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A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in
resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a
beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of
the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the
bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch
compression. It provides an alternative to excitation by short bunches that can be realized with relatively
low energy and low peak-current electron beams.
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I. INTRODUCTION

For applications in fields as diverse as chemical and
biological imaging, material science, telecommunication,
semiconductor, and superconductor research, there is great
interest in having a source of intense pulses of terahertz
radiation. Laser-based sources of such radiation [1,2] are
capable of generating several-cycle pulses with a frequency
over the range 10–70 THz and energy of 20 μJ [3]. In
beam-based sources, utilizing short, relativistic electron
bunches [4,5], an electron bunch impinges on a thin
metallic foil and generates coherent transition radiation.
An implementation of this method at the Linac Coherent
Light Source has obtained single-cycle pulses of radiation
that is broadband, is centered on 10 THz, and contains
>0.1 mJ of energy [6]. Another beam-based method
generates terahertz radiation by passing a bunch through
a metallic pipe with a dielectric layer. As reported in
Ref. [7], this method was used to generate narrow-band
pulses with frequency 0.4 THz and energy 10 μJ.
It has been noted in the past, in the study of wall-

roughness impedance [8,9], that a metallic pipe with
corrugated walls supports propagation of a high-frequency
mode that is in resonance with a relativistic beam. This
mode can be excited by a beam whose length is a fraction
of the wavelength. Similar to the dielectric-layer method,
a metallic pipe with corrugated walls can serve as a source
of terahertz radiation [10].
In this paper, we study another option of excitation of the

resonant mode in a metallic pipe with corrugated walls—
via the mechanism of the free electron laser instability. This
mechanism works if the bunch length is much longer than

the wavelength of the radiation. It provides an alternative to
the approach of Ref. [10] that can be realized with relatively
low energy and low peak-current electron beams.While our
focus will be on a metallic pipe with corrugated walls, most
of our results are also applicable to dielectric-layer round
geometries. The connection between the electrodynamic
properties of the two types of structures can be found
in Ref. [11].
Our analysis is carried out for relativistic electron beams

with the Lorentz factor γ ≫ 1. However, in some places we
will keep small terms on the order of 1=γ2 to make our
results valid for relatively moderate values of γ ∼ 5–10.
In particular, we will take into account that the particles’
velocity v differs from the speed of light c (in contrast to the
approximation v ¼ c typically made in Refs. [8–10]). We
will see that the free electron laser (FEL) mechanism
becomes much less efficient in the limit γ → ∞, so the
moderate values of γ are of particular interest.
This paper is organized as follows. In Sec. II, we discuss

the resonant frequency, the group velocity, and the loss
factor of the resonant mode whose phase velocity is equal
to the velocity of the particle. Their derivations are given in
Appendixes A and B. In Sec. III, we find the gain length
and estimate the saturated power of a FEL in which a
relativistic beam excites the resonant mode. In Sec. IV, we
consider a practical numerical example of such a FEL. In
Sec. V, we discuss some of the effects that are not included
in our analysis.

II. WAKE IN A ROUND PIPE
WITH CORRUGATED WALLS

We consider a round metallic pipe with inner radius a.
Small rectangular corrugations have depth h, period p, and
gap g, as shown in Fig. 1. In the case when h; p ≪ a and
h≳ p, the fundamental resonant mode with the phase
velocity equal to the speed of light, vph ¼ c, has the
frequency ω0 ¼ ck0 and the group velocity vg0, where [8,9]
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1=2
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¼ 4gh
ap

: ð1Þ

This is a TM mode that has a radial polarization and a
nonzero longitudinal electric field, and it can be excited by
an ultrarelativistic particle moving along the axes of the
pipe with velocity v ¼ c. Note that from the assumption
h; p ≪ a follows the high-frequency nature of the resonant
mode, k0 ≫ 1=a.
As explained in the introduction, in our analysis we

would like to take into account the fact that the phase
velocity of the resonant mode is smaller than the speed of
light, vph ¼ v < c. Calculation of the frequency and the
group velocity of the resonant mode for this case is carried
out in Appendix A. As follows from this calculation, the
deviation of the resonant frequency and the group velocity
from Eqs. (1) is controlled by the parameter

u ¼ ak0
γ

¼ aω0

cγ
ð2Þ

with k0 ¼ ω0=c defined by (1). The plot of the frequency
ωr of the resonant mode versus parameter u is shown in
Fig. 2. We see that decreasing the beam energy γ increases
the frequency ωr of the mode. Note that, because k0a ≫ 1,
the deviation from the ultrarelativistic results (1) can
become important even for large values of gamma,
γ ∼ k0a. The group velocity of the resonant mode for
u ∼ 1 also deviates from the limit γ → ∞ given by (1).
Calculations of the group velocity are given in Appendix A,
and the plot of Δβg ¼ 1 − vg=c versus u is shown in Fig. 3.
A relativistic point charge entering the pipe at the

longitudinal coordinate s ¼ 0 and moving along the pipe
axis excites the resonant mode and generates a longitudinal
wakefield. The standard description of this process in
accelerator physics is based on the notion of the (longi-
tudinal) wake wðzÞ that depends on the distance between

the source and the test charges measured in the direction
of motion [12]. In the case of the resonant mode, this wake
is localized behind the driving charge and is equal to
wðzÞ ¼ 2κ cosðωrz=cÞ, where κ is the loss factor per unit

FIG. 1. Dimensions of a round corrugated pipe. An electron beam propagates along the axis of the pipe. The beam position s in the
pipe is measured along the axis with s ¼ 0 corresponding to the entrance to the pipe.

FIG. 2. Plot of the normalized frequency ωr of the resonant
wave as a function of the parameter aω0=cγ.

FIG. 3. Plot of the ratio Δβg=Δβg0 [with Δβg0 ¼ 1 − vg0=c
defined in (1)] versus the parameter aω0=cγ.
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length (see, e.g., [11,13]). For our purposes, it is important
to modify this wake taking into account that, at any given
distance s from the entrance to the pipe, the wake extends
behind the particle over a finite length; this makes the
wake a function of two variables, wðs; zÞ. The distance at
which the wake extends behind the charge can be obtained
from a simple consideration: the wake propagates with the
group velocity vg, and when the charge travels distance s
with speed v the wake emitted at s ¼ 0 lags behind the
charge at the distance Δz ¼ sð1 − vg=vÞ (we assume
vg < v). Mathematically, this is expressed by the following
equation:

wðs; zÞ ¼
8<
:

2κ cosðωrz=cÞ; for − sð1 − vg=vÞ < z < 0;

κ; for z ¼ 0;

0; otherwise:

ð3Þ

The sign of the wake (3) is such that a positive wake
corresponds to the energy loss, and a negative wake means
the energy gain. Note that the wake is only nonzero for
negative z, that is, behind the source charge.
The loss factor κ0 in the limit γ → ∞ is given by [13]

κ0 ¼
2

a2
: ð4Þ

With account of the finite, but large, value of γ, the loss
factor is derived in Appendix B. It is plotted in Fig. 4 again
as a function of parameter u. We see that the interaction of
the mode with the beam decreases when γ becomes small.
This happens because the spot size of the relativistically
compressed Coulomb field of the point charge field on the
wall of the pipe has the size on the order of a=γ and, when
u ∼ 1, is comparable with the inverse wave number of
the wake c=ω0. For u ≳ 1 the frequency content of the
Coulomb field at wave numbers ∼ω0=c gets depleted, and
the excitation of the resonant mode is suppressed.

III. 1D FEL EQUATIONS

We now consider an electron beam of energy γmc2 with
the transverse size much smaller than the pipe radius a and
with the uniform longitudinal current distribution propa-
gating along a pipe with corrugated walls. Such a beam will
be driving a resonant mode in the pipe, and, if the pipe is
long enough, it will become modulated and microbunched
through the interaction with the mode. The mechanism of
this interaction is exactly the same as in the free electron
laser instability. In this section, we describe an approach to
calculate this instability, following the method developed in
Ref. [14]. The actual derivation is presented in Appendix C.
The crucial step in the derivation is a modification of the

standard Vlasov equation that describes evolution of the
distribution function of the beam. This modification takes
into account retardation effects associated with emission
of the wake field. The distribution function of the beam
fðη; z; sÞ is a function of the relative energy deviation,
η ¼ Δγ=γ0, with γ0 corresponding to the averaged beam
energy, the longitudinal position inside the bunch z, and the
distance s from the entrance to the pipe. The evolution of f
is described by the Vlasov equation

∂f
∂s − αη

∂f
∂z −

r0
γ

∂f
∂η

Z
∞

−∞
dz0

×
Z

∞

−∞
dη0wðs; z − z0Þf

�
η0; z0; s − v

z0 − z
v − vg

�
¼ 0; ð5Þ

where α ¼ −γ−2 is the slip factor per unit length and
r0 ¼ e2=mc2 is the classical electron radius. The distribu-
tion function f is normalized so that

R
fdη gives the

number of particles per unit length. The third argument of f
in the integrand of (5) takes into account the retardation: the
wake that is generated by a beam slice at coordinate z0 slips
behind the slice with the velocity v − vg relative to the
beam, and, if it reaches the point z when the beam arrives
at location s, it should have been emitted at position
s − vðz0 − zÞ=ðv − vgÞ [14].
To establish a closer analogy with the standard FEL

theory, it is convenient to introduce a new variable kw
(an analog of the FEL undulator wave number) defined by
the equation

k0
kw

¼ v
v − vg

≈
1

Δβg − Δβph
; ð6Þ

where Δβg ¼ 1 − vg=c and Δβph ¼ 1 − vph=c. In the
ultrarelativistic limit γ → ∞ using (1) we find

kw ¼ kw0 ≡ 4

�
2gh
a3p

�
1=2

: ð7Þ

Equation (5) is linearized assuming a small perturbation
of the beam equilibrium f0ðηÞ, f ¼ f0ðηÞ þ f1ðη; z; sÞ,

FIG. 4. Plot of the normalized loss factor κ=κ0 factor versus
parameter u ¼ ak0=γ.
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with jf1j ≪ f0. In this analysis, we assume a coasting
beam with the equilibrium distribution function
f0ðηÞ ¼ n0FðηÞ, where n0 is the number of particles per
unit length of the beam. We seek the perturbation in the
form f1 ∝ eikzþqkws, where k is the wave number and q is
the dimensionless propagation constant whose real part is
responsible for the exponential growth (or decay, if
Req < 0) of the perturbation with s. The main result of
the linear instability analysis is the dispersion relation that
defines the propagation constant q as a function of the
frequency detuning ν ¼ ðck − ωrÞ=ωr. This dispersion
relation is derived in Appendix C (it follows closely the
derivation of Ref. [14]) and is given by (C10):

1

2

ð2ρÞ3
q − iν

Z
∞

−∞
dη

F0ðηÞ
q − iαηðωr=ckwÞ

¼ 1; ð8Þ

where the parameter ρ (an analog of the Pierce parameter
[15]) is

ð2ρÞ3 ¼ 2n0κcr0
kwγωr

: ð9Þ

Except for a slight notational difference, Eqs. (8) and (9)
coincide with the standard equations of the 1D FEL
theory [16].
For a cold beam, FðηÞ ¼ δðηÞ (here δ stands for the delta

function), and from (8) we obtain

q2ðq − iνÞ ¼ −
iαωr

2ckw
ð2ρÞ3: ð10Þ

If follows from this equation that the fastest growth of the
instability is achieved at zero detuning. Assuming ν ¼ 0,
we rewrite (10) by using the definition (9) and α ¼ −1=γ2:

q3 ¼ i
n0κr0
k2wγ3

: ð11Þ

Among the three roots of this equation, there is one, which
we denote q1, with a positive real part. Introducing the
power gain length l¼ð2Req1kwÞ−1, and using n0r0¼I=IA,
where I is the beam current and IA ≈ 17.5 kA is the Alfvén
current, we obtain

l ¼ 1ffiffiffi
3

p γ

�
κkw

I
IA

�
−1=3

: ð12Þ

In addition to the gain length, an important characteristic
of the described FEL is the radiation power at saturation.
Here we can use the result of the standard FEL theory, that
the saturation occurs at the distance equal about 10–20 gain
lengths, and the saturation power Psat is

Psat ≈ ργmc2
I
e
: ð13Þ

In the next section, we will consider a practical example of
a FEL based on a pipe with corrugated walls and evaluate l
and Psat for that example.

IV. NUMERICAL EXAMPLE

To give an illustrative example of a practical device, we
consider in this section a pipe with corrugated walls with
the parameters close to those accepted in Ref. [10]. Noting
from Eq. (12) that the gain length is proportional to the
beam energy, and having in mind a compact device, we
choose a relatively small beam energy of 5 MeV. The beam
current is 100 A. The pipe and corrugation dimensions with
the beam parameters are summarized in Table I. Note that
parameter u defined by (2) is u ¼ 1.3, and hence the
deviation from the ultrarelativistic limit (corresponding to
u ≪ 1) is expected to be noticeable.
From Eq. (A11), we find that the frequency ωr=2π

of the resonant mode is 0.34 THz. Using the results
of Appendixes A and B, we find the group velocity of
the resonant mode, Δβg ¼ 0.053, and the loss factor
κ ¼ 0.6ð2=a2Þ ¼ 2.7 kV=ðpCmÞ and calculate the Pierce
parameter ρ ¼ 0.013. This gives the gain length l≈7 cm
and the saturation power Psat ≈ 6.7 MW.
It is interesting to point out that, for a given pipe radius

and corrugations, there is an optimal value of the beam
energy that minimized the gain length. This follows from
Eq. (12), which shows that l increases with γ due to an
explicit dependence l ∝ γ, but l also increases when γ
becomes too small due to the decrease of κ shown in Fig. 4.
As numerical minimization shows, the minimal value or l
is achieved for u ¼ 1.9 and is given by

l ¼ 0.74
a2k0
2

ffiffiffi
3

p
�
IA
I

�
1=3

�
ap
2hg

�
1=6

: ð14Þ

For the parameter considered above, this gives the optimal
value of the beam energy: γ ¼ 6.6 with the corresponding
gain length l ¼ 5.5 cm.

V. DISCUSSION

There are several issues of practical importance that were
omitted in our analysis in preceding sections. Here we will
briefly discuss some of them, leaving a more detailed study
for a separate publication.

TABLE I. Corrugation and beam parameters.

Pipe radius (mm) 2
Depth h (μm) 50
Period p (μm) 40
Gap g (μm) 10
Bunch charge (nC) 1
Energy (MeV) 5
Bunch length (ps) 10
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First, we used an approximation of a coasting beam,
without taking into account the finite length of the bunch.
This approximation assumes that the bunch length is much
longer than the cooperation length of the instability lc that
is defined as the distance at which the point charge wake
extends within the bunch when the particle travels one gain
length l. Using Eq. (3), we evaluate the cooperation length
as lc ∼ lð1 − vg=vÞ. For the parameters considered in
Sec. IV, we find lc ≈ 3.3 mm, or 11 ps. This is comparable
with the bunch length of 10 ps, and hence the numerical
estimates of the previous section should be considered only
as crude estimates of the expected parameters of the FEL.
A more accurate prediction for the selected set of param-
eters require computer simulations.
Second, we neglected the resistive wall losses that would

cause the resonant mode to decay when it propagates in the
pipe. The effect of the wall losses on the FEL instability can
be estimated if we compare the gain length with the decay
distance ld of the resonant mode. An analytical formula for
ld is given in Ref. [10]; using the formula, we estimate that
for our parameters ld ¼ 66 cm, which is much larger than
the gain length calculated in the previous section. Hence,
we conclude that the resistive wall effect is small.
Finally, we mention a deleterious effect of the transverse

wake that might cause the beam breakup instability (see,
e.g., [12], Sec. 3.2). It is known that in a round pipe with
corrugated walls, in addition to the resonant longitudinal
wake, there is also a resonant dipole mode that creates a
transverse wakefield [9]. In the limit γ → ∞, in a round
pipe, the transverse mode has the same frequency as the
longitudinal one. To mitigate the effect of the breakup
instability, one has to apply a strong external transverse
focusing on the beam and minimize the initial beam offset
at the entrance to the pipe. It may also be advantageous to
change the cross sections of the pipe from round to
rectangular or elliptic, that will likely detune the transverse
mode frequency from the longitudinal one. A more detailed
study of the transverse instability is necessary.
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APPENDIX A: RESONANT MODE FOR
MODERATE VALUES OF γ

In this Appendix, we analyze properties of the resonant
mode in a round pipe with corrugated walls assuming
γ ≫ 1 but keeping small terms on the order of γ−2. The
resonant mode in this case is defined as a mode that has the
phase velocity vph ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2

p
. Our analysis is performed

for the steady state wakefield; the modification due to the

finite interaction length is done straightforwardly by
using Eq. (3).
It is shown in Ref. [11] that small wall corrugations can

be treated as a thin material layer with some effective values
of the dielectric permeability ϵ and magnetic permittivity μ.
Calculations of ϵ and μ for given values of the corrugation
parameters are carried out in Ref. [11], where it is shown
that μ ¼ g=p and the effective dielectric permeability ϵ is
typically small and can be neglected in comparison with μ.
The electrodynamical properties of the layer are expressed
through the surface impedance ζ that relates the longi-
tudinal component of the electric field with the azimuthal
magnetic field on the wall:

Ezjr¼a ¼ −ζHθjr¼a; ðA1Þ

where [11]

ζðω; kzÞ ¼ ih
ω

c

�
k2zc2

ω2
ϵ−1 − μ

�
: ðA2Þ

To find the resonant mode, we write an axisymmetric
TM-like solution of Maxwell’s equations in the pipe with
the time and z dependences ∝ e−iωtþikzz in the following
form:

Ez ¼ E0I0ðkrrÞ; Hθ ¼ −E0

iω
ckr

I1ðkrrÞ; ðA3Þ

where E0 is the field amplitude and

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z −

ω2

c2

s
¼ ω

c
ðβ−2ph − 1Þ1=2: ðA4Þ

Here βph ¼ vph=c with vph ¼ ω=kz the phase velocity of
the wave, I0 and I1 are the modified Bessel functions of the
first kind, and we assume kz > ω=c so that βph < c and kr
is real.
We now substitute (A3) into the boundary condition

(A1) and (A2) to obtain

kra
I0ðkraÞ
I1ðkraÞ

¼ ζ
iaω
c

: ðA5Þ

Taking into account that the phase velocity is close to the
speed of light, 1 − βph ≪ 1, we will use for ζ a simplified
equation in which k2zc2=ω2 is replaced by unity:

ζ ≈ ihωc−1ðϵ−1 − μÞ: ðA6Þ

From (A5), we find

x
I0ðxÞ
I1ðxÞ

¼ haω2

c2
ðμ − ϵ−1Þ; ðA7Þ
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with

x ¼ kra ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z −

ω2

c2

s
: ðA8Þ

Consider first an ultrarelativistic limit βph → 1. In this
limit, x → 0 and limx→0xI0ðxÞ=I1ðxÞ ¼ 2. Substituting
this into (A7), we recover the standard result for the
synchronous mode:

ωr

c
¼ ω0

c
≡

�
2

haðμ − ϵ−1Þ
�
1=2

: ðA9Þ

Equation (1) is obtained from this expression by substitut-
ing μ ¼ g=p and neglecting ϵ (see details in Ref. [11]).
We now assume x ∼ 1 and write it as

x ¼ a
ω

c
ðβ−2ph − 1Þ1=2 ≈ aωr

cγ
; ðA10Þ

where we used the resonant mode condition βph ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2

p
≈ 1 − 1

2
γ−2. Using the notations u ¼ aω0=cγ

and yr ¼ ωr=ω0 we rewrite (A7):

u
I0ðuyrÞ
I1ðuyrÞ

¼ 2yr: ðA11Þ

This equation was solved numerically, and the dependence
yrðuÞ is plotted in Fig. 2.
When x ∼ 1, the group velocity of the resonant wave also

deviates from the value given by the second equation in (1).
To find the group velocity, we first differentiate (A7) with
respect to ω:

dx
dω

d
dx

x
I0ðxÞ
I1ðxÞ

¼ 2haω
c2

ðμ − ϵ−1Þ; ðA12Þ

and then use (A8) to find dx=dω:

dx
dω

¼ a2ω
xc2

�
1

βphβg
− 1

�
; ðA13Þ

where βg ¼ vg=c ¼ c−1dω=dkz. Combining (A12) and
(A13) yields

�
1

βphβg
− 1

�
¼ 2h

a
ðμ − ϵ−1Þ

�
1

x
d
dx

x
I0ðxÞ
I1ðxÞ

�
−1
: ðA14Þ

We now use βph ≈ 1 − 1
2
γ−2 and βg ¼ 1 − Δβg and recalling

that γ ≫ 1 and Δβg ≪ 1 obtain

Δβg ¼
2h
a
ðμ − ϵ−1Þ

�
1

x
d
dx

x
I0ðxÞ
I1ðxÞ

�
−1
����
x¼uyr

−
1

2γ2
: ðA15Þ

In the limit γ → ∞ we have x → 0 and one can find
from (A15)

lim
γ→∞

Δβg ¼ Δβg0 ≡ 4h
a
ðμ − ϵ−1Þ: ðA16Þ

Again, neglecting ϵ and substituting μ ¼ g=p, one recovers
the group velocity in Eq. (1). In the general case, we
normalize Δβg by Δβg0:

Δβg
Δβg0

¼ 1

2

�
1

x
d
dx

x
I0ðxÞ
I1ðxÞ

�
−1
����
x¼uyr

−
1

16
u2; ðA17Þ

and using (A11) express it as a function of the parameter u.
The plot of the ratio Δβg=Δβg0 as a function of the
parameter aω0=cγ is shown in Fig. 3.

APPENDIX B: CALCULATION
OF THE LOSS FACTOR

In this Appendix, we calculate the excitation of the
resonant mode by a relativistic charge moving in a pipe
with corrugated walls assuming γ ≫ 1 but keeping small
terms on the order of γ−2 and using the boundary
condition (A1).
Electric and magnetic fields of a point charge moving

along the z axis can be described with the electric potential
φ and the z component Az of the vector potential A. In the
Lorentz gauge ∂φ=∂ctþ ∂Az=∂z ¼ 0, they satisfy the
wave equations:

∇2φ −
1

c2
∂2φ

∂t2 ¼ −4πqδðz − vtÞδðπr2Þ;

∇2Az −
1

c2
∂2Az

∂t2 ¼ −4πqðv=cÞδðz − vtÞδðπr2Þ; ðB1Þ

where r is the distance from the axis. We make the Fourier
transformation in z and time

φ̂ðr; kz;ωÞ ¼
Z

∞

−∞
dtdze−ikzzþiωtφðr; z; tÞ;

Âzðr; kz;ωÞ ¼
Z

∞

−∞
dtdze−ikzzþiωtAzðr; z; tÞ: ðB2Þ

This transforms Eqs. (B1) into

1

r
d
dr

r
d
dr

φ̂þ
�
ω2

c2
−k2z

�
φ̂¼−8π2qδðω−kzvÞδðπr2Þ;

1

r
d
dr

r
d
dr

Âzþ
�
ω2

c2
−k2z

�
Âz¼−8π2qðv=cÞδðω−kzvÞδðπr2Þ:

ðB3Þ

A partial solution of these equations corresponding to the
field in free space is φ̂ ¼ 4πqδðω − kzvÞK0ðjkzjr=γÞ and
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Âz ¼ ðv=cÞφ̂, with K0 the modified Bessel function of the
second kind. To this partial solution we now add a general
solution of the homogeneous equations bounded at r → 0:

φ̂ ¼ 4πqδðω − kzvÞ½K0ðjkzjr=γÞ þ αI0ðjkzjr=γÞ�;
Âz ¼ ðv=cÞφ̂; ðB4Þ

where α will be found from the boundary condition.
The electric and magnetic fields involved in the

boundary condition (A1) are

Êz ¼ −ikzφ̂þ iω
c
Âz

¼ −
ikz
γ2

φ̂

¼ −
4πqikz
γ2

δðω − kzvÞ½K0ðjkzjr=γÞ þ αI0ðjkzjr=γÞ�

ðB5Þ

and

Ĥθ ¼ −
∂Âz

∂r
¼ −

4πjkzjqv
cγ

δðω − kzvÞ½K0
0ðjkzjr=γÞ þ αI00ðjkzjr=γÞ�:

ðB6Þ

Substituting these equations into (A1) and using the
expressions for the derivatives

K0
0ðxÞ ¼ −K1ðxÞ; I00ðxÞ ¼ I1ðxÞ; ðB7Þ

we obtain

α ¼ ζðωÞβK1ðjkzja=γÞsgnðkzÞ − iγ−1K0ðjkzja=γÞ
iγ−1I0ðjkzja=γÞ þ ζðωÞβI1ðjkzja=γÞsgnðkzÞ

: ðB8Þ

In what follows, we again will use the approximation (A6)
for ζ.
We now substitute α into (B5), select only the second

term proportional to α (the first term is singular on the axis
and describes the vacuum electric field of the moving
charge), set r ¼ 0 and z ¼ vt, and make the inverse Fourier
transformation. This gives the longitudinal electric field
acting on the particle, Ez0 ¼ Ezðz ¼ vt; r ¼ 0; tÞ. Using
the notations u ¼ aω0=cγ and y ¼ ω=ω0, and replacing
v ≈ c, we obtain

Ez0 ¼ −
iq

πc2γ2

Z
∞

−∞
ωαdω

¼ −
iq
πa2

u2
Z

∞

−∞
y
2jyjK1ðujyjÞ þ uK0ðujyjÞ
−uI0ðujyjÞ þ 2jyjI1ðujyjÞ

dy: ðB9Þ

The integrand in (B9) has poles on the real axis y when
its denominator vanishes. As one can see, the poles are
located at y ¼ �yr with yr, determined by Eq. (A11), that
is, by the condition that the phase velocity of the mode is
equal to the velocity of the particle. These poles should be
bypassed in the complex plane y in accordance with the rule
that is established in the theory of the Cherenkov radiation
[17]. The rule can be easily understood if one introduces
small losses into the boundary condition (A1) by adding
an infinitesimally small positive real part ϵ > 0 to ζ,
ζ → ζ þ ϵ. With account of ϵ the poles are shifted into
the lower half plane of the complex variable y, and
the integration path takes the shape shown in Fig. 5.
The integral reduces to the sum of the half residues from
the poles (with the negative sign) and is given by the
following expression:

Ez0 ¼ −
2q
a2

K

�
ak0
γ

�
; ðB10Þ

where the factor K is

KðuÞ ¼ u2y
2yK1ðuyÞ þ uK0ðuyÞ

d½−uI0ðuyÞ þ 2yI1ðuyÞ�=dy
����
y¼yr

: ðB11Þ

The loss factor is related to Ez0 through the equation
κ ¼ −Ez0=q. It is easy to see that in the limit u → 0 the
factor K → 1, and we reproduce the result (4) for the loss
factor in the limit γ → ∞. The function KðuÞ is plotted
in Fig. 4.

APPENDIX C: DERIVATION OF THE
DISPERSION RELATION FOR THE FEL
INSTABILITY OF A RESONANT MODE

IN A CORRUGATED PIPE

Starting with the Vlasov equation (5), it is convenient to
introduce new variables: s̄ ¼ kws, where kw is defined by
(6) and θ ¼ ωrz=c, and consider f as a function of s̄ and θ.
We linearize Eq. (5) assuming f ¼ f0ðηÞ þ f1ðη; θ; s̄Þ with

FIG. 5. Complex plane of variable y. Shown by the solid black
line is the integration path in (B9).
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jf1j ≪ f0. Using notation f0ðηÞ ¼ n0FðηÞ, where n0 is the
number of particles per unit length of the beam, we find

∂f1
∂s̄ − αη

ωr

ckw

∂f1
∂θ − ð2ρÞ3F0ðηÞ

Z
θþs̄

θ
dθ0

Z
∞

−∞
dη0

× ~wðθ0 − θÞf1ðη0; θ0; s̄ − θ0 þ θÞ ¼ 0; ðC1Þ

where ρ is the Pierce parameter [15] given by

ð2ρÞ3 ¼ 2n0κcr0
kwγωr

ðC2Þ

and ~w is the dimensionless wake expressed as a function of
the dimensionless argument θ:

~wðθÞ ¼ cosðθÞ: ðC3Þ

We then introduce a new variable s̄0 ¼ s̄þ θ − θ0 and
rewrite Eq. (C1) in the following form:

∂f1
∂s̄ − αη

ωr

ckw

∂f1
∂θ − ð2ρÞ3F0ðηÞ

Z
s̄

0

ds̄0
Z

∞

−∞
dη0

× ~wðs̄ − s̄0Þf1ðη0; θ þ s̄ − s̄0; s̄0Þ ¼ 0: ðC4Þ

We assume a sinusoidal modulation of the distribution
function with the wave number k, f1 ∝ eikz ¼ eið1þνÞθ,
where ν ¼ ðck − ωrÞ=ωr with jνj ≪ 1. We then define
functions Φν and Kν such that

f1ðη; θ; s̄Þ ¼ eið1þνÞθΦνðη; s̄Þ;
Kνðs̄Þ ¼ e−ið1þνÞs̄ ~wðs̄Þ:

Equation (C4) takes the form

∂Φν

∂s̄ − αη
ωr

ckw
ið1þ νÞΦν

¼ ð2ρÞ3F0ðηÞ
Z

s̄

0

ds̄0Kνðs̄0 − s̄Þ
Z

∞

−∞
dη0Φνðη0; s̄0Þ ¼ 0:

ðC5Þ

Laplace transforming Eq. (C5), we find

− Φνðη; 0Þ − αη
ωr

ckw
ið1þ νÞ ~Φνðη; qÞ

¼ ð2ρÞ3F0ðηÞ ~KνðqÞ
Z

∞

−∞
dη0 ~Φνðη0; qÞ; ðC6Þ

where

~Φνðη; qÞ ¼
Z

∞

0

ds̄e−qs̄Φνðη; s̄Þ;

~KνðqÞ ¼
Z

∞

0

ds̄e−qs̄Kνð−s̄Þ

¼ 1

2

�
1

q − iν
þ 1

q − iν − 2i

�
: ðC7Þ

Dividing Eq. (C6) by q − iαηðωr=ckwÞð1þ νÞ and inte-
grating over η yields

Z
∞

−∞
dη ~Φνðη; qÞ ¼

R
∞
−∞ dη Φνðη;0Þ

q−iαηðωr=ckwÞð1þνÞ
1− ð2ρÞ3 ~KνðqÞ

R∞
−∞ dη F0ðηÞ

q−iαηðωr=ckwÞð1þνÞ
:

ðC8Þ

The dispersion relation that defines the propagating con-
stant q of the mode is given by zeros of the denominator on
the right-hand side of this equation:

ð2ρÞ3 ~KνðqÞ
Z

∞

−∞
dη

F0ðηÞ
q − iαηðωr=ckwÞð1þ νÞ ¼ 1: ðC9Þ

Rapid growth will be seen to correspond to jνj≲ 2ρ and
q ∼ 2ρ. The second term in expression for ~Kν in (C7) is not
resonant and can be neglected, which gives

1

2
ð2ρÞ3 1

q − iν

Z
∞

−∞
dη

F0ðηÞ
q − iαηðωr=ckwÞ

¼ 1; ðC10Þ

where we neglected ν relative to unity in the denominator of
the integrand of Eq. (C9).
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