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We present an analysis of a Čerenkov free-electron laser (FEL) driven by a flat electron beam. In this
system, an electron beam traveling close to a dielectric slab placed at the top of an ideal conductor interacts
with the copropagating electromagnetic surface mode. The surface mode arises due to singularity in the
reflectivity of the dielectric slab for the incident evanescent wave. Under suitable conditions, the surface
mode grows as a result of interaction with the electron beam. We show that the interaction of the surface
mode with the copropagating electron beam can be rigorously understood by analyzing the singularity in
the reflectivity. Using this approach, we set up coupled Maxwell-Lorentz equations for the system, in
analogy with conventional undulator based FELs. We solve these equations analytically in the small signal
regime to obtain formulas for the small signal gain, and the spatial growth rate. Saturation behavior of the
system is analyzed by solving these equations numerically in the nonlinear regime. Results of numerical
simulations are in good agreement with the analytical calculations in the linear regime. We find that
Čerenkov FEL under appropriate conditions can produce copious coherent terahertz (THz) radiation.
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I. INTRODUCTION

An electron moving in a close proximity to a dielectric
material emits Čerenkov radiation [1] with angle of
emission given by

cos θ ¼ 1

β
ffiffiffiffiffi
ϵμ

p : ð1Þ

Here, ϵ and μ are relative permittivity and relative per-
meability respectively of the dielectric medium; β ¼ v=c, v
is the electron’s speed and c is the speed of light in vacuum.
In 1947, Ginzburg [2] proposed that this effect can be
utilized to make a source of electromagnetic radiation.
Since then many experimental and theoretical investiga-
tions have been made to understand the generation of
radiation from such sources [3–28]. During recent times,
there is a demand for powerful, compact and tunable
sources of electromagnetic radiation in the terahertz
(THz) regime for numerous applications in research and
industry [29–31]. Čerenkov free-electron laser (CFEL),
which uses a low-energy electron beam (∼30 keV) will be
a promising source of the THz radiaton due to its compact
size [26].
In a CFEL, coherent electromagnetic radiation is pro-

duced due to the interaction of an electron beam with the

copropagating surface mode in a dielectric based slow
wave structure. The slow wave structures investigated so
far are: single or double dielectric slab in the planar
geometry, and cylindrical waveguide lined with a dielectric
material. Walsh et al. [3,4] made one of the earlier
theoretical analysis based on linearized Vlasov equation
for the small-signal gain in CFEL and compared with the
gain of conventional undulator based FEL. In their analysis,
they neglected the space charge effect and performed the
calculations only in the low-gain regime. The analysis was
further extended by several authors [5–10] by setting up the
coupled Maxwell-Vlasov equations, and the growth rate
was calculated. Freund and Ganguly [11,12] developed a
three-dimensional (3D) theory for the CFEL in the cylin-
drical configuration, by setting up coupled Maxwell-
Lorentz equations to evolve the electromagnetic field
and the electron trajectories. Fuente et al. [13,14] extended
this theory by including the loss due to liner fluctuations
and reported the successful operation of such devices.
Another approach, known as the hydrodynamic

approach [15–20], has also been used by several authors
to evaluate the dispersion relation and growth rate in the
Čerenkov FELs. In this approach, one treats the electron
beam as a plasma dielectric and solves the Maxwell
equations to find the dispersion relation of the system.
The dispersion relation can be expanded in the Taylor series
about the roots of no-beam dispersion to find the growth
rate of electromagnetic field. Using this approach, Owens
and Brownell [16] performed two-dimensional (2D) analy-
sis for a CFEL based on single slab geometry. Andrew and
Brau [17] developed a 3D theory for the device and found
that the gain reduces by an order of magnitude as compared

*yashvirkalkal@gmail.com
†vinit@rrcat.gov.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 18, 030707 (2015)

1098-4402=15=18(3)=030707(13) 030707-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.18.030707
http://dx.doi.org/10.1103/PhysRevSTAB.18.030707
http://dx.doi.org/10.1103/PhysRevSTAB.18.030707
http://dx.doi.org/10.1103/PhysRevSTAB.18.030707
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


to the 2D theory. The usual cubic dispersion relation gets
replaced by the 5=2-power dispersion relation on accounts
of 3D effects. This approach works well in the linear
regime, but is difficult to extend in the nonlinear regime.
Recently, in Refs. [21–23], the authors have discussed an

approach based on Maxwell-Lorentz equations for the
analysis of Čerenkov FELs in a single slab geometry,
which is similar to that of conventional FELs. Asgekar and
Dattoli [22,23] have used this approach to calculate the gain
and saturation intensity in the Čerenkov FELs. In their
analysis, they have however not included the variation of
the electromagnetic fields in a direction perpendicular to
the dielectric surface in a rigorous way, while solving the
coupled Maxwell-Lorentz equations. In particular, they
have not calculated the power in the electromagnetic field,
taking the transverse variation of the field into account. As
a result, the formulas derived in these references do not
have dependence on the height of the electron beam from
the dielectric surface.
In all the above mentioned analyses, size of the electron

beam is taken to be either very large or infinite. Since the
mode supported by the dielectric surface is evanescent in
the direction perpendicular to the surface and confined in a
region very close to the dielectric surface, it is more
appropriate to take a flat electron beam traveling very
close to the dielectric surface to ensure significant inter-
action with the evanescent mode. We would like to
emphasize that a flat beam has vertical size much smaller
than its horizontal size over the entire interaction length.
The first experimental observation of the Čerenkov radi-
ation by using flat electron beam was performed by Danos
et al. in 1953 [24]. In comparison to a round electron beam,
flat beam with the same current allows more effective
interaction with the surface mode, since all the electrons are
at a reduced height from the dielectric surface. Also, a flat
beam can allow much more current within the required
dimension in the vertical direction, and thus will help to
enhance the output power of the device [25]. Additionally,
one can tune the operating frequency of device by varying
the gap between the flat electron beam and the dielectric
surface [16].
In this paper, we analyze the Čerenkov FEL driven by an

infinitesimal thin flat electron beam in the single slab
geometry, as shown in Fig. 1. We have set up the coupled
Maxwell-Lorentz equations by appropriately taking into
account the variation of the electromagnetic field in the

vertical direction. Our approach incorporates the space
charge effects, and it is easily extendible to the nonlinear
regime, unlike the approach based on coupled Maxwell-
Vlasov equations. In this approach, the electromagnetic
field due to a flat beam is presented as a spectrum of plane
waves of different frequencies and having phase velocity
equal to the electron beam velocity [32]. These waves are
evanescent in nature and decay away from the electron
beam. These evanescent waves are incident on the surface
and give rise to reflected evanescent waves. For a given
phase velocity of the evanescent wave, the reflection
coefficient of dielectric slab has a singularity at a particular
frequency, which means that the structure supports a
surface mode at that frequency [33]. The interaction of
the electron beam with this surface mode becomes the
mechanism for the working of Čerenkov FEL. We would
like to point out that our approach here is similar to the
one used by Kumar and Kim to analyze the working of
Smith-Purcell free-electron laser (SP-FEL) [34–37]. This
approach was very successful for the detailed analysis of
the system, and had removed inconsistency amongst differ-
ent analyses of SP-FELs. Here, we are extending this
analysis for the Čerenkov FEL. However, unlike the case of
SP-FEL described in their paper, the group velocity of the
surface wave is positive in the case of CFEL
In the next section, we set up the basic electromagnetic

field equations for a single-slab geometry based CFEL
driven by a flat electron beam. This is followed by the
detailed calculation of singularity in the reflection coef-
ficient of the dielectric surface. Next, we discuss the
interaction of the surface mode with the electron beam
and calculate the small-signal gain in Sec. III. In Sec. IV, we
introduce collective variables to calculate the growth rate in
small-signal high-gain regime. We extend our analysis to
the nonlinear regime by performing numerical simulations
in Sec. V. Finally, in Sec. VI, we discuss the results and
conclude our analysis.

II. BASIC ELECTROMAGNETIC FIELD
EQUATIONS AND REFLECTIVITY ANALYSIS

We start the analysis by setting up the electromagnetic
fields due to a flat electron beam. We have closely followed
the approach described in Ref. [34], and extended it to the
case of CFEL. The schematic of the system for a Čerenkov
FEL is shown in Fig. 1. The dielectric slab of thickness d,
length L and dielectric constant ϵ is supported on an ideal
conductor. The flat electron beam is confined to move
along the z direction and at a height h above the dielectric
surface. We are assuming here that the system has trans-
lational invariance in the y direction.
The current density for a flat beam has the form KδðxÞ.

Here, δðxÞ is the Dirac delta function and K is the surface
current density of electron beam, located at x ¼ 0. As
discussed later in the section, the dielectric slab supports an
evanescent surface mode copropagating with the electronFIG. 1. Schematic of Čerenkov FEL using a flat electron beam.
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beam at the resonant frequency of the system. Due to
interaction with the surface mode, the electron beam
develops a modulation in the current density. The surface
current density can be expanded in the Fourier series and
the term at the resonant frequency ωwill show the strongest
interaction with the surface mode. We can then write the
surface current density asKðz; tÞeiðk0z−ωtÞ þ c:c:, where c.c.
represents complex conjugate and Kðz; tÞ ¼ ðI=ΔyÞhe−iψ i.
The beam current is represented as I, Δy is the electron
beam width in the y direction, ψ ¼ k0z − ωt is the electron
phase, k0 ¼ ω=v and h� � �i indicates averaging over the
number of particles distributed over one wavelength of the
evanescent mode. We assume that the surface current
density will be a slowly varying function of the type eμz

in z. Note that if the real part of μ is positive, the electrons
become bunched at the resonant frequency. With this
assumption, the surface current density can be finally
written as K0eiðα0z−ωtÞ þ c:c:, where α0 ¼ k0 − iμ and K0

is independent of z and t.
The electromagnetic fields due to the above current

density can be solved by using the Maxwell equations
with appropriate boundary conditions, as described in
Appendix A. The expression for the incident electromag-
netic field is obtained as [37]:

HI
y ðx; zÞ ¼

1

2
θðxÞKðzÞ exp½−θðxÞΓx�; ð2Þ

where Γ ¼ ðα20 − ω2=c2Þ1=2, θðxÞ ¼ 1 for x > 0 and
θðxÞ ¼ −1 for x < 0. The electromagnetic field is decaying
away from the electron beam and has e−iωt time depend-
ency. The flat electron beam acts as a source of the
electromagnetic field. Now, due to the dielectric slab, this
incident field is reflected back towards the electron beam.
The reflected and incident electromagnetic fields are
coupled through the reflectivity R of the dielectric surface.
The reflected electromagnetic field is given as [37]:

HR
y ðx; zÞ ¼ −

1

2
KðzÞR exp½−Γð2hþ xÞ�: ð3Þ

The electromagnetic field has H polarization, which means
that Hx ¼ Hz ¼ Ey ¼ 0. Using the Maxwell equation, Ez

can be written as Ez ¼ ði=ϵ0ωÞð∂Hy=∂x − δðxÞKÞ. Now,
the sum of incident and reflected electromagnetic field
effectively interacts with the electron beam. The amplitude
of the electromagnetic field experienced by the electron
beam is obtained as [37]:

Ezðx ¼ 0; zÞ ¼ iIZ0

2βγΔy
ðRe−2Γh − 1Þhe−iψi: ð4Þ

Here, Z0 ¼ 1=ðϵ0cÞ ¼ 377 Ω is the characteristic imped-
ance of free space, γ is the relativistic Lorentz factor and ϵ0
is the permittivity of free space. The total longitudinal

electric field at the location of the electron beam has the
form Ezeiðk0z−ωtÞ þ c:c:.
To calculate electromagnetic field in Eq. (4), we need to

evaluate the reflectivity of the dielectric slab, supported by
a metallic surface. The detailed calculations for the reflec-
tivity have been given in Appendix B, where by solving the
Maxwell equations for the electromagnetic fields with
appropriate boundary conditions, the reflectivity of the
dielectric slab is obtained as:

R ¼ 1þ r tanðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2k20 − α20

p
Þ

1 − r tanðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2k20 − α20

p
Þ ; ð5Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2k20−α20

p
=ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20−β2k20

p
. Note that for μ ¼ 0,

reflectivity has a singularity at k0 ¼ ð1=bÞtan−1ð1=aÞ,
which is same as dispersion relation of the system as
described in Refs. [3,17,21]. Here a ¼ ðγ=ϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2 − 1

p
and

b ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2 − 1

p
. It has already been observed that the

condition for a system to support surface mode of fre-
quency ω ¼ βck0 is equivalent to the requirement that the
reflection coefficient is singular at that particular frequency
[33]. Figure 2 shows the plot of dispersion curve, and the
reflectivity as a function of wavelength is plotted in Fig. 3.
The parameters used in our calculations are taken from the
Dartmouth experiment [17,26], and are listed in Table I. For
β ¼ 0.33, the singularity in R occurs at 0.1 THz, which is
the resonant frequency of the system, as shown in Fig. 2.
A more careful observation of Eq. (5) indicates that the
reflectivity is a function of frequency as well as the growth
rate parameter μ. This has important implication, while
calculating the growth rate of the surface mode.
In order to study the nature of singularity in R at μ ¼ 0,

we perform Laurent series expansion of R, as a function of
μ. By doing so, we obtain the following expression of R:

0 5 10 15
0

0.5

1

1.5

2

2.5

3

k
0
d

ω
×d

/c

Dispersion curveBeam line

Synchronous point

FIG. 2. Plot of the dispersion curve of the surface mode, and the
Doppler line for the electron beam. At the intersection, we find
the resonant frequency of the system. Parameters used in the
calculation are given in Table I.
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R ¼ m0 þm1μþm2μ
2 þ oðμ3Þ…:

n0 þ n1μþ n2μ2 þ oðμ3Þ…:
; ð6Þ

where the coefficients of expansion are given as:

n1 ¼
−i

k0ab2
½ad2 þ ab2γ2 þ k0bd2ð1þ a2Þ�; ð7Þ

n2 ¼
−1

2k20b
4
½d4 þ b2d2ð1 − 2γ2Þ þ γ2b4ð1 − 3γ2Þ�

þ ð1þ a2Þ
2k0a2b3

½ad4 þ 2k0bd4 − ab2d2ð1 − 2γ2Þ�; ð8Þ

n0 ¼ 0, m0 ¼ 2, m1 ¼ −n1, and m2 ¼ −n2. In Eq. (6), we
have division of two infinite series. By performing the
required algebra and keeping the terms of the order of 1=μ
and μ0, we obtain the following simple expression for the
reflectivity:

R ¼ iχ
μ
þ χ1: ð9Þ

Here, χ and χ1 are given by:

χ ¼ −im0=n1; ð10Þ

χ1 ¼ ðm1n1 −m0n2Þ=n21: ð11Þ

The parameters χ and χ1 are of paramount importance for
any geometry of the Čerenkov FEL. As described in the
next section, parameter χ is associated with the growth rate
of surface electromagnetic mode and χ1 is related to the
space charge effect. For parameters listed in Table I, we find
χ ¼ 1.81 per cm and χ1 ¼ 0.86 from Eqs. (10)–(11). We
also confirmed these values by numerically evaluating the
value of μR and plotting it in the vicinity of μ ¼ 0. The
value of χ and χ1 are obtained separately from two graphs
in Fig. 4 and these results are in agreement with our
analytical calculations. The parametrization of R given by
Eq. (9) is very useful for setting up the coupled Maxwell-
Lorentz equations, as described in the following section.

III. COUPLED MAXWELL-LORENTZ
EQUATIONS AND GAIN CALCULATION

We now build up the analysis of the gain mechanism for
a Čerenkov FEL by setting up the Maxwell-Lorentz
equations. We would like to emphasize that the approach
based on Maxwell-Lorentz equation is familiar for the case
of conventional FELs [38], backward wave oscillators
(BWOs) [39] and SP-FELs [34]. By substituting the value

28.3251 28.3252 28.3253 28.3254 28.3255 28.3256

−4

−2

0

2

4

6

x 10
6

λ×10−4 (m)

R

FIG. 3. Plot of R as a function of wavelength, as calculated
using Eq. (5). Dielectric parameters used are taken from Table I,
and β ¼ 0.33, corresponding to 30 keV electron beam. The
singularity in R appears at the resonant frequency of 0.1 THz.

TABLE I. Parameters of a CFEL used in the calculation.

Electron energy 30 keV
Electron-beam height (h) 35 μm
Electron-beam current (I) 1 mA
Dielectric constant (ϵ) 13.1
Length of slab (L) 0.15 m
Dielectric thickness (d) 350 μm
Operating frequency 0.1 THz
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(a) Re(μ) = 0
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FIG. 4. Plots of imaginary (dashed) and real (solid) parts of μR
as a function of the imaginary (a) and real (b) parts of the growth
rate parameter μ near the resonance frequency, i.e., 0.1 THz. By
parametrizing R as iχ

μ þ χ1 in this graph, we obtain χ ¼ 1.81 per
cm and χ1 ¼ 0.86.
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of R in Eq. (4), we obtain the expression for the amplitude
of longitudinal electric field as:

Ez ¼
iIZ0

2βγΔy

�
iχ
μ
e−2Γh þ χ1e−2Γh − 1

�
he−iψi: ð12Þ

The first part of the right-hand side of the above expression
depends on μ, and is responsible for the growth of the
surface electromagnetic mode. Remaining terms are inde-
pendent of the growth rate parameter and represent the ac
space-charge effect in the longitudinal field. This approach
of separating the total electromagnetic field into surface
mode field and space charge field is similar to the approach
described in Ref. [40], where it is stated that “The total
fields from an arbitrary, spatially periodic current are
shown to consist of a pole term, which is identified as the
structure field, and a remainder, which is identified as the
space charge field.” Dynamics of the electron beam is
governed by the surface mode field, as well as the space
charge field. We write the space-charge field as Esc and the
amplitude of surface-mode as E in the further calculations.
We can replace the growth rate parameter by d=dz in
Eq. (12), and by including the group velocity vg, we get the
following time-dependent differential equation for E:

∂E
∂z þ 1

vg

∂E
∂t ¼ −IZ0χ

2βγΔy
e−2Γhhe−iψi: ð13Þ

The space charge field is given by:

Esc ¼
−iIZ0

2βγΔy
ð1 − χ1e−2ΓhÞhe−iψi: ð14Þ

Next, we discuss the longitudinal dynamics of the ith
electron in presence of the surface mode field and the space
charge field. We neglect the transverse motion of electron
beam and obtain the following equations for the evolution
of energy and phase of the ith electron:

∂γi
∂z þ 1

v
∂γi
∂t ¼ e

mc2
ðEþ EscÞeiψ i þ c:c:; ð15Þ

∂ψ i

∂z þ 1

v
∂ψ i

∂t ¼ ω

cβ3γ2

�
γi − γp
γp

�
: ð16Þ

Here, e is the magnitude of the electron’s charge and

γp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2p=c2

q
is the relativistic Lorentz factor. The

subscript p is meant for the resonant particle. At resonance,
the electron velocity v is equal to the phase velocity
vp of the copropagating evanescent surface mode.
Equations (13)–(16) can be written in more elegant form
by defining the following dimensionless variables:

ξ ¼ z=L; ð17Þ

τ ¼
�
t −

z
vp

��
1

vg
−

1

vp

�
−1 1

L
; ð18Þ

ηi ¼
k0L
β2γ3

ðγi − γpÞ; ð19Þ

E ¼ 4πk0L2

IAZ0β
2γ3

E; ð20Þ

Esc ¼
4πk0L2

IAZ0β
2γ3

Esc; ð21Þ

J ¼ 2π
χ

Δy
I
IA

k0L3

β3γ4
e−2Γh: ð22Þ

Here, ξ is the dimensionless distance, which varies from
0 to 1, and τ is the dimensionless time variable, having an
offset of z=vp from the real time t. The normalized energy
detuning of the ith electron is ηi, E is the dimensionless
surface mode field, and Esc represents dimensionless space
charge field. The dimensionless beam current is written as
J and IA ¼ 4πϵ0mc3=e ¼ 17.04 kA is the Alfvén
current. With these dimensionless variables, the set of
Eqs. (13)–(16) assumes the form:

∂E
∂ξ þ

∂E
∂τ ¼ −J he−iψi; ð23Þ

∂ηi
∂ξ ¼ ðE þ EscÞeiψ i þ c:c:; ð24Þ

∂ψ i

∂ξ ¼ ηi; ð25Þ

Esc ¼ iΘhe−iψi; ð26Þ

where Θ ¼ ðJ =χLÞðχ1 − e2ΓhÞ. These coupled Maxwell-
Lorentz equations govern the behavior of the Čerenkov
FEL driven by flat electron beam. We would like to
emphasize that our approach and equations described in
this section are same as given in Ref. [34], except that the
group velocity is positive here, which was negative in
Ref. [34]. This affects the solution of the equations.
In general, one needs to solve Eqs. (23)–(26) numeri-

cally with the given initial conditions for the detailed
analysis of the system. However, we can find an analytical
solution of these equations in the small-signal, small-gain
regime. We will proceed with the time-independent form of
Eqs. (23)–(25), and neglect the space charge term. Defining
the differential gain as ð1=EÞðdE2=dξÞ and following the
procedure closely given in Ref. [41] for conventional
undulator based FEL, we get the following expression for
the small-signal gain:
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Gðη0Þ ¼ 4J
�
1 − cos η0 − η0 sin η0=2

η30

�
: ð27Þ

The term in parentheses is the usual gain function and
η0¼ðk0L=β2γ3Þðγ−γpÞ is the normalized energy detuning at
ξ ¼ 0. Gain function has a maximum value of 6.75 × 10−2 at
η0 ¼ 2.6. By substituting the maximum value of gain
function and J from Eq. (22), we obtain the following
expression for small-signal gain in a single pass of CFEL:

G ¼ 4 × 6.75 × 10−2 × 2π
χ

IA

I
Δy

k0L3

β3γ4
e−2Γh: ð28Þ

Gain increases linearly with the surface current density, and
has cubic dependence on length of the dielectric slab. It has
an negative exponential dependence on the beam height h,
and dependences on dielectric constant ϵ and slab thickness d
are given through the parameter χ.
The gain of a CFEL crucially depends upon the

diffraction effects in the electromagnetic surface mode.
Due to the diffraction, the optical beam size increases,
resulting in partial overlap of the optical mode with the
electron beam; which reduces the gain of the CFEL. One
has to choose the electron beam size Δy same as optical
beam size for maximum overlapping. The appropriate
optical beam size can be estimated by considering the
diffraction of electromagnetic fields in y direction in the
similar way as described in Refs. [35,36]. By doing so, we
find that for the surface mode supported in a CFEL, the
effective beam size that needs to be taken in Eq. (28) as
Δy ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

βλL=2
p

[42]. Note that we have taken Δy as
ffiffiffiffiffiffi
2π

p
times the rms beam width. The value of small signal gain
predicted by our calculations is about 71%.
We want to emphasize that the expression for gain

obtained from our analysis, and the expression derived
byWalsh et al. in the Ref. [4] give comparable results in the
relativistic regime. In Ref. [4], the gain analysis has been
done for the relativistic regime, while our analysis is
applicable to both relativistic, as well as nonrelativistic
regime.
We now discuss the calculation of power in the surface

mode. Interestingly, this can be done in two different ways.
First, the coupled Maxwell-Lorentz equations, which we
have derived earlier in this section can be used to evaluate
power in the surface mode by using conservation of energy,
as discussed in Appendix C. By equating the energy lost by
the electron beam to the energy gained by the electromag-
netic fields, we obtained the expression for power per unit
beam width of the surface mode as:

P
Δy

¼ 2βγ

χZ0

�
mc2β2γ3

ek0L2

�
2

e2ΓhjEj2: ð29Þ

Note that the parameter χ appears in the above expression.
Second, we can explicitly evaluate the power by integrating

the Poynting vector in dielectric as well as free space in
Fig. 1. This calculation has been performed in Appendix D,
which gives us:

P
Δy

¼ βγ3

k0

�
1þ 1

ϵ2a2
þ k0dð1þ a2Þ

ϵγa2

�
ϵ0cE2e2Γh: ð30Þ

Using the expression for χ given in Eq. (10) and expression
for E given in Eq. (20), we find that the expression for
power evaluated using the two approaches, which are given
by Eqs. (29) and (30) are exactly identical. This confirms
that the formulation of the beam wave interaction in terms
of χ parameter is correct.

IV. GROWTH RATE CALCULATION

Analysis in the previous section was done for the small
signal, small gain regime. Another regime of interest is the
small signal, high gain regime, where we calculate the
growth rate in the system. Several authors have presented
the calculation of growth rate in CFEL [16,17,20]. In this
section, we perform the calculation of growth rate in CFEL
using collective variables. These variable have been intro-
duced for the study of conventional FELs [43] and later
extended to study the startup conditions in SP-FELs [34].
For the small signal regime, we assume a perturbative
solution of the coupled Maxwell-Lorentz equations. We
have neglected the space charge effect here. For simplicity,
we assume monoenergetic and unbunched electron beam
at the entrance, i.e., he−iψ0i ¼ 0. We can then write the
equilibrium solution of Eqs. (23)–(25) as E ¼ 0, ηi ¼ η0,
and ψ i ¼ η0ξþ ψ i;0. We define the perturbative solutions
as: Ep ¼ E, ηi;p ¼ η0 þ δηi, and ψ i;p ¼ ψ i þ δψ i. The
collective variables are introduced as:

p ¼ hδψe−iψ0i; ð31Þ

q ¼ hδηe−iψ0i: ð32Þ

Using above variables, we linearized the set of
Eqs. (23)–(25) and by keeping the terms only up to first
order, we obtain:

∂p
∂ξ ¼ q − iη0p; ð33Þ

∂q
∂ξ ¼ E − iη0q; ð34Þ

∂E
∂ξ ¼ iJp: ð35Þ

In order to solve the above equations, we assume solution
of the type eνξ, i.e., p ¼ p0eνξ, q ¼ q0eνξ, and E ¼ E0eνξ.
With these solutions, Eqs. (33)–(35) now assume the form:
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νp0 ¼ q0 − iη0p0; νq0 ¼ E0 − iη0q0; νE0 ¼ iJp0:

ð36Þ

The above expression can be solved to obtain the following
cubic equation in the growth rate parameter:

ν3 þ 2iη0ν2 − η20ν ¼ iJ : ð37Þ

The growth rate will be maximum for η0 ¼ 0. Solving the
above equation for the positive value of real ν and
substituting J from Eq. (22), we obtain the maximum
growth rate as:

νreal ¼
ffiffiffi
3

p

2L

�
2π

χ

Δy
I
IA

k0L3

β3γ4
e−2Γh

�
1=3

: ð38Þ

The growth rate depends on the cube root of the beam
current density. This form of growth rate is already familiar
in the hydrodynamic approach [16,17,20]. Note that we
have used flat electron beam in our calculations. The
growth rate for a thick beam having thickness Δx in the
x direction has been calculated by Li et al. [20], using
hydrodynamic approach. If we take limit Δx → 0 in the
formula given in Ref. [20], we recover Eq. (38).
Using parameters listed in Table 1, we calculated the

value of growth rate parameter as 8 per m. The growth rate
calculated by Andrew and Brau [17] for these parameters,
using the three dimensional analysis is about 10 per m,
which is in agreement with our calculations. The expected
value of growth rate parameter is 250 to 450 per m for the
Dartmouth experiment [26]. The value of growth rate
parameter obtained from two different analyses are approx-
imately same, but not in agreement with the results of
Dartmouth experiment. It is likely that a larger growth rate
was measured in Dartmouth experiment due to coherent
spontaneous emission.

V. NUMERICAL SIMULATIONS

Next, we discuss about solution of Maxwell-Lorentz
equations in the nonlinear regime, in order to understand
the saturation behavior of the system. We have written a
computer code based on the Leapfrog method to solve the
set of Eqs. (23)–(26). For initial conditions, we assumed a
monoenergetic electron beam with 105 particles. The initial
electric field is set to be very small. To initialize the electron
beam in the phase space, we have used quiet start scheme.
In the quiet start scheme, electrons are assumed to have
uniform distribution in phase space. The phase of nth
electron is set to be 2πn=N, where N is total number of
particles. This ensure that he−iψi ¼ 0 at ξ ¼ 0. The total
length of system is divided into number of small steps,
having step size Δξ ¼ 0.01.
In the Leapfrog scheme, we require the value of variables

at ξ ¼ 0, and the value of terms on the right side in

Eqs. (23)–(26) at Δξ=2, to find the value of variables
at Δξ. In order to evaluate the terms on the right side in
Eqs. (23)–(26), variables are evaluated at Δξ=2 with the
help of Eqs. (23)–(25), using the Euler method. Next, the
values of variables at Δξ=2 are set as initial conditions, and
value of variables at Δξ are used in the right-hand side of
Eqs. (23)–(26) to find the solution of Eqs. (23)–(26) at
3Δξ=2. This scheme is repeated step by step, and we ensure
that the energy conservation [Eq. (C1)] is satisfied in each
step of integration.
We now discuss the results of our numerical simulations.

The parameters used in the code are listed in Table I.
Figure 5 shows the gain as a function of initial electric field.
We obtain the small-gain of about 72%. This value of
small-signal gain is consistent with our analytical calcu-
lations. The gain decreases with the magnitude of electric
field and finally saturates. Čerenkov FEL is a low gain
system for the chosen parameters. Hence, in order to get an
appreciable output power, we need to operate the device in
the oscillator configuration. We propose that a set of
mirrors may be used to form a resonator for the oscillator
configuration. One mirror is assumed to have 100%
reflectivity, while the second mirror is having the reflec-
tivity of field amplitude as 98%. In this configuration, the
electromagnetic field reflected at the end of one pass
becomes input field for the next pass.
We examined the nonlinear solution of the Maxwell-

Lorentz equations by performing numerical simulation in
multipass operation. Figure 6 shows the growth in the
power of the surface mode with the number of passes. The
power builds up slowly in this low-gain system, and
saturates after 120 passes. The output optical power per
unit mode width after saturation is obtained as 22.5 W=m.
The input power per unit width of the electron beam is
about 3.6 kW=m. This gives us efficiency of about 0.63%
at saturation. As discussed by Walsh and Murphy [3], the
upper bound of the efficiency for power conversion in a
CFEL can be written as:

ηeff ¼
β3γ3

ðγ − 1Þ
λ

L
: ð39Þ
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FIG. 5. Plot of gain as a function of input electric field in a
CFEL oscillator.
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We get an upper bound of 1.4% for the efficiency of a
Čerenkov FEL. This is in well agreement with the results of
numerical simulations as the analytic expression is only a
rough estimate for the maximum value of efficiency.
We also examined the evaluation in the phase space

distribution of the electrons along the interaction region.
Figure 7(a) shows amplitude of bunching parameter
jhe−iψij along the distance after the saturation of output
power. We observed that the electrons are nicely bunched at
the exit of the interaction region and the amplitude of
bunching parameter is about 0.7. Similar mechanism is
observed in the plot of phase space distribution of electrons
at the entrance and at the exit of the interaction region.

We clearly see in the Fig. 7(b) that the electrons are
randomly distributed at the entrance, and become bunched
at the end due to the interaction with the copropagating
surface mode.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented an analysis of Čerenkov
FEL driven by a flat electron beam for the single slab
geometry, by setting up Maxwell-Lorentz equations. For
conventional undulator based FELs, the approach based on
Maxwell-Lorentz equations has been extremely successful,
particularly to understand the behavior in the nonlinear
regime, and to incorporate realistic effects. However, most
of the analyses of CFEL in slab geometry so far have used
either the Mazwell-Vlasov equation approach, or the
hydrodynamic approach, which are useful in the linear
regime. There has been earlier attempt to analyze the CFEL
system for slab geometry based on Maxwell-Lorentz
equations in Refs. [21–23]. However, the evanescent nature
of the surface mode has not been included in these analyses
in a rigorous way, while setting up the coupled Maxwell-
Lorentz equations. As a result, these analyses do not
describe the dependency on the height of electron beam
from the dielectric surface properly, and also do not
describe the case of flat beam appropriately since the
volume current density becomes very large. In our analysis,
we have included the evanescent nature of the surface mode
in a rigorous way, and also included the effect of space
charge by taking into account the field due to incident and
reflected evanescent wave.
We have considered the parameters used in the

Dartmouth experiment [26] to perform calculations. The
output power reported in the Dartmouth experiment [26]
was of the order of picowatt and growth rate was predicted
around 250–450 per m. To get an appreciable output power,
authors in Ref. [26] suggested the use of the flat electron
beam to drive the CFEL. We performed the analysis with
flat electron beam and obtained the output power of around
188 mW with an efficiency of about 0.63% at saturation in
the oscillator configuration. Outcoupling of THz radiation
can be done by putting a hole in the outcoupling mirror and
the radiation power can be directed to the useful experi-
ments. In this way, Čerenkov FELs can fulfill the require-
ments of several industrial and scientific applications which
require copious coherent THz radiation.
It is interesting to compare some of the features of

Čerenkov FEL and Smith-Purcell FEL. As discussed in
Ref. [34], for typical parameters, SP-FEL is a BWO,
whereas CFEL is a traveling wave amplifier (TWA).
This is because group velocity is negative in the case of
SP-FEL and positive in the case of CFEL. It is however
important to note that if we replace the dielectric with
negative refractive index material, group velocity will be
negative for CFEL [20]. BWO operation has an advantage
that the beyond a threshold value of beam current, known
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FIG. 7. (a) Plot of growth of the bunching parameter along the
interaction length at saturation of the power in the surface mode.
(b) The phase space of electron beam at the entrance and at the
exit of interaction region at saturation.
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FIG. 6. Plot of power per unit beam width in the surface mode
as a function of number of passes.
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as start current, there is a self-feedback mechanism and the
system works like an oscillator without the use of mirrors
for external feedback.
For SP-FEL, if we ignore the small correction term, the

radiation wavelength is given by λ ¼ λgð1þ βÞ=β [44],
where λg is the grating period. For Čerenkov FEL, we have
λ ¼ 2πb=β arctanð1=aÞ. When we evaluate ½dλ=dβ�=½λ=β�,
which is a measure of wavelength tunability with electron
velocity, we notice two important points. First, for SP-FEL,
radiation wavelength decreases with electron energy,
whereas for CFEL, it is the opposite. This means that
for CFEL, higher frequency can be generated with rela-
tively lower electron beam energy compared to SP-FEL.
Second, for typical parameters, ½dλ=dβ�=½λ=β� is of much
higher magnitude for CFEL, which means that the wave-
length tunability of CFEL with electron energy is more
compared to SP-FEL.
Next, we compare the efficiency of SP-FEL and CFEL.

We notice that basic system parameters of CFEL are d and
ϵ, where ϵ is fixed for a particular dielectric material. We
are thus effectively left with only one variable in CFEL in
single slab geometry. In SP-FEL, the system variables are:
grating period, groove depth, and groove width [34,45]. We
therefore have more numbers of variables for optimization
of performance in a SP-FEL compared to CFEL. Although
the efficiencies of SP-FEL and CFEL are similar, varying
from fraction of a percent to few percent, it is possible to
obtain slightly higher efficiency for SP-FEL since there are
more number of system parameters that can be optimized.
There is however an important point regarding attenuation
of the electromagnetic wave at the metallic surface, which
is more prominent in SP-FEL compared to CFEL. This is
because in the case of SP-FEL, the electromagnetic field is
a combination of Floquet space harmonics, unlike CFEL.
Here, only the copropagating component of the space
harmonic interacts with the electron beam and gets ampli-
fied, and the remaining components produce heat, which
gives rise to attenuation. Another reason is that for a unit
interaction length L, area of the metallic surface is more in
the case of reflection grating in an SP-FEL, where the
attenuation takes place. Final efficiency of the system is
reduced due to attenuation. Attenuation is more important
at higher frequency since skin depth reduces with fre-
quency [46]. Therefore, more attenuation is expected in
SP-FEL as compared to CFEL for higher frequency. From
this point of view, it will be preferable to opt for CFEL for
high frequency operation, and SP-FEL for lower frequency
operation.
We would like to mention that the formula for χ and χ1

that we have described in this paper can be used for the case
of negative index material also, and our analysis can be
extended to understand the behavior of CFEL in BWO
configuration which is described in Ref. [20]. Also, the
analysis can be extended for the case of finite thickness of
the electron beam in the x-direction. This can be done by

treating the beam as a combination of continuous layers of
flat beam.
In our analysis, we have not considered the effect due to

energy spread, beam emittance and three dimensional
variations of the optical field. Since the Maxwell-
Lorentz based approach that we have developed in this
paper is identical to the approach developed for SPFEL
[34–36] and conventional FEL [41,43], we can add these
effects in a similar way, which we propose to do in detail in
the future. It is however important to emphasize here that
the successful operation of a CFEL requires an electron
beam with very low emittance. This is because the electron
beam needs to maintain a very small size in the x direction,
throughout the interaction length. This requirement arises
due to the e−2Γh type dependence of the CFEL gain on the
beam height h in Eq. (28). Height of the electron beam is
therefore required to be less than 1=2Γ to ensure that there
is no significant reduction in the gain. The half width Δx of
the electron beam in the vertical direction therefore needs to
be ∼1=2Γ, assuming that the lower edge of the beam is just
above the dielectric surface. In order to maintain the vertical
size of the electron beam nearly constant around this value
throughout the interaction length L, the normalized rms
vertical emittance εx is required to be less than βγ=16Γ2L
[36]. Emittance requirement in the y direction is obtained
by taking into account the diffraction effects of the surface
mode. In order to ensure complete overlap of the electron
beam with the surface mode in the y direction, we require
the rms normalized horizontal emittance εy to be less than
β2γλ=4π [42]. For parameters used in our analysis, we need
vertical emittance εx ≤ 3.6 × 10−9 m-rad; which is a strin-
gent requirement. The emittance requirement in the hori-
zontal direction is quite relaxed as electron beam with
εy ≤ 2.6 × 10−5 m-rad is needed. A flat electron beam with
very stringent vertical emittance and relaxed horizontal
emittance is thus needed in a CFEL. In this example, we
can choose εy as 3.6 × 10−6 m-rad, which is around seven
times smaller than the maximum allowed value, and εx as
3.6 × 10−9 m-rad, which means that a flat electron beam
with transverse emittance ratio εy=εx ≃ 1000 is desired for
the operation the CFEL device. Such an electron beam can
be produced in a DC electron gun either by using line-
shaped tungsten cathode, or by employing a round to flat
beam transformation to the beam produced using an
initially round, thermionic cathode such as LaB6, as
described in Ref. [35]. If the vertical emittance deteriorates,
the vertical beam size over the interaction length will
increase and will therefore reduce the gain. The vertical half
width of the electron beam can be maintained around
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxL=βγ

p
for a given value of εx, and therefore the gain of

the CFEL will have e−4Γ
ffiffiffiffiffiffiffiffiffiffiffi
εxL=βγ

p
type dependence on

vertical emittance. The stringent requirement on vertical
emittance can however be relaxed with the help of external
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focusing provided by the solenoid magnetic field, or
wiggler magnetic field, as described in Ref. [36].
Our analysis is build up on the earlier analysis of Smith-

Purcell FEL, where the parameters χ and χ1 obtained from
the Laurent expansion of reflectivity of the system around
the singularity were used for setting up of Maxwell-Lorentz
equations. In the analysis presented in Ref. [34], the
expression for power in the surface mode was obtained
by applying energy conservation in the coupled Maxwell-
Lorentz equations. For the case of SP-FEL, it is not possible
to derive a simple expression for power in the surface mode
by integration of Poynting vector since reflection grating is
a complex electromagnetic system. Thus, the power cal-
culation in terms of χ parameter derived using energy
conservation approach could not be cross checked with the
expression derived by integration of Poynting vector. On
the other hand, for the analysis of CFEL system presented
in this paper, it has been possible to derive an analytical
expression for the power by integrating the Poynting vector
since dielectric is a much simpler system compared to a
reflection grating, which has infinite number of space
harmonics in the expression for electromagnetic field.
We have thus been able to check that for the general
framework of setting up of Maxwell-Lorentz equations in
terms of the χ parameter, the expression for power flow is
calculated correctly. Another interesting observation is that
unlike SP-FEL system, here we have been able to derive
analytical expressions for χ and χ1, which can be calculated
only numerically for the SP-FEL case.
We also looked into the issue of dielectric breakdown for

high power operation of CFEL. We find that for GaAs,
which is a dielectric material for CFEL, the breakdown
field for 0.1 THz operation is around 5 × 105 V=cm [47].
In our calculations, for 188 mW of saturated power, we
calculated that the peak electric field in the structure is
around 47 V=cm, which is significantly smaller. It should
be easily possible to operate at a power level of a few tens
or hundreds of Watt, without any dielectric breakdown.
To conclude, we have presented an analysis for the

working of CFEL by studying the singularity in the
reflectivity of the dielectric slab. We have set up the coupled
Maxwell-Lorentz equations, taking into the evanescent
nature of surface mode and also the space charge field.
This approach is suitable for writing computer program for
analysis of the CFEL system taking realistic effects such as
energy spread, beam emittance, etc. into account, and also to
analyze the nonlinear behavior of the system. For conven-
tional FEL [38] and SP-FEL [34–37], this approach has
already been very successful, and by extending this approach
to Čerenkov FELs, we have stepped forward toward having
a unified theory for all FELs. Our analysis can be useful for
the design and the operation of a compact Čerenkov FEL
working in the THz regime.
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APPENDIX A: ELECTROMAGNETIC FIELD
DUE TO A BUNCHED FLAT BEAM

In this Appendix, we evaluate the electromagnetic field
due to a flat electron beam propagating over the dielectric
surface, as shown in Fig. 1. The z component of the current
density is given by:

Jzðx; z; tÞ ¼
e
Δy

δðxÞ
X
i

δ½z − ziðtÞ�v; ðA1Þ

where zi is the position of the ith electron at time t, and the
summation is over all the electrons. We are assuming that
the system has translational invariance in the y direction,
and Δy is the width of the beam in the y direction. The
electron beam interacts with the copropagating electro-
magnetic surface mode with frequency ω, and consequently
it develops a modulation in the current density. The surface
current density can be expanded in Fourier series. It will
have a component at the fundamental frequency ω, and also
at its higher harmonics. Here, we are interested in the
component Kðz; tÞeiðk0z−ωtÞ at the fundamental frequency.
The expression for Kðz; tÞ can be written as:

Kðz; tÞ ¼ ev
Δy

1

λz

Z
zþλz

2

z−λz
2

X
i

δ½z − ziðtÞ�e−iðk0z−ωtÞdz; ðA2Þ

where λz ¼ 2πv=ω is the wavelength of the surface wave.
Here, the integration is performed at a particular time t,
over one wavelength, around the location z. Hence, only the
electrons, which are distributed over one wavelength will
contribute in the summation term. Following these argu-
ments, we obtain the expression for the surface current
density as

Kðz; tÞ ¼ ev
Δy

Nλz

λz
he−iψi; ðA3Þ

where Nλz is the number of electron distributed over the
wavelength λz. Here, the term evNλz=λz is identified as the
electron beam current I, ψ ¼ k0z − ωt is the electron phase
and h� � �i indicates averaging over the number of particles
distributed over λz. The term he−iψi is the bunching factor,
and grows due to interaction between the electron beam and
the copropagating surface mode. Assuming an eμz type
dependence of the bunching factor,Kðz; tÞ can be written as
K0eiðα0z−ωtÞ, where α0 ¼ k0 − iμ andK0 is independent of z.
Next, we discuss some physical arguments for calcu-

lation of the electromagnetic field generated by a bunched
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flat electron beam. The electromagnetic field due the
surface current density K0eiðα0z−ωtÞ should have eiðα0z−ωtÞ
type dependence on z and t in the region above, as well as
below the flat beam. In order to satisfy the free-space wave
equation in these regions, the fields should have e�Γx type
dependence in the x direction, such that α20 − Γ2 ¼ ω2=c2.
Since the field should not blow up at x ¼ �∞, we require
that fields should have e−θðxÞΓx type dependence on x,
where θðxÞ ¼ 1 for x > 0 and θðxÞ ¼ −1 for x < 0. We
first discuss the calculation of Hy. In order to satisfy the
boundary condition at x ¼ 0, there will be a discontinuity
in Hy due to the presence of the surface current. Due to
symmetry arguments, the magnitude ofHy should however
be continuous at x ¼ 0. These two conditions can be
satisfied only if the sign of Hy changes as we cross the
plane x ¼ 0. Using these arguments, and the boundary
condition Hyðx ¼ 0þÞ −Hyðx ¼ 0−Þ ¼ K0eiðα0z−ωtÞ, we
obtain

HI
y ðx; z; tÞ ¼

1

2
θðxÞK0 exp½−θðxÞΓx�eiðα0z−ωtÞ; ðA4Þ

which is the same as Eq. (2), except that Eq. (2) describes
the amplitude of the above expression, i.e., barring the
eiðk0z−ωtÞ dependence. Other field components can be easily
derived in terms ofHy, and are like the field components of
a plane evanescent wave.

APPENDIX B: CALCULATIONS FOR THE
REFLECTIVITY OF A DIELECTRIC SLAB
SUPPORTED ON AN IDEAL CONDUCTOR

In this Appendix, we derive the formula for reflectivity R
of the dielectric slab supported by an ideal conductor, for an
incident evanescent wave. The incident plane evanescent
wave in region I will have the following components of
electromagnetic field

HI
y ðx; zÞ ¼ H exp½iα0zþ Γx�; ðB1Þ

EI
x ðx; zÞ ¼

α0H
ϵ0ω

exp½iα0zþ Γx�; ðB2Þ

EI
z ðx; zÞ ¼

iΓH
ϵ0ω

exp½iα0zþ Γx�: ðB3Þ

Here, the e−iωt type time dependence is assumed, which is
implicit in the expressions for all the field components
described in this Appendix. The incident wave gives rise to
reflected wave in region I, which are given by

HR
y ðx; zÞ ¼ RH exp½iα0z − Γx − 2Γh�; ðB4Þ

ER
x ðx; zÞ ¼

α0RH
ϵ0ω

exp½iα0z − Γx − 2Γh�; ðB5Þ

ER
z ðx; zÞ ¼

−iΓRH
ϵ0ω

exp½iα0z − Γx − 2Γh�; ðB6Þ

where R is the amplitude reflectivity. The transmitted field
components inside the dielectric slab, which satisfy the
boundary condition at the metallic surface at x ¼ −ðhþ dÞ,
and the wave equation inside the dielectric, are given as:

HT
y ðx; zÞ ¼ TH cos ½k1ðxþ dþ hÞ� exp½iα0z − Γh�; ðB7Þ

ET
x ðx; zÞ ¼

α0TH
ϵ0ϵω

cos ½k1ðxþ dþ hÞ� exp½iα0z − Γh�;

ðB8Þ

ET
z ðx; zÞ ¼

−ik1TH
ϵ0ϵω

sin ½k1ðxþ dþ hÞ� exp½iα0z − Γh�:

ðB9Þ

Here, TH represents the amplitude of Hy inside the

dielectric slab, and k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2 − α20

p
. Applying the

boundary condition that Hy and Ez are continuous at
the dielectric surface, i.e., at x ¼ −h, we obtain to obtain
the expression for the reflectivity R as:

R ¼ 1þ ðk1=ΓϵÞ tan ðk1dÞ
1 − ðk1=ΓϵÞ tan ðk1dÞ

: ðB10Þ

APPENDIX C: ENERGY CONSERVATION

Now, we derive the expression for power in the surface
mode by using the energy conservation in the coupled
Maxwell-Lorentz equations. This approach has been dis-
cussed in detail for the SP-FELs [34]. Here, we are
summarizing the results for Čerenkov FELs. In steady
state, the set of Eqs. (23)–(26) can be combined to obtain
the following expression:

∂
∂ξ ðjEj

2 þ J hηiÞ ¼ 0: ðC1Þ

It indicates that the energy lost by the electron beam while
traveling down the interaction region appears in the surface
modes. This is the principle of conservation of energy.
Using Eq. (C1), we can express the energy lost per unit time
by the electron beam and equate it to the power developed
in the surface mode. By doing the required algebra in this
way, we obtain the following expression of the power in the
surface mode:

P
Δy

¼ 2βγ

χZ0

�
mc2β2γ3

ek0L2

�
2

e2ΓhjEj2: ðC2Þ

This expression is used to calculate the power in our
numerical simulations.

ANALYSIS OF ČERENKOV FREE-ELECTRON LASERS Phys. Rev. ST Accel. Beams 18, 030707 (2015)

030707-11



APPENDIX D: CALCULATION OF THE GROUP
VELOCITY AND POWER IN

THE SURFACE MODE

Here, we calculate group velocity and power flow in the
surface electromagnetic mode supported by the configu-
ration, described earlier in Sec. I, using the Poynting vector.
The basic geometry of a CFEL, consists of a dielectric slab
resting on an ideal conductor. The electromagnetic fields
for this structure have been calculated by several authors
[3,21]. We assign region I to vacuum and region II to the
dielectric slab as shown in Fig. 1. The electromagnetic
fields in the region I can be written as:

HI
yðx; z; tÞ ¼ H exp½iψ − Γðxþ hÞ� þ c:c:; ðD1Þ

EI
xðx; z; tÞ ¼ ðH=βϵ0cÞ exp½iψ − Γðxþ hÞ� þ c:c:; ðD2Þ

EI
zðx;z;tÞ¼ð−iH=βγϵ0cÞexp½iψ−ΓðxþhÞ�þc:c:: ðD3Þ

Here, ψ ¼ k0z − ωt and H is the strength of the magnetic
field at the dielectric surface. In region II, we find
electromagnetic fields as:

HII
y ðx; z; tÞ ¼

ϵΓ
k1

cos½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðD4Þ

EII
x ðx; z; tÞ ¼

k0Γ
ωϵ0k1

cos½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðD5Þ

EII
z ðx; z; tÞ ¼

−iΓ
ωϵ0

sin½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðD6Þ

Power flow in the electromagnetic fields can be calculated
by integrating the Poynting vector over the transverse area.
Total power in the surface mode is sum of the power in
region I and in region II. We obtain the following
expression for power in the surface mode:

P
Δy

¼ βγ3

k0

�
1þ 1

ϵ2a2
þ k0dð1þ a2Þ

ϵγa2

�
ϵ0cE2e2Γh; ðD7Þ

where a ¼ ðγ=ϵÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2 − 1

p
.

Next, we drive the expression for the total energy stored
in the electromagnetic fields. The energy stored in the
fields can be evaluated by integrating the energy density
U ¼ ðϵE2 þ μH2Þ=2 over the volume of the required
region. Total energy stored in electromagnetic fields is
sum of energy in vacuum and in the dielectric medium,
which we obtain as:

U
Δy

¼ γ3L
k0c

�
1þ 1

ϵ2a2
þ k0dβ2ð1þ a2Þ

γa2

�
ϵ0cE2e2Γh: ðD8Þ

By knowing the expression for the power P and the energy
stored U, one can find the energy velocity as ve ¼ PL=U.
Using Eq. (D7) and the Eq. (D8), we obtain the following
analytical expression for the energy velocity:

ve ¼
vp½β2γ3ðϵ − 1Þ þ k0dϵð1þ a2Þ�
½β2γ3ðϵ − 1Þ þ k0dϵ2β2ð1þ a2Þ� ; ðD9Þ

where vp is the phase velocity of the surface mode. For
each value of β, we find ve from Eq. (D9) and group
velocity from the dispersion curve in Fig. 2. We find that for
Čerenkov FEL, the energy velocity is equal to the group
velocity.
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