
Optics measurement algorithms and error analysis
for the proton energy frontier

A. Langner
CERN, CH 1211 Geneva 23, Switzerland and Universität Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany

R. Tomás
CERN, CH 1211 Geneva 23, Switzerland

(Received 9 September 2014; published 3 March 2015)

Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at
higher energy, i.e., with an increased damage potential. Due to machine protection considerations the
higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing
the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient
to understand beam size measurements and determine interaction point (IP) β-functions (β�). A new, more
sophisticated algorithm has been developed which takes into account both the statistical and systematic
errors involved in this measurement. This makes it possible to combine more beam position monitor
measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy
and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved
algorithms, result in a significantly higher precision of the derived optical parameters and decreased the
average error bars by a factor of three to four. This allowed the calculation of β� values and demonstrated to
be fundamental in the understanding of emittance evolution during the energy ramp.
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I. INTRODUCTION

Optics measurements and corrections are of great
importance for the LHC, due to its tight design tolerances
on the beam orbit and optical functions. A large effort has
been put in the LHC optics commissioning and in 2012 a
record low β-beating was achieved [1–6]. During the
ongoing long shutdown (LS1) in 2014, improvements of
the optics measurement methods are being studied. A better
accuracy and precision will be needed since due to machine
protection considerations the excitation amplitude and
bunch intensity will be limited in 2015 which will reduce
the signal to noise ratio for optics measurements. A direct
way to improve accuracy and precision might be just
considering more beam position monitor (BPM) data.
However it is not possible to simply add more BPMs in
the calculations as systematic errors would deteriorate the
measurement accuracy. Using more BPMs requires an
ansatz for the single phase uncertainty and a thorough
analysis of systematic errors and correlations via Monte-
Carlo simulations. A new algorithm which allows us to
reliably increase the number of BPMs in an optics
measurements is described in Sec. II with a focus on its

application for the LHC. Another improvement which is
used here is the cleaning of measurement data using a
singular value decomposition (SVD) technique, which is
applied to the BPM turn-by-turn data. Improvements of the
optics model for the analysis also lead to a better precision
of measured optics parameters, which is described in
Sec. III. Furthermore, a more accurate calibration of
wide-aperture quadrupole magnets (MQY) is used, which
has been verified in a dedicated machine development
session [7]. These improvements allowed to calculate β�
and dispersion values for the β� ¼ 0.6m optics. With this
enhanced precision it was possible to derive reliably the β-
values at the position of the wire scanners during the energy
ramp. The emittance study during the energy ramp profited
highly from the more accurate β-values [8,9]. The propa-
gation of measured optics parameters to other elements is
described in Sec. IV, together with an error propagation
using analytic equations. In Sec. V results from reanalyzing
experimental data from 2012 are presented.

II. N-BPM METHOD

BPMs are used to measure the turn-by-turn data of
betatron oscillations, which are excited adiabatically by an
AC dipole [10,11]. The phase of this oscillation can be
derived by a harmonic analysis of the turn-by-turn data at
every BPM position. With the phase advance and transfer
matrix in between three BPMs the β-function can be
calculated at the position of the three BPMs [12,13].
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The Twiss parameters βi and αi at the positions si can be
obtained with Eqs. (1), (2) where ϕi;j ¼ ϕj − ϕi is the
phase advance andMmnði;jÞ are the transfer matrix elements
from si to sj, cf. Fig. 1. ϵijk is the Levi-Civita symbol which
allows for a compact notation of the three cases of deriving
the Twiss parameters at the different BPMs. No summation
over equal indices is implied.

βi ¼
ϵijk cotðϕi;jÞ þ ϵikj cotðϕi;kÞ

ϵijk
M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

ð1Þ

αi ¼
ϵijk

M11ði;kÞ
M12ði;kÞ

cotðϕi;jÞ þ ϵikj
M11ði;jÞ
M12ði;jÞ

cotðϕi;kÞ
ϵijk

M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

: ð2Þ

The accuracy of this method depends not only on the
knowledge of the optics model and the precision of the
measured phase but also on the value of the phase advances
between the BPMs. From Eq. (1) it can be seen that, for
example, a phase advance between two BPMs should not
be close to a multiple of π as the cotangent becomes infinite
at those points. Figure 2 shows the propagated error of the

β-function, depending on the phase advances between the
three BPMs. From Eq. (1) one can derive two conditions for
the optimal phase advances. The phase advance from the
probed BPM (i) to the other two ðj; kÞ should be

ϕi;j ¼ π
4
þ n1 π

2
;

ϕi;k ¼ π
4
þ ð2n2 þ 1 − n1Þ π2 ;

n1; n2 ∈ Z: ð3Þ

The method that has been used so far takes three
neighboring BPMs for the calculation of the β-functions
at these three BPM positions. In the arcs, where in general
the phase advance between consecutive BPMs is about
π=4, this method is already close to the optimum phase
advances, when probing the middle BPM. However in the
case that the probed BPM is not in the middle of the other
two BPMs, the optimum would be to skip the farther BPM
and use instead the next following BPM, cf. Fig. 3.
In the interaction regions (IRs), the phase advances can

be very different as the optics do not follow the regular
focussing-drift-defocussing-drift structure of the arcs in
order to fulfill other constraints, e.g., collision point
focusing. For example in the ATLAS and CMS IRs, where
the β-function reaches very high values, the phase advances
between consecutive BPMs close to the interaction points
(IPs) may only be a few degrees. If in this case only
neighboring BPMs are used, this results in large uncer-
tainties. This prevented β� measurements at the IPs in
2012 [3].
An improved algorithm is developed here, which allows

us to use more BPM combinations from a larger range of
BPMs. This makes it possible to include BPM combina-
tions with better phase advances and also increases the
amount of information that is used in the measurement of
the β-function. A range of N BPMs is chosen centered at
the probed BPM. To find the best estimate of the measured
β-function from m combinations of three BPMs out of the
N BPMs, a least squares minimization is performed of the
function

SðβÞ ¼
Xm
i¼1

Xm
j¼1

ðβi − βÞV−1
ij ðβj − βÞ; ð4Þ

where βi are the β-functions inferred from different BPM
combinations at the given probed BPM and Vij are the
elements of the covariance matrix for the different βi.

FIG. 1. Illustration of the β-function measurement from phase.
The phase advances ϕi;j in between three positions si are needed
to derive the β-functions at those positions.

FIG. 2. Expected error of a measured β-function at position s1,
depending on the phase advances to the other two BPMs. The six
used phase advances (three BPM combinations each for hori-
zontal and vertical plane) for a BPM position in IR4 from the
neighboring BPM method are indicated by triangles. When an
increased range of 7 BPM is used (N-BPM method), 15 different
combinations of phase advances are possible per plane, including
the ones that are indicated by triangles. Another six better suited
combinations of phase advances from the range of 7-BPMs are
indicated by circles.

FIG. 3. In the arcs the phase advance between two consecutive
BPMs is about π=4. If the blue BPM is probed, it is better to skip
the grey BPM and use the two red BPMs. The resulting phase
advances are approximately ϕ1;2 ¼ π=4 and ϕ1;3 ¼ 3π=4, which
is the optimum according to Eq. (3).
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Therefore the minimization of SðβÞ is considering the
individual uncertainties and correlations of the βi from
the m different BPM combinations which allows for a
better estimate of the β-function. The measured β-function
at the probed BPM position is then a weighted average of
the m β-functions

β ¼
Xm
i¼1

wiβi: ð5Þ

From the minimization of Eq. (4) we can derive the weights

wi ¼
P

m
k¼1 V

−1
ikP

m
k¼1

P
m
j¼1 V

−1
jk

: ð6Þ

This equation replaces the simple average introduced in [1].
The uncertainty for this measurement is

σ2β ¼
Xm
k¼1

Xm
j¼1

wjwkVjk: ð7Þ

The higher sensitivity due to this BPM selection is
illustrated for a special situation in IR4 in Fig. 2, where
the used phase advances in the neighboring BPM method
(∇) and in the N-BPM method (∘) are shown. The
covariance matrix V is an element-wise sum of the
covariance matrices for the systematic and statistical
errors

Vij ¼ Vij;stat þ Vij;syst: ð8Þ

For this method it is fundamental to have a precise
knowledge of these covariance matrices which will be
derived in the following sections.

A. Statistical uncertainty of the measured β-function

If Eq. (1) is used to derive the β-function, two phase
advances between BPMs are used (ϕi;j, ϕi;k) in which the
BPM (i) appears twice. This introduces a correlation which
must be regarded in the error propagation, since the same
phase measurement at BPM (i) was used in the calculation
of both phase advances. More correlations will occur when
the BPM combinations to calculate the different βi in
Eq. (5) have common BPMs, which all contributes to the
covariance matrix Vstat.
The error of the measured phase advance can be derived

from the standard deviation of n measurements

σϕi;j
¼ tðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1

Xn
k¼1

½ϕi;j − ϕi;j;ðkÞ�2
s

; ð9Þ

where ϕi;j is the average phase advance from BPM (i) to (j)
and tðnÞ is the correction from the Student’s t distribution,

which compensates the underestimation of the uncertainty
for a small sample size. During the LHC Run I the error was
calculated from a normal standard deviation without the t
correction and by dividing the sum by n instead of (n-1).
This has been changed since the mean value of the phase
advance is also obtained from the measurements, and there
are only (n-1) degrees of freedom left for the calculation of
the standard deviation. Table I shows tðnÞ for different
number of measurements, which shows that this correction
is needed since due to limits in the beam time, the amount
of measurements is always limited.
The correlation between two phase advances which have

one BPM in common, ϕi;j and ϕi;k, depends on the
uncertainty of the single phase ϕi at the common BPM.
The error of the single phase ϕi is not known, because it
cannot be compared among the measurement results since
its value is arbitrary and may vary. We are using the ansatz
σϕ ∼ β−

1
2 as shown in [12] to derive the single phase

uncertainties ϕi from the uncertainty of the phase advance
ϕi;j based on the β-functions at the two locations si and sj

σ2ϕi
¼ σ2ϕi;j

�
1þ βi

βj

�
−1
: ð10Þ

The correlation coefficient between two phase advances
ϕi;j and ϕi;k with j ≠ k can be derived by transforming the
covariance matrix of the single phase uncertainties

M ¼

0
B@

σ2ϕi
0 0

0 σ2ϕj
0

0 0 σ2ϕk

1
CA; ð11Þ

to a covariance matrix of the phase advances by using the
transformation matrix

T1 ¼

0
BBB@

∂ϕi;j

∂ϕi

∂ϕi;k

∂ϕi

∂ϕi;j

∂ϕj

∂ϕi;k

∂ϕj

∂ϕi;j

∂ϕk

∂ϕi;k

∂ϕk

1
CCCA: ð12Þ

With the transformation TT
1MT1 one gets the covariance

matrix for the two phase advances ϕi;j and ϕi;k in the
standard form

TABLE I. Values for the t correction for a confidence interval of
68.3%.

Number of measurements tðnÞ
2 1.84
3 1.32
4 1.20
5 1.15
10 1.06
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TT
1MT1 ¼

 
σ2ϕi;j

ρðϕi;j;ϕi;kÞσϕi;j
σϕi;k

ρðϕi;j;ϕi;kÞσϕi;j
σϕi;k

σ2ϕi;k

!
;

ð13Þ

from which the correlation coefficient can be extracted as

ρðϕi;j;ϕi;kÞ ¼
∂ϕi;j

∂ϕi

∂ϕi;k

∂ϕi

σ2ϕi

σϕi;j
σϕi;k

: ð14Þ

Let the phase at the probed BPM be ϕ1, all other phase
advances can be calculated with respect to this BPM. The
elements of the covariance matrix for the different phase
advances ϕ1;2 to ϕ1;n are defined by

Ci−1;j−1 ¼ ρðϕ1;i;ϕ1;jÞσϕ1;i
σϕ1;j

; i ≥ 2; j ≥ 2; ð15Þ

which is σ2ϕ1;i
when i ¼ j and �σ2ϕ1

elsewhere. Using the
transformation matrix

T2 ¼

0
BBB@

∂β1∂ϕ1;2
� � � ∂βm∂ϕ1;2

..

. . .
. ..

.

∂β1∂ϕ1;n
� � � ∂βm∂ϕ1;n

1
CCCA; ð16Þ

the covariance matrix for the phases can be transformed to a
covariance matrix for the m β-functions (Vstat) which are
calculated from using different BPM combinations,

Vstat ¼ TT
2CT2: ð17Þ

This covariance matrix is to be used in Eq. (8).
As a test of the correct implementation of the equations

for the statistical errors in the optics analysis code, simu-
lations of the optics measurement have been performed.
Turn-by-turn BPM measurements were simulated for every
BPM positions with enhanced noise and without SVD
cleaning. This has been done to create 500 sets of BPM
turn-by-turn data, which corresponds to 500 measurements.
Since in contrast to a real measurement, in this simu-

lation the phase at each BPM is known in absolute values, it
is possible to derive the uncertainty of the phase for each
BPM position from its variation. As the uncertainties of the
single phases and also of the phase advances are known,
they were used directly in Eq. (14) to create the covariance
matrix. The aforedescribed error propagation was applied
and the β-function derived according to Eq. (5), with its
uncertainty according to Eq. (7). Systematic errors are
neglected here as they are not depending on the amount of
measurements.
The distribution of the β-function in these 500 data sets

has been fitted to a Gaussian for each BPM. The value of

the σ from the fit was then compared to calculated
uncertainties of the β-function using Eq. (7), cf. Fig. 4.
The calculated values of the uncertainty agree well to the
expected value from the variations of the β-function, which
is not the case for the old equations for the error calculation,
where the error bars were too pessimistic. In this plot one
can furthermore see that most of the points are located at
two levels. This is due to the fact that the BPMs in the arcs,
where most BPMs are, alternate between two β values, and
the larger β-function can be measured with a higher relative
precision.
The simulated sets of BPM turn-by-turn data can be

used to study the uncertainty of the error bar. For that
purpose, several measurement files can be analyzed
together, so that the phase uncertainty will be calculated
from a limited amount of measurement files. This has been
done in [14] for analyzing up to ten measurements together,
and it was concluded that using at least five measurements
is recommended.

B. Systematic uncertainties

The influence of deviations in the optics model to the
measurement of the β-function can be determined by
introducing errors in the optics model following a
Monte-Carlo approach. The β-function is then calculated
using the phase advances from the perturbed model and the
transfer matrix elements from the ideal model. The varia-
tion of the β-functions corresponds to the error for every
given set of BPM combinations. The following uncertain-
ties are considered in the estimate of the systematic error:
(i) the uncertainty of the quadrupolar error (b2) of the
dipoles, (ii) an individual uncertainty of the gradient for
each quadrupole magnet family, (iii) a Gaussian distributed
misalignment uncertainty of 1 mm along the longitudinal
axis for quadrupole magnets, and (iv) a Gaussian distrib-
uted misalignment uncertainty of 1 mm in the transverse

FIG. 4. Relative uncertainty of the β-function derived in the
error propagation compared to a fit of the variation of calculated
β-functions.
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plane for sextupole magnets. The gradient uncertainties for
the different quadrupole families have been derived from
magnetic measurements [15,16]. The distribution of the
measured b2 component and its uncertainty have been fitted
with a Gaussian distribution for each magnet family, see
Table II.
This has been done for 1000 cases where the errors have

been varied following Gaussian distributions, truncated at
three standard deviations. From this Monte-Carlo simu-
lation one can derive the covariance matrix of the system-
atic errors Vsyst. In Table III the average systematic error at
arc BPMs is shown for different BPM combinations. In this
table several combinations of three BPMs have been
omitted since they show the same results due to the

symmetry and regular distribution of BPMs in the arcs.
It shows that the systematic error is around 0.3% when
neighboring BPMs are used. It increases to up to 1.5% in
most cases if one allows to skip one BPM, i.e., for a range
of 7 BPM. A range of 9 BPMs is not shown in this table as
the systematic error would be very large since the phase
advance to the fourth BPM left or right of the probed BPM
is around π. Although the systematic errors increase for
larger ranges of BPMs, for a range of 11 BPMs some
combinations of three BPMs can be found with uncertain-
ties below 2%.

C. Range of BPMs

The described algorithm to derive the β-function at one
BPM allows us in general to use the measured turn-by-turn
data of all available BPMs. However the farther away two
BPMs are the larger become systematic uncertainties of the
transfer matrix elements and the improvement of the error
bar will therefore become smaller. On the other hand the
computation of the covariance matrix is more time con-
suming for larger ranges of BPMs. The gain in precision
and accuracy was studied with simulations for a range of up
to 13 BPMs and different amount of used BPM combina-
tions. The BPM combinations were sorted according to the
expected error for the β-function based on their model
phase advances. This allows to exclude BPM combinations
that have unsuited phase advances, for example if the
cotangent in Eq. (1) becomes infinite. The BPM combi-
nations which are used for the computation of the
β-function are drawn from this sorted list starting with
the combinations with the best phase advances. Another
simulation was performed with a sample size of 1000,
where we applied random model uncertainties according to
the previous section, as well as a Gaussian noise of 200 μm
to the BPM data for an oscillation amplitude of 1 mm in the
arcs. From the fit of a Gaussian distribution to the variation
of the β-functions at each BPM we can derive the following
two parameters which describe the uncertainty of the
measurement. The mean value of the distribution of the
β-functions is the accuracy, as it shows a bias toward larger
or smaller results. The width of the distribution is the
precision which describes how much the results are spread-
ing. The average accuracy for all BPMs is always below
0.25% which shows that the bias toward a wrong result is
negligible, cf. Fig. 5. The improvement for the average
precision is shown in Fig. 6. The gain in precision is very
little when increasing the BPM range from 11 to 13. The
amount of BPM combinations increase the precision
noticeably up to using 6 BPMs and seem to saturate
after that. For the calculations for the LHC in the
following sections we are using 10 BPM combinations
from a range of 11 BPMs, which seems to be a good
compromise between computation time efficiency and
precision.

TABLE II. Gradient errors of different quadrupole magnets in
the systematic error calculation.

Error relative to their main field (10−4)

Quadrupole 450 GeV 4 TeV

MQ 18 17
MQM 13 12
MQY 11 7
MQX 4 4
MQW 34 13
MQT 73 77

TABLE III. Systematic error of the measured β-function at arc
BPMs for using different BPM combinations. The phase advance
between consecutive BPMs is approximately π=4.

0.3

0.4

1.0

7.1

1.1

1.4

1.7

1.8

7.9

22.3

1.3

1.9

6.1

1.0

3.0

4.5

5.2

1.6

OPTICS MEASUREMENT ALGORITHMS AND ERROR … Phys. Rev. ST Accel. Beams 18, 031002 (2015)

031002-5



III. MODEL PRECISION

The calculation of β-functions from the phase advances
requires knowledge of the optics model, cf. Eq. (1).
Furthermore the N-BPM technique, which was described
in the previous section, will also use BPMs which are
farther away from the probed BPM. Therefore model
uncertainties play a more important role. In this section
the benefit of considering measured b2 of the LHC dipoles
[17] in the model for the optics measurement is studied. For
example, for injection optics at 4 TeV, including the dipole
b2 errors and the corresponding corrections with the arc
trim quadrupoles (MQT), shows a β-beating of around
10%. The dipole b2 errors are available for different
energies from the WISE simulation [15,16]. The phase
shift of the betatron oscillation due to the b2 errors is
canceled arc-by-arc using the arc MQT magnets for a
correction, as illustrated in [2]. Several measurements from

the 2012 LHC run with different optics configurations have
been reanalyzed using the N-BPM method as well as an
improved optics model which includes the dipole b2 errors.
The new systematic error from Sec. II B was compared to

the standard deviation of the three β-functions from using
different BPM combinations, which has been used in the
past as an estimator of the systematic errors. In Fig. 7 the
average relative error bars of these measurements are shown
for injection optics at 0.45 TeV and 4 TeV (flat top), a
squeeze to β� ¼ 0.6 m and a squeeze to β� ¼ 0.2 m in the
achromatic telescopic squeezing (ATS) scheme [18]. The β�
values in this paper refer to the β-function at the ATLAS and
CMS IPs. The error bars for the measured β-function are
significantly reduced with the N-BPM method.

FIG. 5. Accuracy of the derived β-functions from simulations
for different ranges of BPMs and different amount of BPM
combinations. The oscillation amplitude was 1 mm in the arcs and
a Gaussian noise of 200 μm was applied.

FIG. 6. Precision of the derived β-functions from simulations
for different ranges of BPMs and different amount of BPM
combinations. The oscillation amplitude was 1 mm in the arcs
and a Gaussian noise of 200 μm was applied.

FIG. 7. Average error bar of the experimentally measured
β-function for different optics configuration at 4 TeV, except
for injection at 0.45 TeV. Error bars which are larger than 50%
were disregarded in the calculation of the average.

FIG. 8. Average error bar of experimentally measured
β-functions separately for the two error contributions. Top: Error
propagated from the uncertainty of the phase advance, cf. Eq. (7).
Bottom: Systematic errors as described in Sec. II B. For the
neighboring BPM method instead the standard deviation of the
three calculated β from different BPM combinations is used.
Beam energy was at 4 TeV, except for injection at 0.45 TeV.
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In Fig. 8 the two contributions to the final error bar of the
β-function are shown separately. Using the N-BPMmethod
reduces the error which is propagated from the uncertainty
of the phase advance. For the systematic error a large
decrease is observed when using the N-BPM method. This
indicates that in the past, the systematic errors were in
general largely overestimated.

IV. PROPAGATION TO ELEMENTS

In the previous sections, the measurement of optical
functions was described at the BPMs. It is very important to
know the optical functions also at other positions as for
example at the collision points or locations of diagnostic
instruments like beam wire scanners. The segment-by-
segment technique is used for the propagation of optical
functions [1,2]. It basically runs MADX in a part of the
accelerator in between two BPM positions. The measured
optical functions at the BPMs are used as start parameters
for this simulation. In addition, this code is also used for
finding optics corrections. For that purpose the measured
phase is compared with the model phases in each segment.
For the propagation of the measurement uncertainty,
analytical equations are derived here. The beta-beating
propagation can be described by an oscillation with
constant amplitude A which propagates with twice the
betatron oscillation frequency.

Δβ
β

ðsÞ ¼ A · sin½2 · ϕðsÞ þ ϕ0� ð18Þ

Using Eq. (18) one can approximate the deviation of the
phase Δϕ due to the β-beating at the start of the segment.
Error propagation onΔϕ using the uncertainties σβ0 and σα0
of the optical functions at the start of the segment leads to
the uncertainty of the propagated phase

σ2ϕs
¼
�
1

2
½cosð2ϕÞ − 1� α0

β0
þ 1

2
sinð2ϕÞ 1

β0

�
2

σ2β0

þ
�
1

2
½cosð2ϕÞ − 1�

�
2

σ2α0 ð19Þ

This error is shown in Fig. 9 versus the phase advance
from the beginning of the segment. Periodic minima in the
uncertainty of ϕs are observed at multiples of π. For optics
correction, where the simulated phase is used, this
suggests to use various segments to achieve a low uncer-
tainty of the phase for more BPM positions. From Eq. (18)
one can also derive the uncertainty of the propagated
β-function

σ2βs ¼
�
βs sinð2ϕÞ

α0
β0

þ βs cosð2ϕÞ
1

β0

�
2

σ2β0

þ ½βs sinð2ϕÞ�2σ2α0 : ð20Þ

This error is now considered for the calculation of
β-functions at other elements, e.g., for the β�, see
Sec. V. Since this method requires knowledge of the
optics model one can derive a systematic error of the
propagated optical functions similar to the systematic

FIG. 9. Error from Eq. (19) of the phase advance in Segment-
by-Segment. For IR1 starting at BPM10.L1.B2, the position of
following BPMs is indicated.

FIG. 10. β-beating for Beam 1 after local and global corrections
at β� ¼ 0.6 m.

FIG. 11. β-beating for Beam 2 after local and global corrections
at β� ¼ 0.6 m.
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error of the measured β-function which was introduced
in Sec. II B. It is planned to implement a systematic
error in the future in the segment-by-segment technique
as well.

V. 2012 MEASUREMENTS

With the improved algorithms, previous measurements
have been reanalyzed. For the optics model the dipole b2
errors were considered, together with the new calibration
data of MQY magnets. A SVD technique was used to
reduce the noise in the measured BPM turn-by-turn data
[19,20]. Only the 12 strongest singular modes were kept,
since simulations showed only marginal improvements
for smaller cuts. Figures 10 and 11 show the resulting
β-beating from the 2012 measurement of the β� ¼ 0.6 m
optics. The error bar for many BPM positions has improved
significantly. For the peak β-beat, only data points whose
absolute value is larger than two times its error bar are
considered. The rms and peak β-beating are shown in
Table IV. The increased precision can be seen in the fact
that now three times more data points passed the criteria to
be considered for the peak β-beat. Compared to the 2012
analysis the derived rms β-beating is similar, as well as the
peak β-beating, which are at or below 9%.
From this measurement, the β� values at the interaction

points have been derived, cf. TableV. From the 2012 analysis
no values have been published due to large uncertainties.
Another set of optics measurements in 2012 has been

performed during the energy ramp. The purpose of this
study was to understand the optics behavior during the
ramp, from which also other studies profit, as for example
the emittance measurement during the ramp. In contrast to
optics measurements before or after the ramp, which are
repeated several times to increase statistics, only one

TABLE IV. RMS and peak β-beating after local and global
corrections at β� ¼ 0.6 m.

Beam 1 Beam 2

x y x y

Δβ
β ð%Þ peak 9� 1 9� 1 7.0� 0.6 6.7� 1.7

rms 2.6 2.3 2.4 2.2

TABLE V. Measured β� values for squeezed optics at β� ¼
0.6 m after local and global corrections.

Beam 1 β�x (m) β�y (m)

IP1 0.589� 0.019 0.61� 0.03
IP2 2.85� 0.19 2.86� 0.06
IP5 0.595� 0.010 0.595� 0.011
IP8 3.03� 0.08 3.03� 0.11

Beam 2 β�x (m) β�y (m)

IP1 0.592� 0.015 0.61� 0.02
IP2 3.0� 0.2 3.02� 0.08
IP5 0.59� 0.03 0.594� 0.013
IP8 3.06� 0.09 2.92� 0.15

FIG. 12. Measured β-function at the wire scanners during the energy ramp. β values from a k-modulation measurement at 0.45 TeV
and 4 TeVare shown as a comparison. The dashed line connects the two points from the k-modulation measurement at injection and top
energy.
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measurement per energy is possible during the ramp. The
resulting β-functions at the wire scanners are shown in
Fig. 12 together with the values from k-modulation
measurements [21,22]. An advantage compared to the
k-modulation measurement is that it is possible to measure
during the energy ramp. For example Beam 1, vertical
plane, shows an oscillating behavior of the optics, which
might explain why an emittance shrinking is observed if
only interpolated β values are used [9]. Significant devia-
tions can be seen for Beam 1 (vertical) at 3 TeVand Beam 2
(horizontal) at 4 TeV, which shows the need for more
measurements at different energies during the ramp.
Another improvement, which is especially helpful for the

measurements during the energy ramp, is to record the
BPM data for more turns which will increase the precision
of the measured phase. An upgrade to the AC dipole is
foreseen during LS1 to allow for a longer duration of the
driven oscillation [23].

VI. CONCLUSIONS

Improvements to the optics measurement and correction
have been presented. Using the new N-BPM technique
together with SVD cleaning of the turn-by-turn data and an
optics model that contains the dipole b2 errors significantly
improved the accuracy and precision of measured
optical parameters. This was made possible due to a
detailed analysis of the statistical and systematic errors
and their correlations. For the first time systematic errors
due to uncertainties in the optics model have been derived
based on Monte-Carlo simulations. This allows, together
with the improvements of error determination in the seg-
ment-by-segment technique, for the calculation of β� from
the 2012 measurement data, as well as β values at the wire
scanners during the energy ramp. A reanalysis with the
improved techniques shed light on the emittance evolution
in 2012.
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