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The envelope instability of high intensity beams in circular accelerators is studied via multiparticle
simulations. The space charge kicks are derived from a Gaussian potential model for an efficient tracking.
The evolution of the envelope phase space coordinates are derived from the bunch distribution. We found
that the envelope stop band played an important role in emittance growth. Correction schemes of the
envelope stop bands are studied. Because the space charge force pushes the envelope tunes downward,
harmonics less than twice the betatron tunes are also important on emittance growth. Our code is efficient
and fast, it can be used to study the effect of space charge force on high power accelerators.
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I. INTRODUCTION

High-intensity accelerators can tolerate little beam loss,
which may be related to beam emittance growth. Emittance
evolution for space charge dominated beams has been one
of many important topics in high-power beam accelerators
and storage rings. Possible sources of emittance growth in
LINACs are synchrobetatron coupling, halo formation
induced by collective envelope modes or structure reso-
nances [1], envelope resonance, and systematic fourth order
resonance [2].
Important candidates for the emittance growth in circular

accelerators include the half-integer stop band that can
perturb the beam envelope function, the Montague reso-
nance, and other systematic space charge resonances [3–5].
Many numerical simulation codes, such as TRACE [6],
PARMILA [7], ORBIT [8], WARP [9], etc., were devel-
oped to study the mechanism of emittance growth. COSY
INFINITY has also been proposed to expand its code to deal
with space charge force [10,11]. A few systematic emit-
tance evolution experiments were done in LINACs [12],
and fewer in circular accelerators [4,13]. Systematic mea-
surements and analysis of the emittance evolution with
different injection turns at the Fermilab Booster, see e.g.,
Fig. 10 in Ref. [4], show that the emittance growth arises
from linear coupling resonances from random skew
quadrupoles.
Cousineau and collaborators have carried out systematic

emittance measurement of high-intensity beams at the
Proton Storage Ring (PSR) in Los Alamos National
Laboratory and made systematic benchmarking of a space
charge simulation code for implying the importance of a

half-integer stop band in the emittance growth at the PSR
[14]. Yet, attempts to make half-integer stop band correc-
tion at the PSR and Fermilab Booster were not as
successful.
Charged particles in accelerators encounter intrinsic

Coulomb force with each other, called the space charge
force. It is classified into intrabeam scattering and the
“mean field” due to collective effect of all other particle.
The typical time constant for intrabeam scattering is
minutes or hours, an important slow process on beam
quality for storage rings. On the other hand, the effect mean
field force can cause emittance growth due to resonances.
The emittance growth is fast and can be controlled. We
study the mean field effect of Coulomb force on beam
dynamics.
There were seminal works on space charge dominated

beam by Kapchinskij, Vladimirskij, Lapostolle, and
Sacherer [15–17]. There were several simulations of highly
space charge dominated beam for periodic focusing para-
xial beams in LINACs [18,19]. There is no systematic
numerical simulation on the space charge envelope dynam-
ics. This paper is intended to carry out systematic study on
the envelope dynamics of space charge dominated beam in
synchrotrons. We organize this paper as follows. Section II
reviews space charge theories and discusses a multiparticle
tracking technique. Envelope dynamics with simulation
results are shown in Sec. III. The effects of envelope
resonance stop band harmonics and the effect of emittance
growth will be addressed in Sec. IV. Methods for possible
emittance growth control are discussed in Sec. V.
Conclusions of this study is given in Sec. VI.

II. SPACE CHARGE FORCE AND
TRACKING METHODS

The electric scalar potential, a solution of the Poisson
equation, of the Coulomb force for a tri-Gaussian beam
moving at the velocity v along the s-direction in Frenet-
Serret ðx; s; zÞ coordinates is [20]
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where NBe is the bunch charge; γ is the relativistic Lorentz
factor; ϵ0 is the permittivity of free space; σx, σs, and σz are
the rms bunch lengths; and λ is a dummy variable. In
addition to the scalar potential, the vector potential com-
ponent As responsible for the magnetic field of the moving
bunch is given by As ¼ γvϕ=c2, which is proportional to
the scalar potential.
The synchrotron motion is usually relatively slow

compared to the transverse motion. The longitudinal space
charge can induce bunch lengthening, and result in electron
cloud effects [21,22]. Passive or active longitudinal focus-
ing has been implemented to alleviate this effect [23,24].
For fast ramping synchrotrons, the longitudinal space

charge effect is normally small due to substantial rf voltage
in the acceleration process. Thus the bunch length change is
small [4]. The effect of transverse space charge effect can
be approximated by a two-dimensional potential, charac-
terized by the beam sizes σx and σz which also depend on s.
Combining both the scalar and vector space charge poten-
tials, we find the space charge potential in the Frenet-Serret
coordinate system as [20]

Vscðx; zÞ ¼
Ksc

2

Z
∞

0

exp ½− x2

2σ2xþt −
z2

2σ2zþt� − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2σ2x þ tÞð2σ2z þ tÞ

p dt: ð1Þ

The space charge potential is proportional to a dimension-
less quantity called space charge perveance Ksc ≡ 2Nr0

β2γ3
,

whereN ¼ NBe=
ffiffiffiffiffiffi
2π

p
σs is the charge per unit length, β and

γ are the relativistic Lorentz factors, and r0 ≡ e2

4πϵ0mc2 is the

particle classical radius. The classical radii are 2.82 ×
10−15 m for electrons and 1.535 × 10−18 m for protons.
The space charge effect is especially severe in low energy
proton or ion beams because their β and γ are small.

A. Particle tracking technique

The Vlasov-Maxwell equations can self-consistently
describe the evolution of particle distributions under the
effect of the space charge force. Unfortunately there are no
analytic solutions. A numerical simulation with Monte-
Carlo analysis is necessary. A self-consistent calculation
requires evaluation of mean field of beam distributions at
each stage of numerical simulation [25]. This is very time
consuming, and impractical in the study of essential
emittance growth mechanisms. There are a few techniques
and hypotheses used in beam space charge simulations. For

example, TRACE [6] uses linear space charge force, and
PARMILA [7] uses the particle-in-cell (PIC) method to
track representatives called macroparticles in a mesh.
Usually, thousands of macroparticles are used to extract
the statistical properties to study the space charge beam
dynamics. We will use the Gaussian distribution to evaluate
space charge kick. From previous studies (see e.g.,
[16,17,26]), our study of the envelope dynamics based
on multiparticle simulation should provide essential phys-
ics on the emittance growth associated with envelope
dynamics.
The space charge force is given by the partial derivative

of the 2D potential in Eq. (1). The space charge kicks
become [27]

d2x
ds2

þ i
d2z
ds2

¼ −
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where a ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðσ2x − σ2zÞ

p
, b ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðσ2x − σ2zÞ

p
and

r ¼ σz=σx. The complex error function erfcð·Þ has been
tabulated and fast to compute. It is more computational
efficient than the calculation of the improper integral of the
space charge potential in Eq. (1). For example, tracking of
5000 particles for 1000 turns and 100 space charge kickers
per turn can be done in 40 minutes in an Intel Xeon
3.1 GHz CPU. There is no singularity at σx ¼ σz in Eq. (2),
thus we can use Taylor series expansion and keep the terms
up to the required accuracy for σx ≈ σz [27].
We integrate the space charge tracking code into a

symplectic tracking code SIMTRACK [28]. The standard
format of the SIMTRACK can easily be implemented into
any lattice design files. Although our space charge potential
of Eq. (2) is based on an initial Gaussian distribution,
envelope dynamics of other initial distribution function
may also be studied in this integrated tracking code. The
beam distribution may change during the evolution in the
accelerator, the Gaussian space charge force approximation
should provide essential physics of resonance effects
during the accumulation and acceleration. A more general
approach proposed by Lapostolle [29] is to approximate
any distribution in Hermite series expansion. Since we are
studying the envelope dynamics in this paper, our calcu-
lation is an efficient approximation for extracting essential
physics of space charge in beams.

B. Incoherent space charge tune shift

The space charge force is defocusing and the space
charge tune shift is always negative in both transverse
directions. The space charge self-force depends on the
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particle’s transverse position in the beam, each particle will
have its own tune shift. For a Gaussian beam, the
incoherent tune shift is [30]

Δνsc;x ¼ −
KscR
4ϵxr

Z
∞

0

du
Z1ð Jxβx

2σ2xð1þuÞÞZ0ð Jzβz
2σ2zð1þu=r2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ uÞ3ð1þ u=r2Þ
p ;

Δνsc;z ¼ −
KscRr
4ϵz

Z
∞

0

du
Z1ð Jzβz

2σ2zð1þuÞÞZ0ð Jxβx
2σ2xð1þur2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ uÞ3ð1þ ur2Þ
p : ð3Þ

where Z1ðxÞ ¼ e−x½I0ðxÞ − I1ðxÞ�, Z0ðxÞ ¼ e−xI0ðxÞ, R is
the average radius of the synchrotron, I0 and I1 are the
modified Bessel functions, r ¼ σz=σx is the beam-size
ratio, and u is a dimensionless dummy variable. The tune
shift dependent on particle’s action is plotted in Fig. 1(a) for
various beam emittance ratio with the bunch line density
N ¼ 1 × 108 m−1, ϵx ¼ 1 μm, and β is the average beta
function.

The maximum space charge tune shift, called Laslett or
the linear tune shift parameter, corresponds to the particle at
the center of the bunch with actions Jx ¼ 0 and Jz ¼ 0. The
maximum tune shifts are

ξsc;x ≡ jΔνsc;xj ¼
Ksc

4π

I
βx

σxðσx þ σzÞ
ds;

ξsc;z ≡ jΔνsc;zj ¼
Ksc

4π

I
βz

σzðσx þ σzÞ
ds: ð4Þ

The linear tune shift parameter is normally denoted by ξsc.
It is a measure of how strong the space charge force could
be. It is proportional to the space charge perveanceKsc. It is
also a figure of merit related to the beam envelope
oscillation.
Assuming a round beam with equal bare tunes in both

directions, the incoherent tune spread distribution of a bi-
Gaussian beam, scaled with the Laslett tune shift parameter,
is shown in Fig. 1(b) [31]. The average is at 0.633Δνsc with
an rms spread 0.168Δνsc.

III. ENVELOPE DYNAMICS

The envelope dynamics are governed the equation first
derived by Kapchinskij and Vladimirskij (KV) in 1959
[15]. This is self-consistent theory if the beam is in KV
distribution. A generalization was made by Lapostolle [16]
and Sacherer [17] by extending the KV beam to beam with
elliptical symmetry. In their generalization, the correspond-
ing KV beam envelopes are replaced by the beam’s second
moments ~x≡ ffiffiffiffiffiffiffiffi

hx2i
p

and ~z≡ ffiffiffiffiffiffiffiffi
hz2i

p
, and the emittance is

replaced by the rms emittance. The mathematical form of
the generalized rms envelope equation is the same as that of
the KV equation.
One can study the envelope dynamics by solving the

envelope equations. Another treatment is by constructing
the envelope Hamiltonian [3,32]:

Henv ¼
1

2
ð~x02 þ ~z02Þ þ Venvð~x; ~zÞ;

Venv ¼
1

2
ðKx ~x2 þ Kz ~x2Þ −

1

2
Ksc lnð~xþ ~zÞ þ ϵ2x

2~x2
þ ϵ2z
2~z2

:

Both of the above methods are perturbative because the
particle motion is also perturbed by the envelope of the
beam, and the beam second moments depend on the motion
of all particles.

A. Envelope oscillation

Instead of solving the KVenvelope equation numerically
or using the Hamiltonian approach, we use multiparticle
tracking to study the envelope dynamics. Through multi-
particle tracking, the evolution of beam envelope radii can
be dynamically evaluated. The beam envelope phase space
coordinates are defined statistically by
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FIG. 1. (a) Tune shifts as a function of particle’s action.
(b) Tune spread distribution scaled with the Laslett tune shift
Δνsc for round beams with equal bare tunes (courtesy Ng [31]).
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σy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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X
i

ðyi − ȳÞ2
s
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σ0y ¼
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Nσy

X
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where y denotes both transverse directions x and z. The
envelope phase space coordinates can be obtained from
macroparticle simulation.
Consider a high power accelerator made of 18 FODO

cells with circumference C ¼ 324 m, i.e., it has 18 super-
periods. Systematic space charge resonances are located at
betatron tunes 4.5 and 3 for the fourth and the sixth order
resonances respectively. The bare betatron tunes are chosen
to be 2.60 horizontally and 2.95 vertically. The typical
quadrupole strength is K1L ≈ 0.1 m−1.
To provide realistic simulation, the physical aperture is

set to �2.5 cm in both transverse directions. Particles
falling out of the aperture are considered lost and will
not be included in the statistics of the rms envelope
calculation. The turn-by-turn space charge perveance is
adjusted by the particle loss during the tracking and the
injection filling rate to simulate multiturn accumulation.
After 30-turn beam accumulation to the desired density, it is
then tracked for another 1024 turns for FFT analysis.

The envelope oscillation tune can be extracted by the
FFT analysis. The FFT uses the periodic data from the
middle of every focusing quadrupole. There are totally 18
equally spaced focusing quadrupoles. The sampling rate is
18f0, therefore the Nyquist frequency is 9f0, where f0 is
the revolution frequency. The FFT data can extract
envelope tune up to 9. An example of the FFT spectrum
of the horizontal envelope is shown in Fig. 2(a) for a beam
with line density N ¼ 1 × 108 particles=m. The spectrum
peaks at an envelope tune of around 5, which is the
horizontal envelope tune at 2νx − ξsc;x. A smaller peak at
5.7 comes from the weak coupling from the vertical
envelope oscillation. At the same time, a low frequency
peak shows the difference of horizontal and vertical
envelope tunes.
The envelope phase space ellipses with different line

densities are shown in Fig. 2(b), where the top left plot
shows the phase space ellipse with no space charge force.
Without space charge force, the envelope oscillation tune is
exactly twice the betatron tune. Because the initial bunch
distribution does not match the beam emittance, the
envelope phase space is an ellipse around the matched
value of βxϵx.
As the space charge force increases, the equilibrium

envelope radius increases because the matched betatron
amplitude function increases. The envelope phase space
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FIG. 2. The FFT spectrums of horizontal beam envelope (a) without and (c) with quadrupole errors. Envelope phase space with
different densities (b) without and (d) with quadrupole errors. The ring is 324-m, 18-FODO cells ring with νx ¼ 2.6, νz ¼ 2.95. The
quadrupole error is ΔK1L ¼ 0.01 m−1 at βx ¼ 17.5 m and βz ¼ 21.5 m.
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ellipse is smeared and the envelope tune spread increases
with space charge force. The smear effect arises from
envelope space charge coupling, which is small but visible
resulting an envelope tune spread. The α function and the
center of the matched σ0 are not zero, as shown in the
bottom plots of Fig. 2(b), because the space charge kick is
before the calculation of these covariance quantities.
Collecting top ten peaks in the envelope spectrum with

different line densities gives Fig. 3(a), where the envelope
tune shift and broadening of peaks are shown, and the
predictions are given by 2νx − Δνsc;x and 2νz − Δνsc;z of
Eq. (4). The envelope tune can cross the integer stop band
νenv ¼ 5 without particle loss and no emittance growth
because there is no driving source for the envelope
resonance. The peaks of the envelope tune spread depends
on the beam distribution and the envelope tune spread,
independent of the distribution, increases linearly with the
space charge parameter.

B. Envelope resonance

When quadrupole errors were added as the driving
source to excite the envelope resonance, the envelope
resonances appear. We consider the error ONE single
quadrupole with integrated strength ΔK1L ¼ 0.01 m−1,
located at about 1.5 m from a defocusing quadrupole,
where βx ¼ 17.5 m and βz ¼ 21.5 m. This error causes
beta-beat, e.g., the perturbed beta functions at the error
quadrupole become βx ¼ 10.0 m and βz ¼ 17.4 m. More
importantly, the FFT spectrum of σx (similarly for σz)
exhibits integer harmonics. Figure 2(c) shows the FFT
spectrum of σx for the line density of N ¼ 108 m−1.
The envelope phase space for beams with different line

densities are shown in Fig. 2(d). The peaks of the FFT
spectrum of rms envelopes with different line densities are
shown in Fig. 3(b). The trend agrees with the study in PSR
[33]. The horizontal envelope tune approaches an integer 5
when the line density reaches 7.5 × 107 m−1. When the
envelope tune falls onto an envelope resonance stop band,
the resonance causes particle loss and emittance growth.
Particle loss takes place during the injection-accumulation
process.

Particle loss and emittance growth caused by the
envelope stop band provide a limit of the Laslett tune
shift. No matter how high the injected beam intensity is, the
resulting beam intensity is limited by the space charge.
Particle loss will reduce the beam intensity so that the
envelope tune is bounded by the stop band.

IV. STOP BAND HARMONICS AND
EMITTANCE GROWTH

A. Stop band harmonics

Since the envelope coupling is small as shown in
Fig. 2(a), we can examine the envelope dynamics for a
paraxial beam. Applying the Floquet transformation to the
paraxial envelope equation, we find

R̈þ ν2R −
ν2

R3
−
ν2βðϕÞKsc

4ϵR
¼ 0; ð7Þ

where R≡ Rbffiffiffiffiffiffiffiffi
βðϕÞϵ

p is the normalized envelope radius; Rb is

the rms beam envelope; ϵ is the rms emittance, and
ϕ≡ 1

ν

R
s
0

ds
βðsÞ. The new time coordinate ϕ ranges from 0

to 2π and the overdot notation stands for the derivative with
respect to ϕ. For a beam with small space charge force,
R ¼ 1 is the equilibrium radius. When space charge force
becomes important, we will find R > 1.
The last term in Eq. (7) has the exact superperiodicity of

the accelerator lattice. Expanding the space charge term in
Fourier series, we find

fðϕÞ≡ νβðϕÞKsc

8ϵ
¼ ξsc

�
1þ

X∞
n¼1

qn cosðnϕþ χnÞ
�
; ð8Þ

where ξsc is the linear space charge parameter:

ξsc ¼
1

2π

I
νβKsc

8ϵ
dϕ ¼ KscC

16πϵ
: ð9Þ

It is proportional to the space charge perveance and the
circumference C, and inverse proportional to the emittance.
The ξscqn and χn are the amplitude and the phase of the nth
harmonic with

 4

 4.5

 5

 5.5

 6

 0  0.5  1  1.5  2

E
nv

el
op

e 
tu

ne

Line Density N (108/m)

horizontal
vertical
prediction
prediction

(a)

 4

 4.5

 5

 5.5

 6

 0  0.5  1  1.5  2

E
nv

el
op

e 
tu

ne

Line Density N (108/m)

horizontal
vertical
prediction
prediction

(b)

 4

 4.5

 5

 5.5

 6

 0  0.5  1  1.5  2

E
nv

el
op

e 
tu

ne

Line Density N (108/m)

horizontal
vertical
prediction
prediction

(c)

FIG. 3. Top ten peaks of the FFT spectrum of the envelope radius for (a) without quadrupole error (νx ¼ 2.6, νz ¼ 2.95), (b) with
quadrupole errors (νx ¼ 2.6, νz ¼ 2.95), and (c) with quadrupole errors (νx ¼ 2.85, νz ¼ 2.95).
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qn ¼
1

π

Ksc

8ϵξsc

I
cosðnϕþ χnÞds

¼ 2

C

I
cosðnϕþ χnÞds;

χn ¼ tan−1
�
−
H
fðϕÞ sinðnϕÞdϕH

fðϕÞ cosðnϕÞdϕ
�
: ð10Þ

The ϕ-independent term increases the matched envelope
radius by ξsc

2ν, i.e., the betatron amplitude function is
increased by a factor of 1þ ξsc=ν. Substituting R ¼ 1þ
ξsc=ð2νÞ þ r into (7), we have

̈rþ ð4ν2 − 4νξscÞr ≈ 2νξsc
X∞
n¼1

qn cosðnϕþ χnÞ:

The envelope tune is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ν2 − 4νξsc

p
and the harmonics in

the right-hand side are the driving terms. When ξsc ≪ ν, the
envelope tune is 2ν − ξsc. For an accelerator without
quadrupole field error, the envelope harmonics n is an
integer multiple of the accelerator superperiod. These
envelope harmonics are called systematic resonances.
Accelerators are normally designed to avoid these system-
atic stop bands.
In the presence of quadrupole error ΔkðsÞ, the beta-beat

and betatron phase perturbation will appear. The additional
stop bands are called random stop bands. The beta-beat due
to the quadrupole errors is [3]

Δβ
β

¼ −
ν0
2

X
p

jp
ν20 − ðp=2Þ2 e

jpϕ;

jp ¼ 1

2π

I
Δkβe−jpϕds:

The corresponding phase advance perturbation is

Δϕ ¼ 1

ν0
Δ
�Z

s

0

ds
β

�
¼ ν0

2

X
p

jp
ν20 − ðp=2Þ2

1

jp
ðejpϕ − 1Þ:

Thus the perturbation of the envelope stop band harmonics
of Eq. (10) is

Δqn ¼ −
2n
C

I
sinðnϕþ χnÞΔϕds

¼ nν
2C

X
p

�
jp

ν2 − ðp=2Þ2
1

p

×
I

ðejðnϕþχnÞ − e−jðnϕþχnÞÞðejpϕ − 1Þds
�
:

Equation (10) can be used to calculate stop band
harmonics arising from nonuniform spatial distribution
of betatron phase advance. The effect of beta-beating

and phase advance shift are linear with quadrupole errors.
When the quadrupole field perturbation is small, the
strength of each random envelope stop band harmonics
is linearly proportional to the quadrupole perturbation [34].
Figure 4 shows the linearity of the betatron tune shifts

and the dominating harmonics with the quadrupole errors.
The quadrupole errors are defined by scaling a particular set
of relative quadrupole errors, where one unit of scaling
factor corresponds to 0.1% rms relative quadrupole errors
with cutoff at three rms value. The red bar in Fig. 5 shows a
set of the quadrupole errors of all 36 quadrupoles along
the ring.

B. Emittance growth

With the random quadrupole error, we can calculate its
effect on emittance growth through multiparticle tracking.
The emittance growth can be categorized into two phases.
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The first phase is an emittance leap in the first few turns
during injection. This is caused by beam filamentation due
to the mismatched betatron functions or the matched
envelope radii. Due to the space charge force, the actual
beta function mismatches with the original ring beta
function. Higher space charge perveance causes bigger
beta function mismatch therefore bigger emittance leap at
the beginning. This part of emittance growth can be
reduced by tweaking the beta functions of the injection
beam radii to match the perturbed ones.
The second phase of emittance growth is caused by

the envelope dynamics. The perturbation and the driving
source of envelope resonance are proportional to the
linear space charge parameter and are also proportional
to the quadrupole error. Therefore, the emittance growth
rate, defined as the ratio of the final emittance and
the initial emittance over a certain period, depends on
the linear space charge parameter and the quadrupole
error.
We carry out systematic simulation to study the effect of

the emittance growth with different line densities and
quadrupole errors. The lattice chosen is the same FODO
lattice with 18 superperiods, with the bare tune designed at
ðνx; νzÞ ¼ ð2.6; 2.9Þ. Therefore this lattice will encounter
envelope resonance in the horizontal plane when the linear
space charge parameter reaches ξsc ¼ 0.2. The injected
beam is matched with the unperturbed beta functions with
no space charge force. The injection process takes 30 turns
with increasing space charge kick. The initial beam

emittance is ϵx ¼ ϵz ¼ 1 μm.We track 5000 macroparticles
for 1000 turns.
The emittance growth vs line density and quadrupole

error scaling factor in phases 1 and 2 are shown in Figs. 6(a)
and 6(b). Here the quadrupole error scaling factor 1.0
corresponds to rms error of 0.1% to all FODO cell
quadrupoles. By checking the color scale horizontally
we find that, during the injection process (phase one),
emittance growth depends on the space charge line density
and is less sensitive to the quadrupole errors. The emittance
growth during the storage or acceleration depends sensi-
tively on quadrupole field error.
The number of survival particles is shown in Fig. 6(c).

Few particles are lost if the line density is larger than
N ¼ 1.6 × 109 m−1. In phase two, the emittance growth is
significant when the quadrupole error and the line density
are large enough. If the quadrupole errors are controlled
small, the emittance growth is less. Therefore well-
controlled quadrupole error helps the reduction of the
emittance growth.
Around N ¼ 0.1 × 109 m−1 and N ¼ 0.6 × 109 m−1 at

high quadrupole errors, there is particle loss. This is due to
the emittance growth caused by the envelope resonance. At
these two line densities, the linear space charge tune shift
parameter pushes the envelope tune to an integer or the
envelope resonance.
The space charge tune shift parameters with different line

densities and quadrupole errors at turn 30 and 1000 are
plotted in Figs. 6(d) and 6(e), obtained from Eq. (4). Note
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that the linear space charge tune shift parameter is linear at
low line density and will saturate when the line density is of
the order ∼109 because the filamentation becomes very
important during the injection process.
At one density there are many points plotted for different

quadrupole errors. In Fig. 6(e) when the emittance grows
more the tune shift is reduced. This is the reason that the
curve smears. In particular the envelope resonance induced
particle loss makes the spikes around N ¼ 0.1 × 109 m−1

and N ¼ 0.6 × 109 m−1.

V. SPACE CHARGE ALLEVIATION AND
COMPENSATION

From the perspective of beam dynamics there are some
principles to minimize the space charge effects, extend the
intensity limitation and minimize emittance growth.

A. Effect of ring circumference and betatron tunes

Since the linear space charge parameter is proportional to
the space charge perveance and the ring circumference, and
inverse proportional to the original beam emittance, a
smaller ring with larger beam emittance can accommodate
higher beam intensity.
The Laslett tune shift pushes the envelope tune down-

ward. Before it hits an integer, there are rooms for tune
shift. The rule is to adjust the bare tune so that it can
accommodate more tune shift, i.e., more beam intensity. An
ideal tune is 2ν0 just below an integer stop band, so that the
envelope tune at 2ν0 − ξsc will not encounter the next
integer harmonic. Figure 3(c) shows the envelope tune with
different line densities when the νx bare tune is raised to
2.85. The line density can reach as much as N ¼ 3 ×
108 m−1 before the envelope tune hit an integer. This is
much better than the case in Fig. 3(a), in which case the
bare tune is νx ¼ 2.6.
Figure 6(f) shows the same thing as Fig. 6(b), except

the horizontal tune is shifted from 2.6 to 2.8. Compared
to Fig. 6(b), the envelope resonance around N ¼ 0.1 ×
109 m−1 and N ¼ 0.6 × 109 m−1 disappears and a weaker
resonance exists around N ¼ 0.3 × 109 m−1. Furthermore,
there is no loss in the first 1000 turns.
Another consideration about the betatron tune is to

avoid the systematic space charge resonances [35]. An
ideal betatron tune is below the resonance line because
the space charge shifts the tune lower. In our lattice
example with 18 superperiods, the systematic fourth and
sixth order resonances are νx ¼ νz ¼ 4.5 and νx ¼ νz ¼ 3
respectively. The bare tune has better to be either below
4.5 and above 3; or simply below 3 in our simulation
example.

B. Effect of injection rate

It is possible to shift the envelope tune across the
envelope resonance. One way is to make the injection

process faster. If the beam accumulates faster, the time for
staying on the resonance will be shorter. Less particles
will be trapped in the resonance therefore the less loss
will be expected. By inspecting the FFT spectra with
different injection turns shown in Fig. 7(a) we note that
the envelope tune can go through the envelope stop band.
In this case the injected line density is kept
N ¼ 2 × 108 m−1. Figure 7(b) shows the FFT spectrum
peak distributions and the particle survival rate vs the
number of injection turns. When the injection turn
number is less than 7, the envelope tune can go through
the stop band and more particles will survive.

C. Effect of quadrupole errors

The other way to tolerate a larger space charge tune shift
is to reduce the strength of the random half-integer stop
bands. The stop band integral can be reduced by decreasing
the quadrupole errors.
Typical sources of quadrupole error are manufacturing

error, quadrupole power supply error, misalignment of
sextupoles, etc. The quadrupole error can be reduced by
quality magnet fabrication and the orbit control and align-
ment. Figure 8 shows the envelope tune peaks and the
particle survival rate with different quadrupole errors.
When the quadrupole error is less then ΔK1L ¼
0.004 m−1 the envelope tune can across the resonance in
our simulation example.
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D. Stop band harmonics correction by SVD

A set of trim quadrupoles can be excited to minimize the
driving term in Eq. (8). For a given harmonic n, one needs

to compensate the amplitude qn and phase χn, i.e., each
harmonic requires two trim quadrupoles to correct its
amplitude and phase.
There were a few effective beta-beat correction methods

in the literature [36]. For the space charge envelope stop
band correction, these methods will not work because the
beta-beat is most sensitive to the harmonics nearest to twice
of the betatron tunes, while the space charge effect is
sensitive to those integer envelope harmonic lower than
twice the bare betatron tune. A conventional way to correct
the stop band is to use the singular value decomposition
(SVD) method.
The envelope tune without space charge is 2ν0.

Therefore the dominant harmonics in our accelerator are
q5x, q6x, q5z, and q6z. In the present space charge, the
envelope tune is 2ν0 − ξsc. If the space charge perveance is
large enough, the envelope tune will be shifted down below
5 or even 4. A set of ten trim quadrupoles properly
distributed in the ring is used to compensate six variables
q5x, q6x, q5z, q6z, νx and νz. They can be assigned with a
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weight. First, we assume all equal weight. Figure 5 shows
the quadrupole strength changes. The maximum change
of quadrupole strength is less than 0.5% of the original
quadrupole integrated strength, which is about
K1L ¼ 0.1 m−1.
Figure 9(a) shows the harmonics and the tune before

and after correction. The fifth and sixth harmonics
are effectively reduced. Figure 9(b) shows the horizontal
and vertical beta-beat before and after the correction.
They are effectively reduced too. However, the result of
this SVD method is not good, as shown in Fig. 9(c), where
the effect of beta-beat correction on emittance growth
is compared. Note that the beta-beat correction may lead
to higher emittance growth due to a higher stop band
widths at lower harmonics. In our case, the linear space
charge parameters are −0.48, −1.10, and −1.29 for
N ¼ 2 × 108 m−1, 6 × 108 m−1, and 1 × 109 m−1, respec-
tively. When the linear space charge parameter is larger
enough to bring the envelope tune below 5, the fourth and
lower harmonics become very important. There is no more
benefit from quadrupole setting for the beta-beat correction.
The emittance even grows faster than before correction. To
ease the emittance growth for high density the lower order
harmonics correction must be considered.
The emittance leap in the first few turns is because of the

filamentation from the mismatched betatron functions
between the injected beam and the lattice perturbed by
space charge. Higher space charge perveance causes bigger
beta function mismatch therefore bigger emittance leap in
the beginning.

E. Beta-beat correction

Since the beta-beat is caused by the quadrupole error
along the ring, instead of stop band harmonics correction,
we can also target beta-beat measurement and correction
[36] so that the beta function is close to the ideal accelerator
lattice. We use 18 beam position monitors along the ring to
monitor beta functions and the weights of the betatron tunes
are 200 times larger than those of beta functions. We also
use ten trim quadrupoles for fair comparison with the
previous method. The results are shown in Fig. 9(e). All
stop band harmonics are effectively reduced as shown in
Fig. 9(d). The emittance growth is also slightly reduced as
shown in Fig. 9(f).

F. Stop band harmonics correction by other methods

Another approach is to use optimization algorithms [37]
to minimize the stop band harmonics [Eq. (10)] while
keeping the betatron tune the designed value. Since the
lower harmonics near 2ν − ξsc are important to space
charge envelope dynamics, we target harmonics the third,
fourth, and fifth harmonics in our accelerator model. In this
case, we use 14 trim quadrupoles. The stop band harmonics
and beta-beating before and after correction are shown in

Figs. 9(g) and 9(h). Note that the emittance growth at
N ¼ 2 × 109 m−1 has also been reduced to the value of a
perfect accelerator, as shown in Fig. 9(i).

VI. CONCLUSION

This paper studies the space charge envelope dynamics
by using and developing an efficient multiparticle tracking
technique. Our tracking code can read accelerator design
code and carry out analysis on space charge effects. With
this tracking method, our numerical simulations demon-
strated the importance of the envelope dynamics on beam
stabilities.
The simulation code can also be used to study emittance

growth due to the systematic fourth and sixth order space
charge resonances. They can be avoided by carefully
choosing the bare betatron tunes.
The next important space charge effect is the envelope

resonances or the half-integer stop bands. We carry out a
systematic study on the envelope resonance by multi-
particle simulation. Our numerical simulations show good
agreement with the KV-Sacherer-Lapostolle envelope
equation. We carry out a systematic study on the emittance
growth for different space charge perveance and quadru-
pole errors. The envelope tune should avoid the half-integer
stop band to avoid the envelope resonance. A careful choice
of the betatron tune will minimize emittance growth for
space charge dominated beams.
Furthermore, we study the envelope resonance correc-

tion methods. We note that the stop band correction method
at resonance near 2ν − ξsc is the most effective method to
reduce the emittance growth and beam loss. Although there
are no successful experiments on stop band correction for
the space charge envelope dynamics, our study can renew
this effort on the space charge envelope stop band
correction.

ACKNOWLEDGMENTS

The authors thank Dr. Bill Ng for constructive discus-
sions. This work is supported in part by grants from the
U.S. Department of Energy under Contract No. DE-FG02-
12ER41800, and the National Science Foundation (NSF)
No. PHY-1205431.

[1] See, e.g., Space Charge Dominated Beams and Applica-
tions of High Brightness Beams, AIP Conf. Proc. No. 377
(AIP, New York, 1995).

[2] L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl,
P. Forck, P. Gerhard, I. Hofmann, M. Kaiser, M. Maier,
S. Mickat, T. Milosic, D. Jeon, and D. Uriot, Phys. Rev.
Lett. 102, 234801 (2009).

[3] S. Y. Lee, Accelerator Physics, 3rd ed. (World Scientific,
Singapore, 2011).

HUNG-CHUN CHAO AND S. Y. LEE Phys. Rev. ST Accel. Beams 18, 024202 (2015)

024202-10

http://dx.doi.org/10.1103/PhysRevLett.102.234801
http://dx.doi.org/10.1103/PhysRevLett.102.234801


[4] X. Huang, S. Y. Lee, K. Y. Ng, and Y. Su, Phys. Rev. ST
Accel. Beams 9, 014202 (2006).

[5] S. Y. Lee, Phys. Rev. Lett. 97, 104801 (2006).
[6] K. Crandall, in Linear Accelerator and Beam Optics Codes

(AIP Publishing, New York, 1988), Vol. 177, pp. 29–36.
[7] J. Billen, Los Alamos National Laboratory Report No. LA-

UR-98-4478, 2001.
[8] J. A. Holmes, ICFA Beam Dynamics Newsletter (2003),

100, http://icfa‑usa.jlab.org/archive/newsletter/icfa_bd_
nl_30.pdf.

[9] D. P. Grote, A. Friedman, I. Haber, and S. Yu, Fusion Eng.
Des. 32–33, 193 (1996).

[10] H. Zhang and M. Berz, Nucl. Instrum. Methods Phys. Res.,
Sect. A 645, 338 (2011).

[11] M. Berz and K. Makino, MSU Technical Report No.
MSUHEP-060803, 2006.

[12] I. Hofmann, G. Franchetti, J. Qiang, R. Ryne, F. Gerigk, D.
Jeon, and N. Pichoff, in Proceedings of the 8th European
Particle Accelerator Conference, Paris, 2002 (EPS-IGA
and CERN, Geneva, 2002).

[13] R. A. Kishek, S. Bernal, C. L. Bohn, D. Grote, I. Haber, H.
Li, P. G. OShea, M. Reiser, and M. Walter, Phys. Plasmas
10, 2016 (2003).

[14] S. Cousineau, S. Y. Lee, J. A. Holmes, V. Danilov, and A.
Fedotov, Phys. Rev. ST Accel. Beams 6, 034205 (2003).

[15] I. M. Kapchinsky and V. V. Vladimirsky, in Proceedings of
the International Conference on High Energy Accelerators
and Instrumentation ,CERN Scientific I (CERN, Geneva,
1959), pp. 274–288.

[16] P. M. Lapostolle, IEEE Trans. Nucl. Sci. 18, 1101 (1971).
[17] F. J. Sacherer, IEEE Trans. Nucl. Sci. 18, 1105 (1971).
[18] J. M. Lagniel, Nucl. Instrum. Methods Phys. Res., Sect. A

345, 405 (1994).
[19] J. M. Lagniel, Nucl. Instrum. Methods Phys. Res., Sect. A

345, 46 (1994).
[20] S. Kheifets, PETRA Note No. 119, 1976.
[21] Y. Sato, J. Holmes, S. Y. Lee, and R. Macek, Phys. Rev. ST

Accel. Beams 11, 024201 (2008).
[22] M. A. Plum,D. H. Fitzgerald,D. Johnson, J. Langenbrunner,

R. J.Macek, F.Merrill, P.Morton,B. Prichard,O. Sander,M.
Shulze, H. A. Thiessen, T. S. Wang, and C. A. Wilkinson,
in Proceedings of the Particle Accelerator Conference,

Vancouver, BC, Canada, 1997 (IEEE, New York, 1997),
p. 1611.

[23] M. A. Plum, D. H. Fitzgerald, J. Langenbrunner, R. J.
Macek, F. E.Merrill, F. Neri, H. A. Thiessen, P. L.Walstrom,
J. E. Griffin, K. Y. Ng, Z. B. Qian, D. Wildman, and B. A.
Prichard, Phys. Rev. ST Accel. Beams 2, 064201 (1999).

[24] R. J. Macek, S. Assadi, J. M. Byrd, C. E. Deibele, S. D.
Henderson, S. Y. Lee, R. C. McCrady, M. F. T. Pivi, M. A.
Plum, S. B. Walbridge, and T. J. Zaugg, J. Appl. Phys. 102,
124904 (2007).

[25] G. Franchetti, I. Hofmann, and S. Machida, in Proceedings
of the ICAP, 2006 (Proceedings of ICAP, Chamonix-Mont-
Blanc, 2006), p. 65.

[26] M. Reiser, Theory and Design of Charged Particle Beams
(John Wiley & Sons, New York, 2008).

[27] K. Y. Ng, Fermilab Technical Memo No. FERMILAB-
TM-2331-AD, 2007.

[28] Y. Luo, in Proceedings of the International Particle
Accelerator Conference, Kyoto, Japan (ICR, Kyoto,
2010), p. 1907.

[29] P. Lapostolle, A. Lombardi, E. Tanke, S. Valero, R.
Garnett, and T. Wangler, Nucl. Instrum. Methods Phys.
Res., Sect. A 379, 21 (1996).

[30] A. W. Chao, in AIP Conf. Proc. 127, 201 (1985).
[31] K. Y. Ng, Fermilab Technical Memo No. FERMILAB-

TM-2241-AD, 2004.
[32] A. Riabko, M. Ellison, X. Kang, S. Y. Lee, D. Li,

J. Y. Liu, X. Pei, and L. Wang, Phys. Rev. E 51, 3529
(1995).

[33] S. Cousineau, J. Holmes, J. Galambos, A. Fedotov, J. Wei,
and R. Macek, Phys. Rev. ST Accel. Beams 6, 074202
(2003).

[34] X. Huang and S. Y. Lee, Fermilab Technical Memo
No. FERMILAB-TM-2327-AD, 2005.

[35] X. Pang, F. Wang, X. Wang, S. Y. Lee, and K. Y. Ng,
Fermilab Technical Memo No. FERMILAB-TM-2395-
AD, 2007.

[36] X. Shen, S. Y. Lee, M. Bai, S. White, G. Robert-
Demolaize, Y. Luo, A. Marusic, and R. Tomás, Phys.
Rev. ST Accel. Beams 16, 111001 (2013).

[37] S. G. Johnson, The NLopt nonlinear-optimization package,
http://ab‑initio.mit.edu/nlopt.

SIMULATIONS OF BEAM ENVELOPE DYNAMICS IN … Phys. Rev. ST Accel. Beams 18, 024202 (2015)

024202-11

http://dx.doi.org/10.1103/PhysRevSTAB.9.014202
http://dx.doi.org/10.1103/PhysRevSTAB.9.014202
http://dx.doi.org/10.1103/PhysRevLett.97.104801
http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_30.pdf
http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_30.pdf
http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_30.pdf
http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_30.pdf
http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_30.pdf
http://dx.doi.org/10.1016/S0920-3796(96)00469-3
http://dx.doi.org/10.1016/S0920-3796(96)00469-3
http://dx.doi.org/10.1016/j.nima.2011.01.053
http://dx.doi.org/10.1016/j.nima.2011.01.053
http://dx.doi.org/10.1063/1.1558291
http://dx.doi.org/10.1063/1.1558291
http://dx.doi.org/10.1103/PhysRevSTAB.6.034205
http://dx.doi.org/10.1109/TNS.1971.4326292
http://dx.doi.org/10.1109/TNS.1971.4326293
http://dx.doi.org/10.1016/0168-9002(94)90490-1
http://dx.doi.org/10.1016/0168-9002(94)90490-1
http://dx.doi.org/10.1016/0168-9002(94)90970-9
http://dx.doi.org/10.1016/0168-9002(94)90970-9
http://dx.doi.org/10.1103/PhysRevSTAB.11.024201
http://dx.doi.org/10.1103/PhysRevSTAB.11.024201
http://dx.doi.org/10.1103/PhysRevSTAB.2.064201
http://dx.doi.org/10.1063/1.2825624
http://dx.doi.org/10.1063/1.2825624
http://dx.doi.org/10.1016/0168-9002(96)00427-5
http://dx.doi.org/10.1016/0168-9002(96)00427-5
http://dx.doi.org/10.1063/1.35187
http://dx.doi.org/10.1103/PhysRevE.51.3529
http://dx.doi.org/10.1103/PhysRevE.51.3529
http://dx.doi.org/10.1103/PhysRevSTAB.6.074202
http://dx.doi.org/10.1103/PhysRevSTAB.6.074202
http://dx.doi.org/10.1103/PhysRevSTAB.16.111001
http://dx.doi.org/10.1103/PhysRevSTAB.16.111001
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

