
⊥;div=curl ∈ Hcurl

2D ðΩÞ and they feature the respective
properties of the De Rham complex shown in Fig. 2. The
unidirectional solid arrows denote complete De Rham
sequences, i.e., the range of one operator is the kernel of
the next. By definition the Hodge operators map between a
space and its dual. Under the given conditions this dual
space of k -forms is isomorphic to the space of n − k -forms
(see, e.g., [27], p. 322), where n ¼ 2; 3 is the dimension of
the space.

The same De Rham sequences hold for the discrete
fields, provided the function spaces for discrete fields are
projections from the continuous function spaces with
projection operators that commute with the exterior deriva-
tive (see [28], Theorem 5.6).
The functions in H1ðΩÞ are discretized using first order

nodal elements

Nkðξ; ηÞ ¼ akξþ bkηþ ck; Nkðξi; ηiÞ ¼ δik; ð12Þ

with i and k being local vertex indices and ðξ; ηÞ being local
coordinates. Transformed to the global coordinates ðx; yÞ,
these elements are a basis of H1

hðΩÞ, where h is the mesh
size parameter. For the discretization ofHcurl

2D ðΩÞ functions,
we employ lowest order Nédélec edge elements of the first
kind (see, e.g., [16,23]), obtained from the nodal elements
by (see, e.g., [29])

~wiðξ; ηÞ ¼ Nk∇⊥Nl − Nl∇⊥Nk; ð13Þ

where i; k; l are again local vertex indices. The edge
functions ~wi fulfill

1

jljj
Z
lj

~wi · ~tjds ¼ δij ð14Þ

with ~tj being the tangential unit vector of edge lj, which is
located at the opposite of node j. Transformed to the global
coordinates ðx; yÞ, the functions in Eq. (13) are a basis of
the reduced space f~u ∈ Hcurl

2Dh∶∇⊥ · ~u ¼ 0g, where the
divergence operator is to be understood in the discrete
weak sense.

A. Source terms

The source current, Eq. (3), at z ¼ 0 is projected on the
nodal functions by writing it in the H1

hðΩÞ-basis as

σðx; yÞ ¼
XNn

i¼1

ariNiðx; yÞ: ð15Þ

The coefficients ari are obtained by multiplying with Nj,
integrating, and solving the positive definite system for the
“mass-matrix”

Mij ¼
Z
Ω
NiNjdΩ: ð16Þ

For the dipolar terms the δ-function in Eq. (1) will
always be smeared out over a mesh cell. This error can be
minimized by adapting the mesh such that a triangular
representation of the δ-function,

FIG. 1. Computational domain for the 2D impedance solver.

FIG. 2. De Rham diagram for the used operators and
function spaces. The operators Â∶ H1ðΩÞ → Hdiv

2DðΩÞ and
B̂∶ Hcurl

2D ðΩÞ → L2ðΩÞ are the 2D vectorial and scalar curl
operators, respectively, and ν; ε; Ẑ are invertible Hodge operators.
The 2D spaces are supplemented by H1 to obtain their 3D
z-periodic equivalents.
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δsðx − x0Þ ¼
1

s2
ðfΘ½x − ðx0 − sÞ� − Θ½x − x0�g
× ½x − ðx0 − sÞ�

− fΘ½x − x0� − Θ½x − ðx0 þ sÞ�g × ½x − ðx0 þ sÞ�Þ;
ð17Þ

is achieved, with s ≪ a being the width of the triangle.
Note that δs ∈ L2 while δ∉L2. A plot of this source term
can be seen in Fig. 3. The smear-out error can be estimated
by calculating the dipole moment of a source [Eq. (1)]
represented on the mesh by Eq. (17), i.e.,

Z
Ω
σdx;sxdxdy ¼ qdx

�
1þ 1

6

s2

a2

�
: ð18Þ

The required accuracy, also referring to the removal
of the direct space charge impedance, is discussed in
Sec. IVA.

B. Poisson solver

The coupled Poisson system Eq. (9) is rewritten in
2D as

−∇⊥ · ε0εr∇⊥Φrþω2ε0εr
β2c2

Φr−∇⊥ ·
κ

ω
∇⊥Φiþ ωκ

β2c2
Φi ¼ ϱrs

−∇⊥ · ε0εr∇⊥Φiþω2ε0εr
β2c2

Φiþ∇⊥ ·
κ

ω
∇⊥Φr−

ωκ

β2c2
Φr ¼ 0:

ð19Þ

It is solved by means of the standard Galerkin procedure,
i.e., testing the real and imaginary parts of the equation
separately with Nj and integration by parts to obtain
algebraic equations for the real and imaginary coefficients
of Φ, separately. For example, the first “stiffness” term reads

−
Z
Ω
Nj∇⊥ ·ε0εr∇⊥ΦrdΩ

¼
Z
Ω
∇⊥Nj ·ε0εr∇⊥ΦrdΩþ

Z
∂Ω

Nj~n ·ε0εr∇⊥Φrds ð20Þ

with a vanishing boundary term for perfectly electric and
also for a metallic surface impedance boundary condition.
The first stiffness and mass matrices are

ðSrr
ε Þij ¼

Z
Ω
ε0εr∇⊥Ni · ∇⊥NjdΩ; ð21Þ

ðMrr
ε Þij ¼

ω2

β2c2

Z
Ω
ε0εrNiNjdΩ; ð22Þ

such that the whole system becomes

�
Srr
ε þMrr

ε Sri
κ þMri

κ

Sir
κ þMir

κ Sii
ε þMii

ε

��φr

φi

�
¼

�
ϱrs
0

�
ð23Þ

with the bold small letters denoting coefficient vectors.
After solving Eq. (23), the electric field is obtained by

~Er
⊥;j ¼ ðΦr

k0 − Φr
kÞ~tj=lj, where k and k0 are the nodes

attached to the edge lj. It is projected, in the same
manner as for the source, on the Hcurl

2DhðΩÞ basis.
Together with Er

z ¼ − ω
βcΦ

i and the respective imaginary
parts, the source term for the curl-curl solver, Eq. (11), is
assembled.

C. Curl-curl solver

In order to solve Eq. (10) the curl operator is
decomposed as

∇ × ~E ¼

0
BB@

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

1
CCA~E ≕

0
BB@

iẐ Â

B̂ 0

1
CCA~E:

ð24Þ

The two-dimensional vectorial and scalar curl operators are
concatenations of Â3D ¼ −~ez ×∇ and B̂3D ¼ ~ez · ∇× and
have the property

Â ¼
� ∂y

−∂x

�
¼ −B̂T: ð25Þ

The Hodge operator Ẑ is a concatenation of iẐ3D ¼
∂z~ez× ¼ −iω=ðβcÞ~ez× and has the property

Ẑ2 ¼ −
ω2

β2c2
Î: ð26Þ

FIG. 3. Horizontal dipole source term σðx; yÞ in arbitrary units.
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The curl-curl term in Eq. (10) is then rewritten as

∇ × ν∇ × ~E ¼
�
ÂνrB̂ − νrẐ2 −ẐνiÂ

−B̂νiẐ B̂νrÂ

�� ~Er
⊥

Er
z

�
−
�
ÂνiB̂ − νiẐ2 ẐνrÂ

B̂νrẐ B̂νiÂ

�� ~Ei
⊥

Ei
z

�

þ i

�
ÂνrB̂ − νrẐ2 −ẐνiÂ

−B̂νiẐ B̂νrÂ

�� ~Ei
⊥

Ei
z

�
þ i

�
ÂνiB̂ − νiẐ2 ẐνrÂ

B̂νrẐ B̂νiÂ

�� ~Er
⊥

Er
z

�
: ð27Þ

This allows testing Eq. (27) line by line using ~wr
k; v

r
k; ~w

i
k; v

i
k

and integrating by parts to obtain a bilinear form, i.e., the
curl-curl “stiffness” matrix.
TheR3 vectoranalytical identity∇ × ðΦ~wÞ ¼ Φ∇ × ~w −

~w ×∇Φ and Stokes’ theorem imply for functions
φ∶ Ω → R and ~u∶ Ω → R2

Z
Ω
φðB̂ ~uÞdΩ ¼

Z
Ω
~uðÂφÞdΩ −

Z
∂Ω

φ~u · ~tds; ð28Þ

where ~t ¼ ~ez × ~n is the tangential unit vector at the
boundary. For the second order operators in Eq. (27)
follows

Z
Ω
ðÂνrB̂~Er

⊥Þ · ~wr
jdΩ ¼

Z
Ω
ðνrB̂~Er

⊥ÞðB̂~wr
jÞdΩ

þ
Z
∂Ω
ðνrB̂~Er

⊥Þ~wr
j · ~tds ð29Þ

Z
Ω
ðB̂νrÂEr

zÞvrjdΩ ¼
Z
Ω
ðνrÂEr

zÞ · ðÂvrjÞdΩ

−
Z
∂Ω

vrjðνrÂEr
zÞ · ~tds: ð30Þ

The boundary terms vanish in case of a Dirichlet (perfectly
electric) boundary condition. For a metallic SIBC the

relation ~n × ~n × ~E ¼ Zs~n × ~H with the surface impedance

Zs ¼
1

Ys
¼ 1þ iffiffiffi

2
p

ffiffiffiffiffiffi
ωμ

κ

r
ð31Þ

holds on the boundary ∂Ω. The magnetic field is obtained
from Faraday’s law as

iẐEt þ ÂEz ¼ −iωμHt ¼ −iωμYsEz ¼ kEz ð32Þ

B̂Et ¼ −iωμHz ¼ −iωμYsEt ¼ kEt; ð33Þ

with the index t denoting the boundary tangential projec-
tion and the abbreviation k ¼ −iωμYs ¼ ð−1 − iÞ=δ using
the skin depth δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðμκωÞp
. Finally the boundary

integrals in Eqs. (29) and (30) read

Z
∂Ω
ðνrB̂~Er

⊥Þ~wr
j · ~tds ¼

Z
∂Ω

νrðk~E⊥ · ~tÞrð~wr
j · ~tÞds ð34Þ

Z
∂Ω

vrjðνrÂEr
zÞ · ~tds ¼

Z
∂Ω

vrjν
rðkEzÞrds; ð35Þ

plus the respective imaginary parts. Note that the ẐEt term
is normal to the boundary and therefore vanishes.
The discretization of Eq. (10) is finally

½Scurlcurl þMε þMSIBC�ecurl ¼ r ð36Þ

with the solution vector

ecurl ¼

2
6664
er⊥
ei⊥
erz
eiz

3
7775: ð37Þ

The matrices are arranged as

Scurlcurl ¼

2
666664

Srr⊥⊥ Sir⊥⊥ Srr
z⊥ Sir

z⊥
Sri⊥⊥ Sii⊥⊥ Sri

z⊥ Sii
z⊥

Srr⊥z Sir⊥z Srr
zz Sir

zz

Sri⊥z Sii⊥z Sri
zz Sii

zz

3
777775

ð38Þ

Mε ¼

2
666664

Mrr
ε⊥ Mir

κ⊥
Mri

κ⊥ Mii
ε⊥

0

0
Mrr

εz Mir
κz

Mri
κz Mii

εz

3
777775

ð39Þ

MSIBC ¼

2
666664

Drr⊥ Dir⊥
Dri⊥ Dii⊥

0

0
Trr
z Tir

z

Tri
z Tii

z

3
777775

ð40Þ

where we exemplary write the terms

ðSrr⊥⊥Þi;j ¼
Z
Ω
½ðνrB̂~wr

iÞðB̂~wr
jÞ − νrẐ2 ~wr

i · ~w
r
j�dΩ ð41Þ
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ðMrr
ε⊥Þi;j ¼ −ω2

Z
Ω
ε~wr

i · ~w
r
jdΩ ð42Þ

ðDrr
ε⊥Þi;j ¼

Z
∂Ω

νrkr ~wr
i · ~w

r
jds ð43Þ

ðTrr
ε⊥Þi;j ¼ −

Z
∂Ω

νrkrvriv
r
jds: ð44Þ

For lowest order elements the system of Eq. (36)
has a total number of degrees of freedom (dofs) of
2 · ð#nodesþ #edgesÞ. In the presence of different materi-
als it is usually ill conditioned and therefore solved with a
direct solver, i.e., standard LU (lower upper) decomposition
or MUMPS (multifrontal massively parallel sparse direct
solver).

D. Impedance evaluation

The impedance functionals Eqs. (4), (5), and (6) are
evaluated by inserting the discretizations of Ez and Jz. One
obtains a linear form involving the mass matrix Eq. (16),

Z∥ ¼ −
l
q2

XNn

j;k¼1

ðark − iaikÞMjkðerj þ ieijÞ ¼ −
l
q2

aHMe;

ð45Þ

with er;ij being the coefficients of the total longitudinal
electric field and l being the length of the structure. The
transverse impedance is evaluated accordingly, with nor-
malization to the numerically integrated dipole moment,
see Eq. (18).

IV. SELECTED BENCHMARK EXAMPLES
AND APPLICATIONS

This section will first show analytically accessible
examples, in order to validate the code, and then a real
world example, i.e., a collimator. The choice of the mesh
depends not only on frequency and materials, but also on β.
A rule of thumb is to take 4 mesh cells per wavelength
λ⊥ ¼ 2π=jk⊥j and if necessary perform convergence stud-
ies. The transverse wave number k⊥ is subject to the
dispersion relation

k2⊥ þ k2z ¼ ω2μ ϵ ð46Þ
rewritten with lossless refraction index n ¼

ffiffiffiffiffiffiffiffi
μ0rε0r

p
and loss

tangents (see also [30]) as

k2⊥ðx; yÞ ¼
ω2

c20

�
n2ð1 − tan δμ tan δεÞ

−
1

β2
− in2ðtan δμ þ tan δεÞ

�
: ð47Þ

This indicates, that the mesh requirements can either be
dominated by very low β or by the material properties.

A. Space charge impedance

The space charge impedance for a uniform circular beam
in a perfectly conducting circular pipe can be obtained from
the solution of

ðΔ⊥ þ k2ϱÞEz ¼ −
σk2ϱ
iωε0

ð48Þ

with kϱ ¼ iω=ðβγcÞ and γ being the relativistic mass factor.
While for the longitudinal space charge impedance direct
and indirect interactions cannot be separated, the transverse
space charge impedance requires separation since the direct
part acts incoherently on the beam. For a perfectly
conducting circular pipe the solutions to Eq. (48) are [2]
[Definitions as in Eqs. (4)–(6)]

Zspch
∥ ¼ l

iωε0πa2

�
1 − 2I1ðkϱaÞ

�
K1ðkϱaÞ

þ K0ðkϱbÞ
I0ðkϱbÞ

I1ðkϱaÞ
��

ð49Þ

Zspch
⊥ ¼ ilZ0

βγ2πa2
I21ðkϱaÞ

�
K1ðkϱbÞ
I1ðkϱbÞ

−
K1ðkϱaÞ
I1ðkϱaÞ

�
; ð50Þ

where Z0 ¼ 377Ω is the vacuum impedance and In; Kn are
the modified Bessel functions of first and second kind and
order n, respectively. The asymptotes for low and high
frequency are

Zspch
∥;LF ¼

−iωμ0lg
2πβ2γ2

; g ¼ 1

4
þ ln

b
a
; Zspch

∥;HF ¼
−il

ωε0πa2

ð51Þ

Zspch
⊥;LF ¼

−iZ0l
2πβγ2

�
1

a2
−

1

b2

�
; Zspch

⊥;HF ¼
−ilZ0c
2πa3γω

: ð52Þ

Figure 4 shows the longitudinal space charge impedance
from our code, compared to the analytical one. The

FIG. 4. Longitudinal space charge impedance for a uniform
cylindrical beam with radius a ¼ 1 cm, perfectly electric con-
ducting (PEC) pipe with radius b ¼ 4 cm, and length l ¼ 1 m.
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maximum is at the cutoff frequency ωc ¼ βγc=a. The
total transverse impedance is visible in Fig. 5. It features
the same cutoff frequency. Above cutoff the impedance
does not depend on the pipe anymore, i.e., only the direct
part remains. Figure 6 shows the indirect transverse space
charge impedance that has been obtained by subtracting the
analytical direct part from the simulated impedance. Note
that for this purpose one requires high accuracy to avoid
numerical cancellation (the direct part is by ≈b2=a2 larger
than the indirect part). Above cutoff the indirect part
of the transverse space charge impedance vanishes [see
Eq. (52)], therefore the remainder visible in Fig. 6 is
just the numerical error. For an accurate calculation
at the cutoff frequency, the value for s in Eq. (17) has to
be chosen very small, here s ¼ 5 × 10−6 m. Note that a
too small s causes triangles with very small angles in the
mesh, which deteriorates the condition number of the
system matrix.

B. Resistive wall

The next example is a thin resistive pipe, similar as the
one used in the GSI SIS18 and SIS100 synchrotrons, see
also [31]. In Fig. 7 one can see the transverse impedance of
such a pipe, compared to an analytic calculation by the
Mathematica® [8] script Rewall [9]. The curves labeled
RW denote a computation where the thin wall is resolved
by the mesh. It is valid up to a frequency slightly above the
skin effect frequency fskin ¼ 1=ðπμκd2Þ. Far above this
frequency the mesh cannot resolve the skin depth anymore,
therefore the SIBC is applied. For frequencies f ≳ fskin,

FIG. 5. Transverse space charge impedance (both direct and
indirect). The dimensions are the same as in Fig. 4.

FIG. 6. Transverse space charge impedance (only indirect). The
dimensions are the same as in Fig. 4.

FIG. 7. Transverse impedance of a resistive pipe for β ¼ 0.999999 (beam radius a ¼ 1 cm, pipe radius b ¼ 4 cm, thickness
d ¼ 0.3 mm, h ¼ 1 m, l ¼ 1 m, conductivity κ ¼ 106 S=m.)
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i.e., f ≈ 10 MHz, both solutions have to reproduce the
analytical value.

C. Dispersive Ferrite components

Our code is also applicable to accelerator components
with dispersive materials. Figure 8 shows a ferrite
ring made of “Amidon Material 43” [32]. The longitudinal
impedance results are visible together with the
analytical results in Fig. 9. The analytical results are
obtained by a “field matching” algorithm implemented
in Mathematica® [8], see [30].

D. Lossy collimator

Finally we investigate a lossy carbon (κ ¼ 104 S=m)
collimator, similar to the ones used in the LHC (see,
e.g., [33,34]), but simplified. An example shape and the
electric field distribution are shown in Fig. 10. Figures 11
and 12 show the longitudinal and transverse impedances for
a relativistic (β ¼ 0.999999) and a nonrelativistic (β ¼ 0.1)
beam. For low frequencies, the jaw material is meshed (RW
curve), whereas for high frequency the SIBC is employed.
At frequencies where the skin depth is well resolved
by the mesh and the skin depth is still much smaller than
the jaw thickness, the SIBC and RW curves coincide, as
expected.
For β ¼ 0.1 the imaginary part is dominated by the

space charge impedance, see again Figs. 4 and 6, where
again at high frequency the aforementioned pollution for
the indirect transverse space charge impedance occurs.
For the real parts we recognize for β ¼ 0.1 the cutoff
frequency at fc ¼ βγc=ð2πaÞ ≈ 5 GHz. Moreover, the
longitudinal impedance shows the typical ∝

ffiffiffi
f

p
behavior,

where at ≈20 kHz there is a RefZ∥g ∝ f2 edge, due to the
image current running on the bounding box instead of
the carbon jaws at very low frequency. The transverse

FIG. 9. Longitudinal impedance of a ferrite ring for different beam velocity.

FIG. 10. Resistive collimator with 3 mm half gap and 3 cm half jaw height in a 10 cm × 10 cm bounding box. Mesh from GMSH
(left), where the carbon jaws are in magenta and vacuum is in grey. The real part of the longitudinal electric field (in V=m=Hz) for
horizontal dipole excitation at 1 MHz and β ¼ 0.1 is depicted on the right.

FIG. 8. Ferrite ring geometry and mesh, a ¼ 0.5 cm,
r1 ¼ 1.78 cm, r2 ¼ 3.05 cm, r3 ¼ 3.3 cm, l ¼ 2.54 cm.
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impedance shows the dependence as RefZ⊥g ∝
f; ImfZ⊥g ¼ const and Z⊥ ∝ 1=

ffiffiffi
f

p
for low and high

frequency, respectively, as it has been discussed in more
detail in [33] and [34].

V. CONCLUSION AND OUTLOOK

A longitudinal and transverse impedance computation
tool for arbitrary transverse geometries and material dis-
tributions as well as arbitrary frequencies and beam veloc-
ities is presented. It is based on the finite element method
with Nédélec edge elements. The irrotational part of the
electric field is calculated separately, such that the right-hand
side of the curl-curl equation becomes divergence free. This

ensures the solution to be free of spurious modes while the
irrotational fields, necessary for the computation of space
charge impedances, are still represented.
The tool was tested for both space charge and resistive

wall impedances and showed good agreement with ana-
lytical references. Moreover, a lossy collimator has been
investigated as an analytically nonaccessible example.
The code runs on usual PCs with the standard LU solver

up several 105 dofs and with MUMPS up to several 106

dofs. The limitation arises rather from memory than
from CPU speed. Increasing the approximation order
(p-refinement) is only globally possible in FEniCS, which
increases the number of dofs significantly. Therefore local
mesh refinement (h-refinement) is advantageous in most

FIG. 11. Longitudinal impedance of the collimator.

FIG. 12. Transverse impedance (indirect) of the collimator.
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cases. In the future, it is planned to extend the presented
FEM algorithm to 3D.
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