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This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a
rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary
wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams
are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.
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I. INTRODUCTION

The longitudinal space charge (LSC) impedances are
important factors that should be taken into account in the
design and operation of modern particle accelerators,
especially the ones with low energy and high beam
intensities, which are prone to microwave instabilities
induced by the LSC fields [1,2]. This is also important
for the free-electron lasers (FELs), where the electron’s
energy is up to a few GeV but its peak current is in the order
of kA [3]. Strong microbunching of the order of microm-
eters has been recently observed [4] in Linac Coherent
Light Source (LCLS) [5] at SLAC National Accelerator
Laboratory (SLAC). On the other hand, the LSC, as a
positive factor, increases the current modulation and can be
used as an amplifier for FEL [6]. Various LSC field models
have been proposed and studied extensively by different
methods in the existing literature, such as Refs. [7–22]. The
LSC impedances in the entire wavelength spectrum of a
beam, in free space [8] and inside a round chamber
[13–16], have been intensively studied. The LSC imped-
ance of a beam inside a round chamber in the long-
wavelength limit is also well known [17–21].
In many accelerators, the configurations of the real beam-

chamber system can be simplified as a field model consist-
ing of a round beam moving inside a rectangular chamber.
When the aspect ratio of the cross section of the rectangular
chamber is large, it can be simplified further as a pair of
parallel plates [23]. If the beam has longitudinal density
modulation, due to mismatch of the cross-sectional shapes
between the beam and chamber, the exact closed-form

solutions to the three-dimensional (3D) space charge fields
and the corresponding LSC impedances of the above two
cases cannot be obtained by the method of separation of
variables. Until now, few works were carried out for
obtaining the LSC impedances in the entire wavelength
spectrum of the field models in a rectangular chamber and
between a pair of parallel plates. Though Ref. [7] used the
method of conformal mapping and Faraday’s law applied to
a rectangular integral loop to derive the analytical LSC fields
and impedances of a round beam in rectangular chamber, it
neglected the 3D field effect when the density perturbation
wavelength is small. Hence, this method and results are only
valid in the long-wavelength limit and are not appropriate for
the study of microwave or microbunching instabilities. Since
in most accelerators the ratios of the transverse chamber
dimensions to the beam diameters are large, Ref. [12]
provides the approximate solutions to the field models of
a round beam with planar and rectangular boundary con-
ditions, assuming the 3D image charge fields of the round
beam can be approximated by the image fields of a line
charge. The resulting LSC fields and impedances are valid
for the whole perturbation wavelength spectrum. When the
ratio of the beam diameter to the transverse chamber
dimension approaches unity, the relative errors of the
approximated LSC impedances will become larger. In
addition, the LSC field of a round beam between parallel
plates has been studied in Ref. [22], but the results are only
valid in the long-wavelength limit.
This paper proposes an image charge method to calculate

the LSC impedances of a round beam between parallel
plates and inside a rectangular chamber. It is well known
that the solutions to the LSC fields of a round transversely
uniform beam with sinusoidal line charge density modu-
lation in free space are available in a closed form [8]. If the
beam were placed inside a rectangular chamber or between
parallel plates, due to planar symmetry and mirroring, the
associated total image charge fields of the infinite chain
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(parallel plates model) or grid (rectangular chamber model)
of the image beams can be calculated by simple summa-
tion. Adding the self-fields of the round beam in free space,
the total LSC fields and impedances of the two models in
discussion can be obtained. Through case study, we found
the calculated LSC fields and impedances converge fairly
quickly with the number of image beams. Usually only a
finite and small number of image beams are needed to
obtain the LSC fields and impedances with relative errors
less than 0.1%. The resolution of the calculated LSC fields
and impedances depends on the number of image beams
used in the calculation, rather than the ratio of the beam
diameter to the transverse chamber dimension, as was the
case in Ref. [12].
The image chargemethod is one of the popularmethods in

the study of the charged particle field, especially for solving
the Poisson’s equation (i.e., Ref. [24]). In some literature, the
round beam is approximated by a line charge [12,20] in
calculation of the image charge field for simplicity. In this
paper, the exact image beams are included in the calculation
of the full-spectrum LSC impedance.
This paper is organized as follows. Section II briefly

introduces the wave equations describing the space charge
fields of the charged beam. Section III briefly introduces
the numerical calculation method for general geometries of
the beam and beam pipe. Section IV provides a short review
for the LSC fields and impedances of a round beam, in free
space and inside a round chamber, respectively. Sections V
and VI respectively calculate the LSC impedances of a
round beam, between parallel plates and inside a rectan-
gular chamber, using the image charge method.

II. WAVE EQUATIONS

The wave equation describing the electric field E is

∇2E − 1

c2
∂E
∂t ¼ ∇ρ

ε0
þ μ0

∂J
∂t ; ð1Þ

where ϵ0 ¼ 8.85 × 10−12 F=m and μ0 ¼ 4π × 10−7 N=A2

are the permittivity and permeability of free space, respec-
tively; c ¼ 1ffiffiffiffiffiffiffi

ε0μ0
p ¼ 3 × 108 m=s is the speed of light in free

space; ρ and J are the charge and the current densities,
respectively, they obey the following continuity equation:

∂ρ
∂t þ ~∇ · J ¼ 0: ð2Þ

Assuming that the beam is moving with a constant
longitudinal speed v ¼ βcẑ along the z axis, where β is the
relativistic speed, ẑ is the unit vector of the longitudinal
coordinate, then J can be expressed as J ¼ Jẑ. For a
perturbed beam, its volume charge density ρ and current
density J consist of unperturbed (dc) components and
perturbed higher order harmonic components. Since the
physics of the unperturbed components is trivial and does

not contribute to the LSC field, we only need to focus on
the physics associated with those higher order harmonic
components. We will study one particular harmonic com-
ponent with a frequency ω (or wave number k) in the rest of
this paper and omit the subscript k in the variables of fields,
density and current for simplicity. The single harmonic
component of the charge density, current density and beam
current can be expressed using the wave assumption:

ρðx; y; z; tÞ ¼ λzρ⊥ðx; yÞe−iωðt−z=vÞ; ð3aÞ

J ¼ ρv ¼ ẑβcλzρ⊥ðx; yÞe−iωðt−z=vÞ; ð3bÞ

I ¼ λzve−iωðt−z=vÞ ¼ Īe−iωðt−z=vÞ; ð3cÞ

where λz is the magnitude of the harmonic line charge
density, ρ⊥ is the transverse beam distribution function
normalized by

R
ρ⊥ðx; yÞdxdy ¼ 1. Wewill work with only

the z components of the vectors E, J and ∇. Hence, the
differentials of the longitudinal harmonic components of J
and ρ can be expressed as

μ0
∂Jz
∂t ¼ −iμ0ωvλzρ⊥e−iωðt−z

vÞ; ð4Þ

1

ε0

∂ρ
∂z ¼

iωλz
ε0v

ρ⊥e−iωðt−z=vÞ: ð5Þ

The z component of the harmonic electric field can be
written as

Ezðx; y; z; tÞ ¼ ẑEzðk; x; yÞe−iωðt−z=vÞ: ð6Þ

Substituting Eqs. (4)–(6) into Eq. (1), the amplitude of
the longitudinal electric field Ezðk; x; yÞ satisfies the
following equation:

�
∇2⊥ − k2

γ2

�
Ez ¼ i

kλz
ε0γ

2
ρ⊥ðx; yÞ; ð7Þ

where ∇2⊥¼ ∂2
∂x2þ ∂2

∂y2, k ¼ ω
v ¼ ω

βc and
1
γ2
¼ 1 − v2

c2 ¼ 1 − β2.

The LSC impedance per unit length of an accelerator
with circumference L at an arbitrary transverse coordinate
(x, y) is defined as

Z∥ðk; x; yÞ
L

¼ −Ezðk; x; yÞ
Ī

¼ −Ezðk; x; yÞ
λzβc

: ð8Þ

III. FEM SIMULATION FOR
ARBITRARY GEOMETRY

Equation (7) with arbitrary cross-sectional geometries of
the beam and beam pipe can be solved numerically
using the finite element method (FEM) [25]. The FEM
equation is
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�
Mþ k2

γ2
B

�
Ez ¼ Q; ð9Þ

with

Me
m;n ¼

Z Z
Se

�∂Nm

∂x
∂Nn

∂x þ ∂Nm

∂y
∂Nn

∂y
�
dxdy; ð10Þ

Be
m;n ¼

Z Z
Se
NmNndxdy; ð11Þ

Qe
m ¼ −i kqm

ε0γ
2
: ð12Þ

Here M is the stiffness matrix with element Me
m;n (m and n

are the node indexes of the finite element). Se is the
integration boundary of the finite element. Nðx; yÞ is called
the shape function (similar to the weighting factor) in FEM,
by which the fields at a field point Pðx; yÞ within an
element can be interpolated by the fields of its neighboring
nodes. It is related to the coordinates of the field point
Pðx; yÞ and the nodes of the element region. qm is the
charge at the node m, which is proportional to λz. The
current I has the similar dependence on λz. Therefore,
the LSC impedance given by Eq. (8) is independent of λz
as expected. The Ez of Eq. (9) at all nodes satisfying
Eqs. (9)–(12) and the boundary condition Ez ¼ 0 on the
chamber wall can be solved numerically. Then the corre-
sponding longitudinal space charge impedances can be
calculated using Eq. (8).

IV. IN FREE SPACE AND INSIDE
A ROUND CHAMBER

For an infinitely long round beam with uniform trans-
verse density within beam radius a, its transverse density
distribution function is

ρ⊥ðrÞ ¼
� 1

πa2 ðr ≤ aÞ
0 ðr > aÞ; ð13Þ

where r2 ¼ x2 þ y2. The general solution of Eq. (7) with
the above beam distribution is [26]

EZðk; rÞ ¼
8<
:

A1I0
�
kr
γ

�
þ A2K0

�
kr
γ

�
r > a;

A3I0
�
kr
γ

�
− i λz

kπa2ε0
r ≤ a;

ð14Þ

where I0ðxÞ andK0ðxÞ are the zeroth order modified Bessel
functions of the first and second kinds, respectively. In free
space, the field strength at r → ∞ should be finite.
Therefore A1 ¼ 0. The continuity conditions of the field
and its derivative at r ¼ a give [8]

Efree
z ðk; rÞ ¼

8<
:

−i λz
kπa2ε0

h
1 − ka

γ K1

�
ka
γ

�
I0
�
kr
γ

�i
ðr ≤ aÞ;

−i λz
kπa2ε0

h
ka
γ K0

�
kr
γ

�
I1
�
ka
γ

�i
ðr > aÞ;

ð15Þ

where I1ðxÞ and K1ðxÞ are the first order modified
Bessel functions of the first and second kinds, respectively.
The superscript “free” on the left hand stands for “free

space.” With the property of I0ð0Þ ¼ 1, Eqs. (8) and (15)
yield the LSC field and impedance per unit length on the
beam axis (r ¼ 0) as

Efree
z ðk; 0Þ ¼ −i λz

kπa2ε0

�
1 − ka

γ
K1

�
ka
γ

�	
; ð16Þ

Zfree
∥ ðk; 0Þ

L
¼ i

Z0

kπa2β

�
1 − ka

γ
K1

�
ka
γ

�	
; ð17Þ

where Z0 ¼ 1=ε0c ≈ 377 Ohms is the impedance of free
space. Since the longitudinal electric field depends on the
radial position, the LSC impedance also has the same
dependence. The LSC impedance per unit length for
arbitrary r within the beam (r < a) is given by

Zfree
∥ ðk; rÞ
L

¼ i
Z0

kπa2β

�
1 − ka

γ
K1

�
ka
γ

�
I0

�
kr
γ

�	
: ð18Þ

Inside a round beam chamber with inner wall radius rw,
the continuity conditions at r ¼ a and the boundary
condition on the chamber surface Ezðr ¼ rwÞ ¼ 0 deter-
mine the coefficients A1, A2 and A3 in Eq. (14). Therefore
the final solution of the longitudinal electric field is

Erd
z ðk; rÞ ¼

8>><
>>:

−i λz
kπa2ε0

n
1 − ka

γ

I0ðkrγ Þ
I0ðkrwγ Þ

h
K1

�
ka
γ

�
I0
�
krw
γ

�
þ K0

�
krw
γ

�
I1
�
ka
γ

�io
ðr ≤ aÞ;

−i λz
kπa2ε0

ka
γ I1

�
ka
γ

�h
K0

�
kr
γ

�
− K0ðkrwγ Þ

I0ðkrwγ Þ I0
�
kr
γ

�i
ða < r ≤ rwÞ:

ð19Þ
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The superscript “rd” on the left-hand side stands for “round chamber.” The above equation gives the well-known LSC
impedance per unit length of a round uniform beam inside a round beam chamber [13–16]

Zrd
∥ ðk; rÞ
L

¼ i
Z0

kπa2β

�
1 − ka

γ

I0ðkrγ Þ
I0ðkrwγ Þ

�
K1

�
ka
γ

�
I0

�
krw
γ

�
þ K0

�
krw
γ

�
I1

�
ka
γ

�	

: ð20Þ

Using the identity of hI0ðkr=γÞi ¼ 2I1ðka=γÞ=ðka=γÞ, the averaged LSC impedance over the beam cross section per unit
length in free space and inside a round chamber can be derived easily from Eqs. (18) and (20) as

Z̄free
∥ ðkÞ
L

¼ i
Z0

kπa2β

�
1 − 2K1

�
ka
γ

�
I1

�
ka
γ

�	
; ð21Þ

Z̄rd
∥ ðkÞ
L

¼ i
Z0

kπa2β

�
1 − 2

I1ðkaγ Þ
I0ðkrwγ Þ

�
K1

�
ka
γ

�
I0

�
krw
γ

�
þ K0

�
krw
γ

�
I1

�
ka
γ

�	

: ð22Þ

In the long-wavelength limit [γ=ðkaÞ ≫ 1], the on-axis
LSC impedance of a round beam in free space is

Zfree;LW
∥ ðk; 0Þ

L
¼ i

kZ0

2πβγ2

�
1

2
− C − ln

�
ka
2γ

�	
; ð23Þ

whereC ¼ 0.577216 is the Euler’s constant, the superscript
“LW” stands for the “long-wavelength limit.” The LSC
impedance of a round beam centered inside a round beam
pipe in the long-wavelength limit is [17–21]

Zrd;LW
∥ ðkÞ
L

¼ i
Z0k
2πβγ2

�
C1 þ ln

�
rw
a

�	
; ð24Þ

where C1 ¼ 1=2 and 1=4 for the on-axis and average
impedance, respectively. Figure 1 shows the comparison of

the LSC impedance of a round beam in free space
[Eqs. (18) and (21)] and inside a round chamber
[Eqs. (20) and (22)]. Both the on-axis and average
impedance are plotted for the purpose of comparison.
The shielding of the beam chamber becomes more effective
when γ=ðkaÞ > 1. The formula of LSC impedance in the
long-wavelength limit [(Eq. (24)] works well only when
γ=ðkaÞ ≫ 1. Therefore, derivation of a full-spectrum ana-
lytical LSC impedance formula becomes necessary and
important, which is one of the motivations of this paper.

V. BETWEEN PARALLEL PLATES

Figure 2 shows the cross sections of a source beam
between a pair of parallel plates and its images. We apply
the image method by disregarding the boundary at each
plate in a stepwise fashion to create the image map.
Assuming the source beam has a line charge density of
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Free space, on-axis
Free space, average
Round pipe, on-axis
Round pipe, average
Round pipe, LW, on-axis
Round pipe, LW, average

FIG. 1. Comparison of the on-axis (solid lines) and average
(dashed lines) LSC impedances of a round beam in free space and
inside a round chamber. In the legend, “LW” stands for the long-
wavelength limit. The ratio of rw=a is 2 for this example.
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FIG. 2. Sequence of images of a source beam with vertical
offset between a pair of parallel plates.
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ΛðzÞ ¼ λz cosðkzÞ, the red and blue dots represent the
beams with line charge densities of ΛðzÞ and −ΛðzÞ,
respectively. The distances of the source beam axis to
the upper and lower plates are d and g, respectively. The full
separation between the two plates is h ¼ gþ d. If the
source beam axis is located on the median plane between
the two plates, then we have g ¼ d ¼ h=2.
Let us assume that the median plane of the parallel plate

has vertical coordinate y ¼ 0 and a source beam is located
at (0, yc), as shown in Fig. 2. The image beams have the
vertical coordinates of yimgðnÞ ¼ nhþ ð−1Þnyc and the
corresponding line charge densities amplitudes of
λz;imagðnÞ ¼ ð−1Þnλz; n ¼ 0;�1;�2…. The images with
the index of n > 0 and n < 0 represent the ones above and
below the parallel plates, respectively. The term with index
of n ¼ 0 corresponds to the original source beam. For a
round beam with uniform transverse density, its image
beams have the same density distribution as the source
beam as shown in Fig. 3. Note that the image beams within

an arbitrary chamber may not always have the same shape
as the source beam, for instance, the image beams within an
elliptical chamber.
The field at any field point is equal to the sum of all

image fields plus the self-field of the original source beam
in free space. For instance, the LSC field at position (x, y)
within the source beam is

Epp
z ðk; x; yÞ ¼

X∞
n¼−∞

ð−1ÞnEfree
z ðk; RnÞ; ð25Þ

where Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðyimgðnÞ − yÞ2

q
. The superscript “pp”

on the left hand of Eq. (25) stands for “parallel plates.” The
term with n ¼ 0 on the right-hand side of Eq. (25) is
contributed from the original source beam. Using Eqs. (8),
(15) and (25), we obtain the LSC impedance per unit length
at position (x, y) inside the beam as

Zpp
∥ ðk; x; yÞ

L
¼ i

Z0

kπa2β

�
1 − ka

γ
K1

�
ka
γ

�
I0

�
kR0

γ

�
þ ka

γ
I1

�
ka
γ

� X∞
n ¼ −∞
n ≠ 0

ð−1ÞnK0

�
kRn

γ

�	
: ð26Þ

Different from the free space case, the LSC field of a
round beam between parallel plates is not axisymmetric due
to the boundary shape. Therefore, the impedance is a
function of (x, y) instead of r exclusively.
Figure 4 shows an example of the calculated on-axis

impedance with different numbers of image beams. The full
height of the parallel plate is h ¼ 4a in this example. The
image beams affect the impedance mostly in the long-
wavelength regime where γ=ðkaÞ > 1. This clearly
explains why the shielding is effective only for the long
wavelength perturbations. The impedance with jnj ¼ 1 has
the smallest value because it includes only the first pair of
image beams whose line charge densities are opposite to

that of the original beam. On the other hand, the impedance
with jnj ¼ 2 has the maximum value. Similarly, jnj ¼ 3
gives the second smallest one and jnj ¼ 4 gives the second

n=2

n=1

n=0

n= -2

n= -1

FIG. 3. Sequence of images of an infinitely long and uniform
round beam centered between a pair of parallel plates. The image
beams (n ≠ 0) have the same shape and dimension as the source
beam (n ¼ 0).
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)

 

 

Free space
Parallel plate (h=4a) with various |n|
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FIG. 4. The effect of image bunches on the on-axis LSC
impedance of a round transversely uniform beam centered
between a parallel-plate chamber. The bunch has a radius of
a ¼ 5 mm. The full height of the parallel plate is
h ¼ 4a ¼ 20 mm. The family of black lines shows the calculated
impedances with different maximum index jnj of image beams in
Eq. (26) ranging from 1 to 20. The green line in the plot shows the
calculated impedance with jnj ¼ 20.
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largest one and so on. When jnj is large enough, the
variation of the impedance is negligible because the image
beams are far away from the source beam and the field
finally converges.
Figure 5 shows the variation of the on-axis LSC

impedance at γ=ðkaÞ ¼ 8 with the maximum index jnj
of image beams (h=a ¼ 4). The calculated impedance (blue
curve) oscillates at small jnj and converges to one value at
large jnj. The relative errors (red curve) in the plot are the
absolute values of the relative errors. The true errors
oscillate with jnj and have negative sign for odd numbers
of jnj. The absolute magnitudes of the relative errors decay
exponentially which implies that the field converges with
jnj quickly. The case of jnj ¼ 15 gives a relative error in the
order of magnitude of 10−4.
When the beam axis has vertical offsets with respect to

the chamber median plane (see Fig. 2), the on-axis LSC
impedance at long wavelength is slightly reduced as shown
in Fig. 6, assuming h ¼ 10a and the beam offsets range
from a to 4a. The beam offset only affects the long-
wavelength impedance for the same mechanism as the
shielding effect. When the beam axis shifts vertically from
the chamber median plane, one group of images with line
charge densities of −ΛðzÞ (with yimg > 0 in Fig. 2) moves
closer to the beam while another group of images with line
charge densities of −ΛðzÞ (with yimg < 0 in Fig. 2) moves
away from it, as shown in Fig. 2. The distance of the image
beams with line charge densities of ΛðzÞ to the source beam
does not change when the source beam is shifted. The net
effect from the redistribution of the image beams with line
charge densities of −ΛðzÞ is small due to the cancellations
of all the image beams. In general, the effect of beam offset

is negligible if the offset amplitude is small compared to the
aperture of beam pipe.
The LSC impedance of a round beam centered between

parallel plates in the long-wavelength limit can be derived
from Ref. [22] as
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FIG. 6. Effect of vertical beam axis offset (Δyc) on the on-axis
LSC impedance of a parallel-plate chamber with h ¼ 10a. The
relative impedance difference ΔZ∥ is normalized by the on-axis
LSC impedance Z∥0 with Δyc ¼ 0. The impedance at long
wavelength is slightly reduced when the beam axis has small
vertical offsets.
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FIG. 5. Convergence of the on-axis LSC impedance with the
maximum index of image beams for a parallel-plate chamber.
The bunch has a radius of a ¼ 5 mm and the full separation of the
parallel plate is h ¼ 4a ¼ 20 mm. This result corresponds to the
case γ=ðkaÞ ¼ 8 as shown in Fig. 4 where the image charge effect
is relatively larger.
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FIG. 7. Comparison of the average LSC impedances of a round
SIR beam with beam radius a ¼ 0.5 cm under different boundary
conditions and in different wavelength limit. The full height of
the parallel plates is 4.8 cm. In the legend, “Free space”, and
“Parallel plates” are boundary conditions; “LW limits” stands for
the long-wavelength limits; “(analysis)” and “(simulation)” stand
for the theoretical result and simulation (FEM) method, respec-
tively. The theoretical result is consistent with the simulation in
the entire wavelength spectrum.
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Zpp;LW
∥ ðkÞ

L
¼ i

Z0k
2πβγ2

�
C1 þ ln

�
2h
πa

�	
; ð27Þ

where C1 ¼ 1=2 for the on-axis impedance and C1 ¼ 1=4
for the average one, respectively. Figure 7 shows the
comparison of the average LSC impedances of a round
beam with beam radius a ¼ 0.5 cm under different boun-
dary conditions and in a different wavelength limit. We
used the 20 keV (β ≈ 0.0046, γ ≈ 1.0) coasting H2

þ beam
in the small isochronous ring (SIR) at Michigan State
University (MSU) [23] in this example. The circumference
of SIR is 6.58 m. The analysis agrees well with the
simulation in the entire wavelength spectrum; while the
impedance formula of the long-wavelength limit works
well only in the case of γ=ðkaÞ > 11.14 (with the charge
density perturbation wavelength 2π=k ¼ 35 cm in Fig. 7).

VI. INSIDE A RECTANGULAR CHAMBER

Consider an infinitely long, transversely uniform round
beam inside a rectangular conducting structure with full
width w and full height h. We assume the axes of the
rectangular chamber and the beam are located at (0, 0) and
(xc, yc), respectively. Figure 8 shows the image beams of a
source beam centered inside a rectangular chamber indi-
cated by the solid black rectangle. The red and blue dots
represent the beams with line charge densities of ΛðzÞ and
−ΛðzÞ, respectively.
Through planar symmetry and mirroring, we can deter-

mine the exact coordinates of images axes of a line beam
inside a rectangular chamber as

ximgðmÞ ¼ mwþ ð−1Þmxc;
yimgðnÞ ¼ nhþ ð−1Þnyc;

λz;imagðm; nÞ ¼ ð−1Þmþnλz; m ¼ n ¼ 0;�1; 2; 3…: ð28Þ

Herem and n represent the index of the image grid points
in horizontal and vertical directions, respectively. For
instance, the index m > 0 (m < 0) is for the images with
x > 0 (x < 0). The image with the index of m ¼ n ¼ 0 is
just the original source beam. Similar to the case of parallel-
plate chamber, the image beams of a round uniform beam
still keep the same distributions and beam radius as those of
the source beam, while their centers are given by Eq. (28).
Therefore, the LSC field at (x, y) within the source beam
inside a rectangular chamber is equal to the total LSC fields
of the source beam and its image beams in free space,

Erect
z ðk; x; yÞ ¼

X∞
m¼−∞

X∞
n¼−∞

ð−1ÞmþnEfree
z ðk; Rm;nÞ; ð29Þ

with Rm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðximgðmÞ − xÞ2 þ ðyimgðnÞ − yÞ2

q
. The

superscript “rect” on the left hand of the equation stands
for “rectangular chamber.” Note that the original source
beam effect is included with m ¼ n ¼ 0. Using Eqs. (8),
(15) and (29), we obtain the LSC impedance per unit length
at position (x, y) inside the beam as

Zrect
∥ ðk; x; yÞ

L
¼ i

Z0

kπa2β

�
1 − ka

γ
K1

�
ka
γ

�
I0

�
kR0;0

γ

�
þ ka

γ
I1

�
ka
γ

� Xm¼∞

m ¼ −∞
m ≠ 0

Xn¼∞

n ¼ −∞
n ≠ 0

ð−1ÞmþnK0

�
kRm;n

γ

�	
: ð30Þ

The LSC impedance per unit length of a round uniform
beam centered inside a rectangular chamber in the long-
wavelength limit is [7]

Zrect;LW
∥ ðkÞ

L
≈ i

Z0k
2πβγ2

�
C1 þ ln

�
2h
πa

tanh

�
πw
2h

�	

;

w
h
> 1;

ð31Þ

where C1 ¼ 1=2 for the on-axis impedance and C1 ¼ 1=4
for the average one, respectively. The above formula is a
good approximation for a rectangular chamber with
w=h > 1. When w=h is about 1, the exact but more
complicated formula [7] should be used.

FIG. 8. 2D grid of images of a source beam centered inside a
rectangular chamber.
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Figure 9 shows the comparison of the on-axis LSC
impedances obtained by the theoretical calculations and the
simulations using a finite element method (FEM) code. We
used the 20 keV SIR beam in this example. The cross
section of the SIR chamber is rectangular with w ¼
11.4 cm and h ¼ 4.8 cm. The maximum index of the
image beam used in the calculation is jmj ¼ jnj ¼ 10.
The on-axis LSC impedances of the beam with four
different beam radii are compared to each other. The
analytical results (solid lines) and FEM results (circles)
perfectly overlap each other demonstrating excellent agree-
ments in all cases in the entire wavelength spectrum.
However, the long-wavelength-limit formula significantly
overestimates the impedance at short wavelength as shown
by the dashed lines in Fig. 9. Therefore, it is essential to use
a more accurate full-spectrum LSC impedance formula in
the study of beam instability.
Figure 10 shows the shielding effect of a square chamber

with w ¼ h ¼ 4a; 6a; 8a;…16a. The shielding effect is
negligible at short wavelengths with γ=ka < 1.0, but it
becomes more noticeable at long wavelengths. For a fixed
beam radius, the shielding effect becomes weaker as the
chamber aperture is enlarged because the image beams are
farther away from the source beam.
Figure 11 shows the effect of beam offset on the on-axis

impedance in a square chamber with w ¼ h ¼ 10a. The
beam offset reduces the impedance and this reduction
depends on the wavelength as shown in Fig. 11(a) where
the vertical offset is zero. The beam offset effectively

reduces the impedance at a long-wavelength regime due to
the chamber shielding effect. Figure 11(b) presents a
particular wavelength with γ=ðkaÞ ¼ 5. The reduction of
the LSC impedance is small when the beam offset is much
smaller when compared to the aperture of the beam pipe.
However, the reduction of the impedance becomes more
pronounced when the beam offset increases because of the
shielding effect by the image beams, which roughly scales
as 1=r (r is the distance of the source beam axis to the
surface of beam pipe). The impedance is about 50% smaller
when the beam is close to the surface of the beam pipe as
shown in the figure.
Figure 12 compares the shielding effect on the on-axis

impedance between a round chamber (rw ¼ 2a), parallel
plates (h ¼ 4a) and rectangular chambers (h ¼ 4a,
w=h ¼ 1 and 2). The on-axis LSC impedance in free space
and inside a round chamber is calculated using Eqs. (17)
and (20) for r ¼ 0, respectively. The round chamber has
slightly stronger shielding than a square chamber resulting
in a smaller on-axis LSC impedance. It is about 6% (1%)
less than that of a round beam inside a square pipe when
the pipe radius is 2a (10a) at wavelength regime with
8 > γ=ðkaÞ > 2. When the aspect ratio of rectangular
chamber w=h is larger than 2, the shielding effect is very
close to that of a parallel-plate model. The impedance of a
parallel-plate model at long-wavelength regime is about
20% larger than that of the round-chamber model.
To compare the shielding effect in the long-wavelength

limit we can define the geometry factor g0 as

ZLW
∥ ðkÞ
L

¼ i
Z0k
2πβγ2

g0: ð32Þ
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FIG. 10. The shielding effect of a rectangular chamber on the
on-axis impedance. The round uniform beam has a radius of a,
the full widths and heights of the chamber are w ¼ h ¼ 4a, 6a,
8a, 10a, 12a, 14a and 16a, which correspond to the lower to
upper black lines as clearly shown on the right part of the plot.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

2π/k (m)

Z ||(M
Ω

)

 

 

a=5mm
a=10mm
a=15mm
a=20mm

FIG. 9. Comparison of the on-axis LSC impedances of a round
transversely uniform beam centered inside the SIR rectangular
chamber between analysis (solid lines) and FEM simulations
(solid dots). The LSC impedances predicted by the long-
wavelength-limit formula (dashed lines) are also shown for
comparison. The parameters used in the calculations are
w ¼ 11.4 cm, h ¼ 4.8 cm, the variable beam radii are a ¼ 0.5,
1.0, 1.5 and 2.0 cm in this study. The circumference of SIR is
6.58 m.
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Comparing Eqs. (24), (27) and (31) with the above
equation, we can get the geometry factor g0 of a trans-
versely uniform round beam centered inside the round
chamber, parallel plates and rectangular chamber as

g0 ¼

8>><
>>:

C1 þ lnðrwa Þ; roundchamber

C1 þ lnð2hπaÞ; parallel plates

C1 þ ln½2hπa tanhðπw2hÞ�; rectangular chamber; w
h > 1:

ð33Þ

where C1 ¼ 1=2 for the on-axis impedance and C1 ¼ 1=4
for the average one, respectively.

Our method can also give the LSC impedances
averaged over the beam cross section. Figure 13 shows
the average LSC impedance of the round beam with
four different boundary conditions: parallel plates,
square chamber, round chamber [Eq. (22)], and in free
space [Eq. (21)]. The same beam parameters and
normalization method are used as in Fig. 12, where
the normalized peak impedance in free space is set to 1.
The shielding effect on the average LSC impedances is
similar to the case of on-axis LSC impedances. The
average LSC impedance of the round beam is about
20% less than the on-axis one when 1 < γ=ðkaÞ < 8.0.
However, they are almost identical for high frequency
with γ=ðkaÞ < 1.0.
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FIG. 12. Comparison of the shielding effect on the on-axis
impedance between a round chamber (rw ¼ 2a), parallel plates
(h ¼ 2rw ¼ 4a) and a rectangular chamber (h ¼ 2rw) with the
ratio w=h ¼ 1, 2. The full height of the rectangular chamber h is
fixed and equal to the diameter of the round chamber.
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FIG. 13. Comparison of the shielding effect between the round,
square, and parallel-plate chambers on the average LSC imped-
ance. The same beam and chamber parameters in Fig. 12 are used
here. The square chamber has an aspect ratio of w=h ¼ 1.
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FIG. 11. The effect of beam offset (xc, yc) in a square chamber on the on-axis impedance. The impedance in the entire wavelength
spectrum with different horizontal offsets xc (yc ¼ 0) is shown in plot (a); and the impedance at one particular wavelength γ=ðkaÞ ¼ 5
for various (xc, yc) is shown in (b). The round uniform beam has a radius of a; the full width and height of the chamber are w ¼ h ¼ 10a.
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VII. CONCLUSIONS

The image charge method is employed in this paper to
provide analytical solutions to the full-spectrum LSC imped-
ances of a round uniform beam with line charge modulation
inside a rectangular chamber and between parallel plates,
respectively. Though the solutions consist of contributions
from an infinite number of image beams, due to the fast
convergence with the number of image beams, only a finite
and small number of image beams are needed to get a
satisfying resolution. Since the solutions to the image charge
fields induced by each constituent image beam are exact and
expressed in a closed form, the resolution of the total
calculated LSC fields and impedances is only dependent
on the number of image beams used in the calculation and is
insensitive to the ratios of transverse dimensions between the
chamber and beam. This is a general method applicable to
other beam distributions, such as Gaussian, rectangular and
elliptic beams. The calculated LSC impedances in our
analysis are valid in the full wavelength spectrum and at
arbitrary position within the beam. Moreover, the effect of
beam axis offset is also included in our analysis.
Our studies show that round chambers have a slightly

better shielding effect than square chambers. When the
aspect ratio of a rectangular chamber is larger than 2, the
shielding effect is very close to that of a pair of parallel plates.
The offset of beam axis slightly reduces the LSC impedance
when the offset is small compared to the aperture of beam
chamber. However, the reduction becomes significant when
the beam is close to the surface of beam chamber.
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