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Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and
can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the
integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on
drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various
integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate
both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in
quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently
data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
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I. INTRODUCTION

The origin of nucleon spin remains an enduring puzzle in
nuclear physics [1], and elucidating this puzzle is the
principal focus of polarized beam experiments at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory [2–4]. Because statistical uncertainties
scale inversely with the square of the polarization [5],
optimizing the polarization is essential for the efficient use
of experimental resources.
Computer simulations serve an important role in under-

standing and improving beam polarization. For example,
the invariant spin field (ISF) places an important upper
bound on the maximum attainable polarization of a stored
beam [6,7], and hence a knowledge of the ISF and how it
varies with the machine optics is essential to optimizing the
beam polarization.
Another motivation for spin-orbit tracking simulations—

especially of high accuracy—derives from proposals to use
storage rings in searches for a permanent electric dipole
moment (EDM) in protons and deuterons [8]. Assessing
the sensitivity of such experiments will require long-term
spin-orbit simulations of unprecedented accuracy [9]. Other

projects that can benefit from similar studies include MEIC
[10,11], the LHeC [12,13], and the muon g − 2 experiment
[14,15]. In addition, accurate spin-orbit tracking enables
one to perform careful tests of mathematical concepts
related to spin dynamics [16].
In spite of the manifest need for accurate simulations of

spin dynamics, relatively few efforts have been made to
develop codes that include spin tracking. In the context of
hadron machines, which is the context of this paper, spin-
orbit tracking codes for large storage rings and accelerators
first emerged in the 1990s in response to the needs of
specific projects. Méot added spin tracking to ZGOUBI in
1992 [17,18]. Hoffstätter and Berz did the same for COSY-
INFINITY in 1993 [19]. Luccio developed SPINK in the
mid-1990s to support the goal of accelerating polarized
protons in RHIC [20,21]. Hoffstätter and Vogt created
SPRINT to study the feasibility of attaining proton polari-
zation at very high energy in HERA [7,22]. The code
FORGET-ME-NOT, by Golubeva and Balandin, was
developed for this purpose also [23]. In the mid-2000s
spin motion was added to PTC by Forest [24–26] and to
BMAD by Sagan [27]. Mane has recently added the code
ELIMS to this list [28].
Some of these codes also include effects particular to

electrons—especially synchrotron radiation. In addition,
there are other more specialized codes that handle elec-
trons: Of signal importance is the development of SLIM by
Chao [29] in the early 1980s.
The original version of SPINK used orbit transport

matrices generated by MAD8—later by MAD-X—to
compute the orbital motion. That version was used for
extensive studies of the beam polarization in RHIC [20].
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SPINK was later incorporated into the UAL framework and
modified to use TEAPOT’s orbital integrators. The current
work arose out of an effort to port UAL-SPINK to GPU
platforms. In the course of that work, however, it was
discovered that even when using TEAPOT’s orbital integra-
tors, the code had difficulties with spin convergence [30,31],
especially in the neighborhood of a strong spin resonance.
Addressing this issue meant slowing down what were already
numerically demanding spin tracking simulations.
Here we present a very accurate and efficient spin-orbit

tracking code, GPUSPINTRACK, which we have incorpo-
rated into the UAL framework [32]. Because we have found
that the accuracy of the orbital data has a significant impact
on the accuracy of the spin tracking, our code relies on first
performing very accurate symplectic integration for the
orbital motion. With orbital data in hand, we then use
the Thomas-Bargman-Michel-Telegdi (Thomas-BMT, or
T-BMT) equation [33,34] to integrate the spin motion. Our
integration methods include the effects of acceleration on
both orbit and spin degrees of freedom. We note that
because GPUSPINTRACK tracks the full nonlinear orbital
motion and the full 3D spin motion, it is sensitive to the full
range of spin-orbit resonances. This is particularly impor-
tant in the context of acceleration across spin-orbit reso-
nances. The most significant aspect of this paper is that we
have found a means of accelerating the convergence of the
spin integration.
To obtain reliable results from numerical studies, one

must have a quantitative understanding of the errors
inherent in a given simulation. With a quantitative model
for the errors, one can perform simulations of the desired
accuracy without wasting computational effort motivated
by overly pessimistic error estimates. Another significant
contribution of this paper is a detailed analysis of the
accuracy of our integrators. We study how the orbital and
spin motion converge after one turn, and also the long-time
stability of our algorithms. For the spin dynamics, we also
examine the errors across individual elements.
Numerical efficiency is another important consideration

for spin-orbit tracking codes. To increase the speed of our
simulations, we have implemented all our integrators on a
graphics processing unit (GPU). The embarrassingly par-
allel nature of spin-orbit tracking (in the absence of space
charge) makes this type of computation an ideal fit to the
highly parallel architecture of GPUs.
In the next three sections, we describe the dynamical

model used for our simulations (Sec. II), the orbital
integrators we implement (Sec. III), and our approach to
spin integration (Sec. IV). The latter section describes what
we refer to as Romberg quadratures for spin, our method
for accelerating the convergence of spin integration.
In Sec. V, we describe the performance of both orbit
and spin integrators. We give a brief description of the
GPU implementation in Sec. VI. Finally, in Sec. VII, we
conclude by discussing our results.

II. THE DYNAMICAL MODEL

In this study,we ignore the effects of synchrotron radiation
and space-charge forces. We therefore model the orbital
dynamics in an accelerator using a single-particle
Hamiltonian appropriate to the externally applied magnetic
and electric fields of a particle accelerator. For the spin
dynamics,we treat a particle’s spin expectationvalue as a unit
three vector that obeys the Thomas-BMT equation [33–35].

A. Model for orbital dynamics

To describe the orbital motion of particles in a beam line
element, we use longitudinal distance s along the element
as our independent variable, and we use the same canonical
phase-space coordinates as MAD [36]:

~z ¼ ðX;Px; Y; Py; T; PtÞ: ð1Þ
Here X and Y denote the horizontal and vertical coordinates
in the local reference frame of our beam line element; Px
and Py denote the corresponding conjugate momenta,
divided by a fixed scale momentum po ¼ mγoβoc; T ¼
−cΔt measures the flight time (times the speed of light, c)
relative to a reference particle with momentum po; and Pt
denotes the energy deviation scaled by poc, so that

Pt ¼
mγc2 −mγoc2

poc
¼ mγc2

poc
−

1

βo
: ð2Þ

Note that the minus sign in the definition of T means that a
positive value for T implies that our particle arrives earlier
than the reference particle.
For magnetostatic elements with strictly transverse fields

that do not vary along the length, our Hamiltonian for a
particle of charge q has the general form

H ¼ −ð1þ hXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s

−
q
po

ð1þ hXÞAsðX; YÞ þ
1

βo
Pt; ð3Þ

where h ¼ 1=ρc denotes the curvature of the local coor-
dinate frame—h will vanish except in sector bends—and
AsðX; YÞ denotes the longitudinal component of the ele-
ment’s vector potential. (We choose a gauge in which the
transverse components of the vector potential vanish.) Note
that this Hamiltonian assumes any bending occurs only in
the horizontal plane; for bends in any other plane, we simply
apply rotations before and after a horizontal bend. The last
term,Pt=βo, accounts for the flight time of a particlewith the
reference momentum traversing the orbit X ¼ Y ¼ 0.
When integrating through a dipole, one must exercise

some care concerning the relation between the fixed
geometry, defined by a magnet’s curvature and placement,
and the variable physics, defined by a magnet’s field
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strength. For sector bends, the fixed geometry means the
curvature h of the local frame is fixed. In the usual practice,
one then sets the scale momentum po according to this
curvature, so that po ¼ qB1ρc, where B1 denotes the
magnet’s design field strength. Then qB1=po ¼ h, and
the vector potential term in (3) simplifies to 1

2
ð1þ hXÞ2,

but only if the magnet is correctly powered. To include the
possibility of mispowering errors, one must not thus
confuse the geometry with the physics; one must instead
retain the dependence of the Hamiltonian on the actual
magnetic field strength.
For rectangular bends, which have curvature h ¼ 0, a

more fundamental difficulty arises from the fact that the
orbital motion is most simply integrated using Cartesian
coordinates, whereas the curved design orbit does not
follow the straight magnet axis. This means the horizontal
phase-space variables ðX;PxÞ, which describe deviations
from the magnet axis, cannot describe deviations from any
choice of reference orbit. Moreover, for a given fixed
bending angle, the path length—hence also the flight time—
will depend on the entrance angle. As a consequence, the
flight time along even a reference orbit will depend on how
the rectangular bend is oriented relative to adjacent beam line
elements. If we wish the phase-space variables of (1) at both
entrance and exit of this magnet to represent deviations, then
we must view the Hamiltonian (3) as written in a set of
variables internal to this magnet (and we must drop the term
Pt=βo). We then perform the appropriate conversions at
entrance and exit.
Of course real magnets, because they obey the dictates of

Maxwell, do not have “strictly transverse fields that do not
vary along the length.” That fiction—to which no sensible
spectroscopist subscribes—proves useful in much of accel-
erator physics because (a) long magnets have fields for
which that fiction is close to the truth, (b) short magnets
yield orbital motion that is dominated by the integrated
strength, and (c) fringe-field effects in multipole magnets,
which arise primarily from the longitudinal field compo-
nent, have contributions from both entrance and exit that
tend to cancel, particularly in short magnets [37]. Still the
field variation across a magnet fringe can have a significant
impact on the beam dynamics. Cases where this is
especially true include solenoids, whose longitudinal fields
naturally have extended fringe regions; and rectangular
bends, for which non-normal entrance and exit angles lead
to vertical focusing [38]. In addition, nonlinear contribu-
tions in, for example, quadrupole fringe fields can cause
large-emittance beams to occupy a large footprint in tune
space [39].
In this paper we shall, for the most part, avoid detailed

discussions of fringe fields. We make this choice for a
couple of reasons. (i) The simulations shown in this paper
were all done in the context of the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Lab, for which
fringe field effects are relatively small. (ii) The subject of

transfer maps for magnetic fringe fields is complicated, and
very good discussions are available elsewhere. In addition
to the work cited above, the reader may consult Forest and
colleagues [40–43] for work done mostly in the context of a
hard-edge limit, or Dragt and colleagues [44–47] for work
on transfer maps across realistic magnets that include fringe
fields.

B. Model for spin dynamics

We describe a particle’s spin expectation value by a unit
three vector ~S. The precession of this spin in a magnetic
field ~B is governed by the Thomas-BMT equation [33,34],
which says that in the rest frame of the magnet—our
laboratory frame—the spin precesses according to the rule

d~S
dt

¼ ~S ×
q
mγ

½ð1þGγÞ~B −Gðγ − 1Þðû · ~BÞû�: ð4Þ

An additional term, not shown here, must be included in
the presence of electric fields. In this equation, G denotes
the gyromagnetic anomaly, ðg − 2Þ=2, with g the particle’s
gyromagnetic ratio; and û denotes the unit velocity
vector, obtained by normalizing the momentum vector
ðPx; Py; PsÞT . Here Ps denotes the longitudinal component
of the scaled momentum, given by

Ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s
: ð5Þ

As in the case of orbital motion, it proves convenient to
transform the equation of spin motion (4) to one with s as
the independent variable. To do this, we multiply both sides
of (4) by dt=ds ¼ 1=_s. It is important to note that in a
curved Frenet-Serret coordinate system, _s ≠ vs. Rather,
simple geometry tells us that

vs ¼ ðρc þ XÞ_θ ¼ ð1þ hXÞρc _θ ¼ ð1þ hXÞ_s:
Using this result, we now obtain the modified T-BMT
equation in the form

d ~S
ds

¼ ~Ω × ~S ; ð6aÞ

where

~Ω ¼ −
1þ hX
ðBρÞoPs

½ð1þ GγÞ~B −Gðγ − 1Þðû · ~BÞû� þ hŷ;

ð6bÞ
and ðBρÞo ¼ po=q denotes the (signed) reference value of
the magnetic rigidity. The last term, hŷ, accounts for the
local frame rotation (assuming the rotation is about the
axis ŷ).
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Our model does not include spin-dependent contribu-
tions to the orbital motion, so-called Stern-Gerlach forces,
because these are completely negligible for essentially all
accelerators [48].

III. ORBIT INTEGRATION

To integrate a particle’s orbital motion through a given
beam line element, we use the standard technique of writing
the relevant Hamiltonian as a sum of one or several
integrable pieces. One then obtains an approximate solution
for the total Hamiltonian by an appropriate concatenation
of exact solutions for the separate pieces. An important
advantage of this approach of splitting the Hamiltonian is
that it produces a symplectic integrator—i.e. an integrator
that preserves the fundamental structure that underlies any
Hamiltonian system. A second advantage is that by
composing the partial solutions in a symmetric fashion,
one can achieve second-order convergence to the exact
solution. Indeed, more sophisticated symmetric composi-
tions allow one to achieve even higher order convergence
[37,49]. For an extensive and valuable introduction to the
literature on such splitting methods, see McLachlan and
Quispel [50].
There are several ways one might split the Hamiltonian

(3). One of the oldest—still widely used—is the drift-kick
split that is the basis of TEAPOT [37,51]. One virtue of the
drift-kick split is that it applies to a wide variety of beam
line elements. If, however, we focus on particular elements,
we can tailor the split accordingly. For ideal bending
magnets—sector bends and rectangular bends—one can
derive exact solutions, see Secs. III A and III B. For quadru-
poles, one can split off the linear transverse motion, leaving a
much smaller nonlinear kick as a correction, see Sec. III C.
For higher-order multipoles, we return to the drift-kick split
of TEAPOT.

A. Sector bend

For a pure sector bend, one may write the vector potential
term in (3) as

−
q
po

AsðX; YÞ ¼
b1

2hðBρÞo
ð1þ hXÞ2; ð7Þ

where b1 denotes the actual dipole field strength, and h
denotes the (fixed) physical curvature 1=ρc of the magnet.
One can solve the corresponding equations of motion
analytically [41]. First define the scaled momentum in
the horizontal plane,

Pα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
y

s
: ð8Þ

This quantity is a constant of the motion. Also define the
dimensionless parameter

η ¼ b1
hðBρÞo

¼ b1=h
po=q

; ð9Þ

which measures the magnetic field strength relative to its
design value. Then, setting s ¼ 0 at the magnet entrance,
we obtain the sector bend trajectory in the form

XðsÞ ¼ 1

h

�
1

η

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
α − P2

xðsÞ
q

−
1

h
P0
xðsÞ

�
− 1

�
; ð10aÞ

PxðsÞ¼Pi
x cosðhsÞþ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
α− ðPi

xÞ2
q

−ηð1þhXiÞ
i
sinðhsÞ;
ð10bÞ

YðsÞ ¼ Yi þ 1

η
Pysþ

1

ηh
Py

×

�
sin−1

�
Pi
x

Pα

�
− sin−1

�
PxðsÞ
Pα

��
; ð10cÞ

PyðsÞ ¼ Pi
y; ð10dÞ

TðsÞ ¼ Ti −
1

η
Pts −

1

ηh

�
1

β0
þ Pt

�

×

�
sin−1

�
Pi
x

Pα

�
− sin−1

�
PxðsÞ
Pα

��
þ
�
1 −

1

η

�
s
βo
;

ð10eÞ

PtðsÞ ¼ Pi
t; ð10fÞ

where the superscript i denotes values at the entrance.
Most simulations set the scale momentum po such that

po=q ¼ B1=h, where B1 denotes the design value of the
magnetic field strength. With this choice, the parameter η
becomes

η ¼ b1=h
B1=h

¼ B1 þ ΔB
B1

¼ 1þ ΔB
B1

≡ 1þ δB;

where δB denotes the relative magnet mispowering error.
For this choice of scaling, and for a correctly powered
magnet, i.e., δB ¼ 0 and η ¼ 1, an on-energy, on-axis
particle will enter the magnet with ~z ¼ 0, and will also
exit the magnet with ~z ¼ 0. In other words, this choice of
scaling means that the map (10) with η ¼ 1 preserves the
origin.

B. Rectangular bend

For an ideal rectangular bend, one may write the vector
potential term in (3) as
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−
q
po

AsðX; YÞ ¼
b1

ðBρÞo
X; ð11Þ

where b1 and ðBρÞo have the same meanings as for the
sector bend. One can again solve the corresponding
equations of motion analytically [41]. Here we define
the length parameter

ρb ¼
ðBρÞo
b1

; ð12Þ

and we retain the definition of Pα as in (8). Then, again
setting s ¼ 0 at the magnet entrance,

XðsÞ ¼ Xi þ ρb
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
α − P2

xðsÞ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
α − ðPi

xÞ2
q i

; ð13aÞ

PxðsÞ ¼ Pi
x −

s
ρb

; ð13bÞ

YðsÞ ¼ Yi þ Pyρb

�
sin−1

�
Pi
x

Pα

�
− sin−1

�
PxðsÞ
Pα

��
; ð13cÞ

PyðsÞ ¼ Pi
y; ð13dÞ

TðsÞ ¼ Ti −
�
1

β0
þ Pt

�

× ρb

�
sin−1

�
Pi
x

Pα

�
− sin−1

�
PxðsÞ
Pα

��
; ð13eÞ

PtðsÞ ¼ Pi
t: ð13fÞ

Remember that, per our discussion near the end of Sec. II A,
the phase-space coordinates here are internal to the rectan-
gular bend. We require transformations that connect these
coordinates to those used outside this magnet. See (16) and
its solution (17) below.
Since a beam usually enters and exits a rectangular bend

at some nonzero angle ϕ with respect to the magnet face,
one must (a) perform dynamic rotations that transform the
beam into and out of the Cartesian frame of the magnet,
and (b) account for the vertical focusing effect. We describe
the latter first.
At the entrance, or exit, of a rectangular bend, a typical

beam has a significant horizontal momentum Px with
respect to a Cartesian frame aligned with the corresponding
magnet face—approximately the sine of half the total bend
angle of that magnet. Because the magnet fringe field
includes a small horizontal component proportional (at
lowest order) to the vertical displacement, a particle in that
beam experiences a focusing kick [see (15d) below]

ΔPy ∝ −ð�bÞPxY;

where b ¼ eb1=po ¼ b1=ðBρÞo ¼ 1=ρb denotes the scaled
dipole field strength, and the upper (lower) sign refers to

the magnet entrance (exit). This kick, however, cannot
represent the whole story, for this by itself cannot constitute
a canonical transformation.
Treating the magnetic field of a rectangular bend as

midplane symmetric and as having no dependence on the
horizontal coordinate X, one may write the corresponding
vector potential in the form

~A ¼
�X∞
k¼1

ð−1ÞkBð2k−1Þ
o ðzÞ y2k

ð2kÞ! ; 0; − xBoðzÞ
�
; ð14Þ

where BoðzÞ denotes the midplane magnetic field. In the
thin-fringe limit, BoðzÞ becomes a step function, and the

BðjÞ
o ðzÞ become a delta function and multiple derivatives

thereof. From here there remains a long journey to reach the
goal of a symplectic transfer map that describes orbital
motion across a thin fringe. We simply quote the result. In
the absence of a finite-gap correction, one may obtain [41]

Xf ¼ Xi þ �b
2Ps

�
1þ ðx0Þ2
1þ ðy0Þ2 −

2ðx0y0Þ2
½1þ ðy0Þ2�2

�
ðYfÞ2; ð15aÞ

Pf
x ¼ Pi

x; ð15bÞ

Yf ¼ 2Yi=

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

x0y0

1þ ðy0Þ2 2Y
i

s #
; ð15cÞ

Pf
y ¼ Pi

y − ð�bÞ x0

1þ ðy0Þ2 Y
f; ð15dÞ

Tf ¼ Ti − ð�bÞ
�
1

βo
þ Pt

�
x0

2P2
s

1 − ðy0Þ2
½1þ ðy0Þ2�2 ðY

fÞ2; ð15eÞ

Pf
t ¼ Pi

t: ð15fÞ

Here, x0 and y0 respectively denote Px=Ps and Py=Ps,
and Ps remains as given in (5). For the result including a
finite-gap correction, consult [42,43].
The dynamic rotations that transform the beam into and

out of the Cartesian frame of the magnet amount to drifts in
cylindrical coordinates. Because these transformations
rotate the spin, they are important; on the other hand, they
play no role in the accuracy of our spin integration.
Nevertheless, for the sake of completeness, we include
them here: The relevant Hamiltonian,

Hprot ¼ −X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s
¼ −XPs; ð16Þ

yields the solution [37,41]

XðϕÞ ¼ Xi secϕ
1 − ðPi

x=Pi
sÞ tanϕ

; ð17aÞ
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PxðϕÞ ¼ Pi
x cosϕþ Pi

s sinϕ; ð17bÞ

YðϕÞ ¼ Yi þ Pi
y

Pi
s
·

Xi tanϕ
1 − ðPi

x=Pi
sÞ tanϕ

; ð17cÞ

PyðϕÞ ¼ Pi
y; ð17dÞ

TðϕÞ ¼ Ti þ 1=βo þ Pt

Pi
s

·
Xi tanϕ

1 − ðPi
x=Pi

sÞ tanϕ
; ð17eÞ

PtðϕÞ ¼ Pi
t: ð17fÞ

One needs to apply this transformation at the entrance with
angle ϕentr, and at the exit with angle −ϕexit. In addition,
if the design orbit is not symmetric across the magnet, i.e.,
if ϕexit ≠ −ϕentr, one must correct for the horizontal offset

Xoffset ¼ −L
cosϕentr − cosϕexit

sinϕentr − sinϕexit : ð18Þ

Last, if the temporal variable represents a deviation, then
one must subtract from T the amount

To ¼ −
Larc

βo
¼ −

L
βo

·
ϕentr − ϕexit

sinϕentr − sinϕexit ð19Þ

corresponding to the time for the reference particle to cross
this magnet.

C. Quadrupole

For an ideal quadrupole, we write the vector potential
term in (3) as

−
q
po

AsðX; YÞ ¼
b2

2ðBρÞo
ðX2 − Y2Þ; ð20Þ

where b2 denotes the quadrupole gradient. The most
accurate known split of the resulting Hamiltonian separates
out the linear transverse motion, retaining the exact
dependence on the energy deviation [41]; thus,

Hq ¼ HqL þHqNL; ð21aÞ

where

HqL ¼ 1

2

P2
x þ P2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t

q þ b2
2ðBρÞo

ðX2 − Y2Þ; ð21bÞ

and

HqNL ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s

−
1

2

P2
x þ P2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t

q þ Pt

βo
: ð21cÞ

This is the splitting we use for the quadrupole Hamiltonian.
An alternative to the above split [52] does not include

the correction for the energy deviation—the square root in
(21b). While that split fails to produce the correct tune for
off-energy particles, it does have the virtue of speed,
because the same transfer matrix applies to all particles.
To solve the Hamiltonians in (21), we first define the

scaled total momentum,

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t

s
; ð22Þ

which is a constant of the motion in the quadrupole, and
also the (energy-dependent) focusing strength,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
ðBρÞoP

s
: ð23Þ

Then, setting s ¼ 0 at the magnet entrance, one obtains the
solution for the linear transverse motion, exact in the
energy deviation, as

XðLÞðsÞ ¼ Xi cosðκsÞ þ s
Pi
x

P
sinðκsÞ
κs

; ð24aÞ

PðLÞ
x ðsÞ ¼ Pi

x cosðκsÞ − κPXi sinðκsÞ; ð24bÞ

YðLÞðsÞ ¼ Yi coshðκsÞ þ s
Pi
y

P
sinhðκsÞ

κs
; ð24cÞ

PðLÞ
y ðsÞ ¼ Pi

y coshðκsÞ þ κPYi sinhðκsÞ; ð24dÞ

TðLÞðsÞ ¼ Ti −
1

P

�
1

β0
þ Pt

�

×

�
s
4

�ðPi
xÞ2 þ ðPi

yÞ2
P2

þ κ2ððXiÞ2 − ðYiÞ2Þ
�

þ s
4

��
Pi
x

P

�
2

− ðκXiÞ2
�
sinð2κsÞ
2κs

þ s
4

��
Pi
y

P

�
2

þ ðκYiÞ2
�
sinhð2κsÞ

2κs

−
κs
2

�
Xi P

i
x

P
sin2ðκsÞ

κs
− Yi P

i
y

P
sinh2ðκsÞ

κs

��
; ð24eÞ

PðLÞ
t ðsÞ ¼ Pi

t: ð24fÞ
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This solution assumes a positive value for the quadrupole
gradient b2, so that this magnet focuses in the X-Px plane
and defocuses in the Y-Py plane. We can always convert a
skew quadrupole, or a more general field orientation, to this
case by applying rotations in the transverse plane—i.e.
about the longitudinal axis—before and after the element.
The nonlinear part of the quadrupole Hamiltonian,HqNL,

represents a “kick” of the position coordinates. A straight-
forward integration yields the solution

XðNLÞðsÞ ¼ Xi þ sPi
x

�
1

Pi
s
−
1

P

�
; ð25aÞ

PðNLÞ
x ðsÞ ¼ Pi

x; ð25bÞ

YðNLÞðsÞ ¼ Yi þ sPi
y

�
1

Pi
s
−
1

P

�
; ð25cÞ

PðNLÞ
y ðsÞ ¼ Pi

y; ð25dÞ

TðNLÞðsÞ ¼ Ti − s

�
1

βo
þ Pt

�

×

�
1

Pi
s
−
1

P

ðPi
xÞ2 þ ðPi

yÞ2
2P2

�
þ s
βo
; ð25eÞ

PðNLÞ
t ðsÞ ¼ Pi

t; ð25fÞ

where

Pi
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Pt=βo þ P2

t − ðPi
xÞ2 − ðPi

yÞ2
q

: ð26Þ

In addition to producing the correct tunes for off-energy
particles, the Hamiltonian split shown in (21) has the addi-
tional advantage that the term HqNL is small in the paraxial
approximation. In particular, it is fourth order in the transverse
momenta: HqNL ∼OðPm

x Pn
yÞ with mþ n ¼ 4.

We employ the linear and nonlinear solutions shown
here by concatenating the corresponding maps in a time-
reversal-symmetric manner. Using the simplest symmetric
approximation,

es∶Hq∶ ≈ es=2∶HqL∶es∶HqNL∶es=2∶HqL∶; ð27Þ

we obtain results that are accurate through to second order
in the step size s. (Here we have used the colon notation
introduced by Dragt [53,54].) If desired, one may use
higher-order versions of (27) [37,49,50].
For information about transfer maps for quadrupole

fringe fields, consult [40].

D. Higher-order multipole

For an ideal straight multipole magnet—sextupole, octu-
pole, etc.—one may write the vector potential term in (3) as

−
q
po

AðmÞ
s ðX; YÞ ¼ Re

bm þ iam
mðBρÞo

ðX þ iYÞm; ð28Þ

where the bm and am respectively denote the normal and
skew multipole coefficient for a magnet with 2m poles.
We split the resulting Hamiltonian into two pieces:

Hmult ¼ Hdrift þHm; ð29aÞ

where

Hdrift ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s
þ 1

βo
Pt

¼ −Ps þ
1

βo
Pt; ð29bÞ

and Hm denotes the multipole term in (28), or possibly a
superposition of such terms. This constitutes the well-
known drift-kick split. Because Hdrift depends only on
momenta, and Hm only on coordinates, they each generate
very simple motion. We then solve the total Hamiltonian,
Hmult, in a manner exactly analogous to our solution in (27)
of the quadrupole Hamiltonian (21).
For information about transfer maps for multipole fringe

fields, consult [40].

E. Thin lens

A thin lens is a representation of a (short) multipole
magnet wherein we imagine the length shrinks to zero and
the strengths bm and am grow to infinity in such a manner
that their product remains constant. Except for taking this
limit, we treat the thin lens just as we do the multipole of
Sec. III D. Since the drift vanishes, one may think of this as
“a drift-kick split without the drift.”

F. TEAPOT

The orbital integration performed in TEAPOT [51] is
essentially identical in spirit to the integration of multipoles
described above in Sec. III D: One splits the general
Hamiltonian (3) into a drift (in Frenet-Serret coordinates
for a sector bend) and a momentum kick due to the
magnetic field. Thus

HT ¼ HD þHK; ð30aÞ

where, in general,

HD ¼ −ð1þ hXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
x − P2

y

s
; ð30bÞ

and
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HK ¼ −
q
p0

ð1þ hXÞAsðX; YÞ: ð30cÞ

When h vanishes, one obtains exactly the multipole drift-
kick split of Sec. III D. In the case of nonzero curvature,
i.e., h ≠ 0, the vector potential As becomes quite compli-
cated. Nevertheless, because HK depends only on coor-
dinates, one may easily compute the motion generated.
The drift Hamiltonian HD differs only slightly from that

in (16), and we obtain the solution from (17) by replacing X
with 1=hþ X, and ϕ with hs:

XðsÞ ¼ ð1=hþ XiÞ secðhsÞ
1 − ðPi

x=Pi
sÞ tanðhsÞ

−
1

h
; ð31aÞ

PxðsÞ ¼ Pi
x cosðhsÞ þ Pi

s sinðhsÞ; ð31bÞ

YðsÞ ¼ Yi þ Pi
y

Pi
s
·
ð1=hþ XiÞ tanðhsÞ
1 − ðPi

x=Pi
sÞ tanðhsÞ

; ð31cÞ

PyðsÞ ¼ Pi
y; ð31dÞ

TðsÞ ¼ Ti −
1=βo þ Pt

Pi
s

·
ð1=hþ XiÞ tanðhsÞ
1 − ðPi

x=Pi
sÞ tanðhsÞ

; ð31eÞ

PtðϕÞ ¼ Pi
t: ð31fÞ

As in (27), we then combine the two solutions—the one
above for HD, and the one for HK—to approximate the
motion generated by the full Hamiltonian HT .
A disadvantage of this integration scheme is that the two

pieces of the Hamiltonian HT in (30a) may be of similar
order. While the resulting integrator is still second-order
accurate in s, it has a larger constant factor in the error term.
This yields, overall, a less accurate integration for a given
number of slices. This proves to be a significant issue when
we go on to integrate the spin motion.
On the other hand, drift-kick integration has the advan-

tage that it applies to any magnetic field described by a
longitudinal vector potential AsðX; YÞ. Moreover, it does
not suffer from the apparent discontinuity in the map that
occurs for the quadrupole when using the matrix-kick
integrator of Sec. III C. Avoiding the use of control-flow
statements [if (focusingQuad) f� � �g else f� � �g] can be an
important consideration when using an integrator for map
computation rather than particle tracking [37].

G. Solenoid

For the solenoid, we use a model which has a uniform
longitudinal field in the body and the flux return confined
to a thin-pancake fringe region. The longitudinal body field
necessitates a transverse vector potential ðb0=2Þρϕ̂, which
we write in the Cartesian form

Ax ¼ −
1

2
b0Y; Ay ¼

1

2
b0X; ð32Þ

where b0 denotes the magnetic field strength.
For our thin-pancake fringe model, we multiply the

components (32) by a profile function SεðzÞ that rises from
zero to one across an entrance fringe of length ε, remains
constant across the body, and then returns to zero across an
exit fringe of length ε. We eventually take the limit ε → 0.
This model means our pancake fringe has a longitudinal
field that rises, or falls, linearly across the fringe, and a
radial field with flux b0πρ2 crossing an area 2πρε at
radius ρ.
Because we have a transverse vector potential, we must

modify the general Hamiltonian (3): Since we use a
Cartesian reference frame, we set h ¼ 0; of course we
set As ¼ 0; and the canonical momentum now equals
kinetic momentum plus vector potential. We therefore
write the Hamiltonian for a magnetic solenoid in the form

Hsol ¼ −
�
1þ 2

βo
Pt þ P2

t −
�
Px −

e
po

Ax

�
2

−
�
Py −

e
po

Ay

�
2
�
1=2

þ 1

βo
Pt

¼ −Ps þ
1

βo
Pt: ð33Þ

On crossing one of the solenoid fringes, a particle
experiences a transverse kick from the radial component
of the magnetic field. The transverse vector potential also
changes across the same fringe. It turns out that for our thin-
pancake fringe model, those changes—to the kinetic
momentum and the vector potential—cancel in a manner
that leaves the transverse canonical momentum unchanged
across the fringe. Moreover, in the small-ε limit, the
transverse coordinates do not change across a fringe.
Finally, we ignore the effect on the longitudinal momen-
tum, because it is second order in the transverse dynamical
variables. The net result is that for our thin-pancake fringe,
the Hamiltonian (33) with vector potential (32) describes
the entire solenoid.
Given the abovemodel, one can compute an exact analytic

result for the motion generated by the Hamiltonian (33). The
solution comprises the product of a pair of commuting
matrices that act on the transverse variables ðX;Px; Y; PyÞ,
plus a shift of the temporal variable T:

R1 ¼

2
6664

cosðκsÞ 1
η sinðκsÞ 0 0

−η sinðκsÞ cosðκsÞ 0 0

0 0 cosðκsÞ 1
η sinðκsÞ

0 0 −η sinðκsÞ cosðκsÞ

3
7775;

ð34aÞ
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R2 ¼

2
6664

cosðκsÞ 0 sinðκsÞ 0

0 cosðκsÞ 0 sinðκsÞ
− sinðκsÞ 0 cosðκsÞ 0

0 − sinðκsÞ 0 cosðκsÞ

3
7775; ð34bÞ

TðsÞ ¼ Ti −
�
1

βo
þ Pt

�
s
Pi
s
þ s
βo
: ð34cÞ

In the above expressions, the parameter

η ¼ ebo
2po

¼ bo
2ðBρÞo

; ð35Þ

Pi
s denotes the initial value of the square root in the

Hamiltonian (33), and κ ¼ η=Pi
s.

The reader should note that the presence of Pi
s in (34)

means that—despite superficial appearances—the trans-
formation represented by (34) is actually nonlinear.

Later, when computing the spin precession vector ~Ω, we
shall need to compute the direction vector û. All magnets
discussed previously can be described using a longitudinal
vector potential. Then, as mentioned in Sec. II B, we can
obtain û simply by normalizing the momentum vector
ðPx; Py; PsÞT . For the solenoid, however, we must be sure
to subtract the transverse components of the vector poten-
tial from the transverse canonical momenta to obtain the
(scaled) kinetic momentum vector,

mγ ~V ¼
�
Px −

e
po

Ax; Py −
e
po

Ay; Ps

�
T
: ð36Þ

From this we compute û ¼ mγ ~V=∥mγ ~V∥.

IV. SPIN INTEGRATION

High-quality orbital integration is a prerequisite for
accurate spin integration, because it yields accurate values

for the precession vector ~Ω. However, discretizing the spin
motion leads to a separate source of error that can cause
inaccurate spin precession, even in the context of perfect
orbital integration. To address this difficulty, one might, for
example, choose to adjust the number of spin slices
independently of the number of orbital slices. In this
section, we discuss this issue along with a description of
our methods for tracking spin.

A. Piece-wise constant (PWC) spin precession

A commonly used integration strategy for spin treats the
magnetic fields and velocity vectors in (6b) as constant
throughout a slice of length Δs. One then integrates (6), the
Thomas-BMT equation, to the form

~Sðsþ ΔsÞ ¼ Rð~ωÞ · ~S ðsÞ; ð37aÞ

where Rð~ωÞ denotes the 3 × 3 matrix that describes
rotation about axis ~ω by angle j~ωj. We approximate this

rotation vector as ~ω ¼ Δs ~Ω, with ~Ω given in (6b). Then to
compute the spin rotation across a whole element, one
simply multiplies the contributions from each slice. For

four slices, say, one thus transports an initial spin ~S i to a

final spin ~S f
according to

~S f ¼ Rð~ω4Þ ·Rð~ω3Þ ·Rð~ω2Þ ·Rð~ω1Þ · ~S i
: ð37bÞ

There are two sources of errors in this approach to spin
integration. First, errors in the orbital integration feed into
the spin integration via errors in the fields and velocities
needed in the right-hand side of the Thomas-BMT equa-
tion. Second, treating the rotation axis as a piece-wise
constant introduces errors that arise from the noncommu-
tativity of spin rotations around nonparallel axes.
When using drift-kick integrators for the orbital motion,

the first source of error usually dominates. Then increasing
the number of orbital slices to improve the orbital accuracy
automatically diminishes the magnitude of the second
type of error. We thus find that with drift-kick integrators,
increasing the number of orbital slices is essential for
accurate spin integration.
The situation changes when we use the more accurate

bend-kick and matrix-kick integrators described above for
dipoles and quadrupoles. These integrators allow us to take
such large steps through both dipoles and quadrupoles that
the lack of commutativity between consecutive spin rota-
tions can now become an issue.
To speed the accumulation of spin rotations across a set

of orbital slices, we use quaternions to represent rotations
[55]. Compared to matrix multiplication, this saves a factor
of about 2 in the required arithmetic operations. In addition,
the spin rotation angles are very often sufficiently small that
one may approximate the needed trigonometric functions
by low-order polynomials. Every so often, we explicitly
normalize the resulting quaternions to ensure that they
remain unit quaternions [56].

B. Bézier interpolation

To treat the second source of error—arising from the fact
that nonparallel rotations do not commute—we could do
the same as for the first source of error: increase the number
of orbital slices. That approach, however, seems unneces-
sarily expensive when we use very accurate, or exact,
orbital integrators.

It turns out that the rotation vector ~Ω varies across a slice
in a sufficiently simple manner that we may interpolate it
across a slice using piece-wise cubic polynomials, con-
structed as Bézier curves [57]. To use this technique, we
compute, at the edge of each slice during the orbital

integration, not only ~Ω, but also the derivatives of its three
components [58]. With that information, we construct a
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cubic interpolating polynomial with the correct slope at the

end points; see Fig. 1 for a schematic illustration. For the ~Ω
variations that occur in our simulations, this approach
yields very accurate interpolating functions. Moreover,
the low cost of evaluating this interpolating polynomial
makes it possible to take many spin steps per orbital slice.
The PWC computation of the spin precession in (37b)

will converge with a sufficiently large number of steps.
If convergence requires an excessive number of steps, the
use of cubic Bézier curves can speed up the computation.
What the Bézier approach does not do is increase the rate at
which the computation converges. For that we must look
elsewhere, and that is the topic of the next section.

C. Romberg quadratures for spin precession

As we have seen, the spin precession across a beam line
element is not, in reality, piece-wise constant; rather, within
an element it varies smoothly with s. More significantly, the
integrators based on (37) exhibit second-order convergence
(see Sec. V B). This quadratic convergence suggests the
use of some accelerating technique to cancel the errors. In
particular, we have applied a Romberg approach [59,60] to
spin integration, and, as we show later in this paper, the
improvement is dramatic.
Instead of computing the rotation vectors at the middle of

each slice, we now, for this new approach, compute them at
the edges of each slice. We then accumulate the spin
precession as in (37). For the first and last edges, however,
we use a half-step; i.e., we replaceΔs by Δs=2. This is akin
to using the trapezoidal rule for integration [59,61]. We do
this using N slices, with N a multiple of some power of 2.

During the orbital integration, we record the value of ~Ω at

the edge of each slice. Then by keeping every other ~Ω, or
every fourth, or every eighth, etc., we can approximate the
net spin precession using a range of additional step sizes
that are related to the original by powers of 2. In other
words, we compute for these different step sizes a net
quaternion that represents the spin precession of a given

particle across an element. We obtain thus the sequence of
quaternions,

QðhÞ; Qðh=2Þ; Qðh=22Þ; Qðh=23Þ;…; ð38Þ
where h denotes the coarsest step size.
For example, when crossing an element using eight

slices, we will compute a total of nine ~Ωs: ~Ω0 at the

beginning of the first slice, ~Ω1 at the end of the first slice, on

through ~Ω8 at the end of the last slice. Now, assuming each
slice has lengthΔs, we multiply the first and last of these by
Δs=2, and all the others by Δs, to obtain the sequence

1

2
Δs ~Ω0;Δs ~Ω1;Δs ~Ω2;…;

1

2
Δs ~Ω8:

After constructing the quaternions that correspond to each
of these nine precession vectors, we multiply them together
to obtain a net quaternion that represents one approxima-
tion to the exact spin precession across this element. This is
one of the entries in the sequence (38) above. To obtain the

entry to its immediate left, we drop every other ~Ω and
compensate by doubling the step size; the sequence

Δs ~Ω0; 2Δs ~Ω2;…;Δs ~Ω8

thus yields another—the next coarser—approximation to
the spin precession across this element, and so on.
We then compute the Romberg limit: First define by

Q0k ¼ Qðh=2kÞ ð39aÞ
the sequence of approximations in (38). Then use the rule

Qjþ1;k ¼
4jþ1Qj;k −Qj;k−1

4jþ1 − 1
ð39bÞ

to construct the Romberg table:

Q00

Q01 Q11

Q02 Q12 Q22

Q03 Q13 Q23 Q33: ð39cÞ

This table may have more or fewer rows than indicated here,
but the number at the bottom right is theRomberg limit of the
initial data given in the first column. We normalize the
resulting quaternion at the end of each element.
When integrating a well-behaved function over a finite

interval, the trapezoidal rule together with the Romberg limit
performs remarkably well with modest computational effort.
Its efficiency, however, derives from the structure of the error
term seen in the Euler-Maclaurin summation formula
[60,61], and the manner in which the Romberg algorithm

FIG. 1. Schematic of interpolating a function using a cubic
Bézier curve. The function to be interpolated is shown as a thin
solid curve, and the constructed interpolating Bézier curve is
shown by the heavy dashed curve. The large dots indicate the
control points derived from the value and slope of the function at
s1 and s2.
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cancels those errors. Here, on the other hand, we have a
product of quaternions, and hence no a priori reason to
suspect that the abovewill actuallywork.We tried it for a lark.

D. Solenoid fringe

In the thin-pancake model discussed earlier for the
solenoid fringe, there exists a well-defined limit of the

fringe length ε times the precession vector ~Ω, as ε → 0.
In that limit, a spin crossing a solenoid fringe experiences a
net rotation given by the vector

~ω ¼ � b0=2
ðBρÞoPs

�
ð1þ GγÞðX; Y; 0Þ

−Gðγ − 1ÞXPx þ YPy

P2
mγ ~V

�
; ð40Þ

where we choose the leading plus or minus for entrance or
exit, respectively. Here the kinetic momentum vector mγ ~V
is as given in (36), except that we must insert a factor of 1

2
in

front of Ax and Ay. In a similar manner, Ps denotes the
square root in (33), but with the same factor of 1

2
inserted

before Ax and Ay. These factors of
1
2
enter because in going

to the limit of a zero-length fringe, we evaluate the field
strength in the middle of that fringe region.

E. Dipole and multipole fringes

A particle’s spin also experiences a kick when crossing
the fringe of a multipole magnet. This spin kick arises
predominantly from the longitudinal field component in the
fringe. In the limit of a thin fringe, and to lowest order in the
dynamical variables, the spin kick caused by the fringe of a
normal (i.e., not skew) 2m-pole magnet of strength bm is
given by the rotation vector

~ωm ¼ −
�bm
ðBρÞo

ð1þGÞ r
m

m
sinðmϕÞẑ; ð41Þ

where we convert rm sinðmϕÞ to a function of X and Y
using ðX þ iYÞm ¼ rmeimϕ. For a skew multipole, in (41)
replace sin by cos, and bm by am.
The above result (41) is appropriate for beams that cross

a fringe roughly normal to the entrance or exit face of the
magnet. When entering, or exiting, a rectangular bend,
however, a particle typically sees the longitudinal field Bz
as having a significant component transverse to its velocity.
As long as Px is not too large, one may account for this
effect by simply adding an extra term to (41) to obtain the
rotation vector

~ωrb ¼ ~ω1 þ
�b1
ðBρÞo

Gðγ − 1ÞPxx̂; ð42Þ

which describes the spin kick experienced by a particle
crossing the fringe of a rectangular bend. Note the factor of

Gγ in the second term: it is one good reason for not using
rectangular bends in machines designed for polarized
beams, particularly at high energy.
If one requires a higher order computation of the spin

kick across a magnet fringe, it is possible to apply a
procedure analogous to that used for orbital kicks across
fringe fields in [41].

V. PERFORMANCE OF INTEGRATORS

In this section, we examine the performance of the
orbital and spin integrators described in the previous two
sections. Our principal focus is on the integrators for spin.
We examine the orbital integrators—much more briefly—
with the goal of understanding their impact on spin
integration.
For the orbital integrators, we examine their performance

in a particular context: that of Brookhaven’s Relativistic
Heavy Ion Collider (RHIC) [2] operating at approximately
250 GeV, with the optics settings used before the beta
squeeze. For the spin integrators, we examine their single-
element performance, as well as their performance in the
context of spin tracking for RHIC. In this context, we note
that RHIC has two full Siberian snakes on opposite sides of
the ring to flip the spins, with the snake angles set to �45°.
These settings mean that for a perfectly aligned RHIC, the
design orbit will have a spin tune of exactly 1

2
[3,4].

Sextupoles are adjusted to set the chromaticities to
ðξx; ξyÞ ¼ ð0.70; 0.74Þ, and the spin rotators near the inter-
action points are turned off. The latter are needed only after
the beta squeeze, when the counterrotating RHIC beams are
brought to collision, and the experiments require longi-
tudinal polarization at the interaction point. For our simu-
lations, then, the equilibrium polarization is roughly vertical
throughout the ring.

A. Orbit integrators

For the simulations discussed here, we read a RHIC
lattice description from a file in SXF format [62]. Which
integrator to use for which elements is set in a separate
“.apdf” file (for Accelerator Propagator Description
Format). When referring to the integrators, we use the
acronym BK/MK [63], or sometimes just “bend-kick,” to
mean the use of (10) for sector bends, together with (24)
and (25) for quadrupoles. The Siberian snakes were
modeled as thin elements: they are transparent to the
orbital motion, and they act on the spin according to snake
angles defined in an input file. In the simulations described
here, we use a base number nb of slices for all dipoles and
most quadrupoles. Then for the strongest quadrupoles,
those in the interaction region, we use 4nb slices.

1. Poincaré sections

To give a sense of how well the drift-kick and BK/MK
integrators reproduce gross features of the orbital motion,
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we show Poincaré sections of the X-Px plane; see Fig. 2.
The range of amplitudes shown is representative of beams
at this azimuth in RHIC—the interaction point, before the
beta squeeze is applied to the optics.
Figure 2 indicates that the drift-kick and BK/MK

integrators produce the same gross features of the orbital
motion. There are, however, differences in the details.
In particular, the drift-kick traces with nb ¼ 4 seem more
elliptical, while the remaining traces seem more ovoid. The
trace widths also seem more regular for drift-kick integra-
tion with nb ¼ 4, as compared to all the others. Differences
between the two BK/MK integrators, with nb ¼ 1 and
nb ¼ 16, are not visible with the bare eye. Differences
between (b), (c), and (d) are much smaller than those
between (a), on the one hand, and (c) and (d), on the other.

2. Orbital spectra and tune fitting

In Fig. 3 we show the spectrum of X obtained by taking a
discrete Fourier transform of the X coordinates obtained
over the course of T ¼ 1000 turns,

SXðνÞ ¼
				 1T

XT
t¼0

e−i2πtνXðtÞ
				
2

: ð43Þ

The spectra were averaged over a bunch containing N ¼
1024 particles with amplitudes typical for RHIC. The tunes

marked in the figure (see top edge) are the design values for
RHIC at this energy (215.735 GeV kinetic): νx ¼ 28.6835,
νy ¼ 29.6742. Note that we see peaks not only at νx and νy,
but also at 2νx and 2νy—evidence of significant non-
linearity in the orbital motion.
As shown in Fig. 3, one can obtain a close match to the

design orbital tunes using either drift-kick or BK/MK
integration. However, in the case of drift-kick integration,
one must adjust the strengths of the main quadrupoles by an
amount that depends on the number of orbital slices used.
No such adjustment is required when using BK/MK
integration.
In the context of purely orbital tracking, adjusting the

quadrupole strengths to fit the desired tunes is a sensible
means of ensuring the correct linear behavior in accelerator
simulations. In the context of spin tracking, however, such
adjustments might be problematic, because changing a
quadrupole’s strength changes the amount of spin precession
a particle experiences as it crosses that element. In other
words, fitting the orbital tune can perturb the integrated spin
precession angle of a given particle—particularly at high
energy, i.e., at large values of the naive spin tune, Gγ.
We can estimate the importance of this effect as follows.

On crossing a quadrupole, a spin experiences a net
precession with magnitude given approximately by ω ¼
−ð1þGγÞAb2L=ðBρÞo, where A denotes the particle
amplitude, and L the quadrupole length. For the RHIC
lattices we studied, the tune fitting required a relative
change in b2 that varied greatly with the step size used for
crossing the quadrupoles. For finely sliced lattices, the
relative change in b2 (from the value used for BK/MK
integration) could be as small as a few times 10−5. At RHIC
energies, this adjustment yields a sub-μrad change in the
spin precession, and perhaps a few μrads over a full turn.
As we shall see later, when one uses drift-kick orbital
integration, this variation is negligible compared to other

FIG. 2. Poincaré sections for four sample particles using drift-
kick integration with (a) nb ¼ 4 and (b) nb ¼ 16, and using
BK/MK integration with (c) nb ¼ 1 and (d) nb ¼ 16.

FIG. 3. Spectrum of X obtained using (a) drift-kick integration
with nb ¼ 8, or (b) BK/MK integration with nb ¼ 1. The
indicated tunes are all taken modulo 1.
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sources of error. On the other hand, for very coarse slicing,
the relative change in b2 can exceed 0.1%, which leads to a
small, though noticeable, change in the simulated spin
precession angle.

3. Single-turn errors

For accurate spin tracking, it does not suffice to integrate
the orbital motion in a manner that merely reproduces
global properties of the phase-space distribution. Errors in
particle orbits introduce errors in the spin rotations,
possibly changing the character of the simulated spin
dynamics. As a consequence, one must compute accurately
the trajectories of individual particles.
To gain an understanding of the orbital errors on a per-

particle basis, we look at the rms deviation between
computed particle orbits and a reference solution for each
particle. For the X coordinate after t turns, we thus compute

ΔXðt; nbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

½Xjðt; nbÞ − XðrefÞ
j ðtÞ�2

s
: ð44Þ

The sum is over the particles in the bunch. The reference
solution is computed with nb ¼ 128 using the BK/MK

integrators, i.e., XðrefÞ
j ðtÞ ¼ Xjðt; 128Þ.

Figure 4 shows the absolute error ΔXð1; nbÞ after one
turn for a RHIC beam at approximately 216 GeV with a
95% horizontal emittance εx of 15π mmmrad. The slope
−2 on the log-log scale shows that both drift-kick and BK/
MK integrators exhibit second-order convergence in s. The
drift-kick integrator starts out with a relative error of order
one (cf. Fig. 2), indicating that with this very large step size,
the phases of the orbital motion are completely off: the
errors are as large as they can be with a symplectic
integrator. At nb ¼ 64, the relative errors have decreased
to about a part in 104. On the other hand, the BK/MK
integrators exhibit relative errors which start out below a

part in 106 and decrease until they are below about a part
in 109.
Figure 5 also shows one-turn errors in X, but here as a

function of particle emittance. These results, which are
consistent with those of Fig. 4, tell us that the accuracies of
the different integrators have roughly the same amplitude
dependence. To reduce the noise level in this graphic, we
have averaged the results within nonoverlapping bins that
each contained 20 particles in a narrow slice of emittance.
The bands indicate one standard deviation above and below
the computed average.

4. Evolution of orbital errors over many turns

Figure 6 shows the errors in the X coordinate as a
function of the number of turns for drift-kick integration
and BK/MK integration. If we do not adjust the quadrupole
strengths so as to fit the desired tunes, then the drift-kick
integration errors oscillate periodically because of the tune
errors. We see that behavior in the uppermost (tan) curve,

FIG. 4. One-turn errors in X versus nb for drift-kick integration
(upper curve), and BK/MK integration (lower curve). The errors
were computed by comparing with a data set produced using
BK/MK integration and nb ¼ 256.

FIG. 5. One-turn errors in X versus amplitude for several
different integrators: drift-kick with nb ¼ 32 (upper curve),
and BK/MK with nb ¼ 1 (lower curve).

FIG. 6. Evolution of the orbital error in X as a function of turn
number t. The four curves correspond to different methods of
integration: from top to bottom they are drift-kick with nb ¼ 8
and no tune fit (tan), drift-kick after tune fitting with nb ¼ 4
(green), and BK/MK with nb ¼ 1 (purple), and 4 (maroon).
For the reference solution, we used BK/MK with nb ¼ 16.
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for drift-kick integration with nb ¼ 8. After fitting the
tunes, we note that drift-kick integration errors with nb ¼ 4
now track the minima of the tan oscillatory errors.
While the errors observed are much smaller for BK/MK

integration—even with nb ¼ 1—they always exhibit the
same qualitative behavior: After a few hundred turns, even
when using BK/MK integration, the errors grow approx-
imately linearly because of unavoidable tiny differences in
the tunes. We believe this is not a significant issue.

B. Spin integrators

Here we describe the accuracy of our spin integrators.
First, we discuss the errors seen when tracking across
various individual beam line elements, where we focus on
the impact of both step-size and Romberg iterations. We
then discuss, more briefly, the spin integration errors seen
over the course of a single turn and many turns.

1. Single-element errors

The graphics in Fig. 7 show the spin integration errors we
computed when tracking a particular particle [64] across
several different beam line elements. From top to bottom,
those elements are a quadrupole, a sector bend, a solenoid,
and another solenoid (but with a very low energy proton,
such that the total spin rotation is comparable to 90°). In each
of those graphics, the solid curve labeled PWC corresponds
to piece-wise constant spin integration, where for the orbital
motionweused the integrators given inSecs. III A, III C, and
III G. In all cases the slope −2 reveals second-order con-
vergence for PWC spin integration. The remaining curves
correspond to k Romberg iterations (i.e.,Qkk) applied to the
PWC data obtained for the given number of slices. Since we
do not know the result of exact spin integration,we have here
estimated the spin integration error as the absolute difference

between the result ~SN
obtained using N slices and what we

considered our “best” result, ~Sbest.

In Fig. 7, we have used for ~Sbest the results we obtained
using 256 slices and three Romberg iterations. If we instead

use for ~Sbest our most finely sliced PWC result, then small
details in these graphics change, but the overall implication
holds—that one or more iterations of the Romberg pro-
cedure can dramatically reduce the errors made by PWC
spin integration. In the case of the quadrupole integrated
using four slices, we see that two Romberg iterations yield
a four-decade reduction in the error—to a level that requires
some four-hundred slices using just PWC spin integration.
For the solenoid, a similar statement holds in the case of a
low-energy proton; and in the high-energy case, one
Romberg iteration suffices to reduce the spin integration
error to the level of round-off. For the sector bend, we see a
less dramatic absolute reduction in the error; but even there,
between 8 and 64 slices, the slope −4 on the k ¼ 1 curve
tells us that one Romberg iteration converts second-order
PWC integration to fourth order.

FIG. 7. Absolute error in the computed spin versus the number
of slices for a proton crossing several different beam line
elements. The upper three graphics show results for a
200 GeV pþ crossing a RHIC IR quad (top), a RHIC arc dipole
(second), and a 2.1 m, 1.3 T solenoid (third). The bottom graphic
shows the result for a 25 GeV pþ traversing the same solenoid.
Each curve corresponds to a different method of integrating the
spin: PWC for piece-wise constant integration; the k values
indicate the number of Romberg iterations.
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The graphics in Fig. 7 illustrate the scaling of spin
integration errors for one particular particle, and the impact
of Romberg iterations on PWC spin integration. Were we
just lucky, or do we see similar behavior across the relevant
phase space? The next several figures address this question,
illustrating the effect of Romberg quadratures on spin
integration for particles covering a range of initial con-
ditions in phase space.
For the sector bend, we examine spin integration errors

across a RHIC dipole: a 9.45 m long magnet set to bend
200 GeV protons 2.225°, so with magnetic field strength
B ≈ 2.75 T. As a proxy for exact tracking, we settled on,
after considerable testing, one Romberg iteration applied to
128 slices of PWC spin integration. Furthermore, because a
magnetostatic dipole is translationally invariant in both Y
and T, we examine how the spin integration errors vary
with respect to just X, Px, Py, and Pt.
In Fig. 8, we show the absolute error in the computed

spin using PWC spin integration with either four or eight
slices (upper and lower rows, respectively). Figure 9 shows
the corresponding results obtained after we apply one
Romberg iteration. To help the reader make a proper
comparison, we note further details in the captions of
those two figures.
A comparison of Figs. 8 and 9 suggests that applying

Romberg quadratures to spin integration across a sector

bend does indeed reduce the error throughout phase space.
But we are also struck by some of the features seen in
Fig. 8: the pronounced valley that runs diagonally across
the four graphics on the left; and the much flatter and
somewhat larger errors in the presence of an energy
deviation, seen in the two graphics on the right.
To gain some understanding of these features, we

examined a much larger range of phase space; a range
that is, in fact unphysically large for an arc dipole in RHIC.
Figures 10 and 11 show the results. Each of the 100 small
graphics in those two figures covers the same range of
horizontal phase space: �5 cm in X, and �6 mrad in Px.
They are laid out in four matrices of 25 graphics each,
where the columns correspond to five different values of Pi

t,
evenly spaced in the range �2 × 10−4; and the rows
correspond to five different values of Pi

y, evenly spaced
in the range�0.2 mrad. (See the labels at the top and to the
right of each matrix of graphics.) To obtain the graphics in
Fig. 10, we used four slices of PWC spin integration for the
upper set of 25 graphics, and four slices plus one Romberg
iteration for the lower set. We obtained the data shown in
Fig. 11 using eight slices. In all the graphics, the gray-scale
covers the same (logarithmic) range of errors: from black
at 10−15 to white at 10−7.5.
The graphics shown in Figs. 10 and 11 reiterate the

message that applying a Romberg step to the result of

FIG. 8. Absolute error in the computed spin across a RHIC dipole for a range of initial conditions in orbital phase space. Darker
(lighter) grays represent smaller (larger) errors. Points outside the range indicated above each graphic are colored red if below, and blue
if above. The error range covers the same five decades in the four graphics to the left. In the right-hand two graphics, the error range is
again the same, but covers just a decade and a half that is mostly above the range in the other graphics. The upper and lower rows
respectively show results obtained using PWC spin integration with four and eight slices. The three columns correspond to different
values for Pi

y and Pi
t: Pi

y ¼ 0, Pi
t ¼ 0 (left); Pi

y ¼ 20 μrad, Pi
t ¼ 0 (middle); Pi

y ¼ 20 μrad, Pi
t ≈ 0.35 × 10−3 (right).
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PWC spin integration can reduce the error throughout the
phase space of orbital initial conditions. In addition, however,
we draw the reader’s attention to the yellow curve, overlaid
on each graphic, which clearly follows the deep valley seen in

those graphics for which no Romberg step was applied. In
each graphic, this curve is the locus of points ðXi; Pi

xÞ for
which the value of Px at the magnet exit equals the value Pi

x
at the magnet entrance. This value is given by

Psym
x ðXiÞ ¼ cos

�
hL
2

�" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo
Pt þ P2

t − P2
y − ð1þ hXiÞ2cos2

�
hL
2

�s
− ð1þ hXiÞ sin

�
hL
2

�#
: ð45Þ

Note that the dependence of Psym
x on Py and Pt occurs only

under the square root, and that there it is linear in Pt and
quadratic in Py. This difference (together with the fact that
Py and Pt denote small quantities) explains why the yellow
curves in Figs. 10 and 11 show little dependence on Py, but
very sensitive dependence on Pt.
Earlier, when examining Fig. 8, we noted that the two

right-hand graphics have much flatter and somewhat larger
error profiles than appear in the left-hand four graphics.
Now, on comparing with the graphics in Fig. 10, we see
what happened: the valley simply moved “off stage” as we
increased the energy deviation.
For the quadrupole, we examine spin integration errors

across a RHIC interaction region (IR) quadrupole: in this
case a 1.83 m long magnet set to focus 200 GeV protons
with a magnetic quadrupole gradient of b2 ¼ 70.0 Tm−1.
As a proxy for exact tracking, we settled on, again after
much testing, three Romberg iterations applied to 128
slices of PWC spin integration.

A coarse examination over the range of initial conditions
�20 mm in X and Y, �20 μrad in Px and Py, and �0.35 ×
10−3 in Pt indicate that (at least within this phase-space
domain) spin integration errors change little with respect to
variations in the transverse momenta Px and Py, or the
relative energy deviation Pt. As a consequence, here we
show graphics of the spin integration errors for this element
only in the ðX; YÞ plane, with Pi

x ¼ Pi
y ¼ Pi

t ¼ 0.
In the case of the sector bend, the spin integration error

does not appear to depend on the initial spin orientation.
For the quadrupole, however, the accuracy of spin inte-
gration very definitely depends on the initial spin, so we
have included that dependence in the results shown here.
In Fig. 12, we show the absolute error in the computed

spin across a RHIC IR quadrupole. The first two rows show
results obtained with PWC spin integration using either
four slices (first row), or eight slices (second). The results
shown in the lower two rows correspond to applying our
Romberg procedure to the first two rows: four slices plus

FIG. 9. Absolute error in the computed spin across a RHIC dipole for a range of initial conditions in orbital phase space. Each of the
graphics in this figure shows results for the same orbital initial conditions and the same number of slices as the corresponding graphic in
Fig. 8. The differences are that the integration here includes one Romberg step, and the error ranges are significantly lower.
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FIG. 10. Absolute error in the computed spin using four slices across a RHIC dipole. Each small graphic covers a range
of initial conditions in horizontal phase space (see labels at lower left). The rows and columns correspond respectively to different
initial values for Py and Pt (see labels along right and top edges). For the lower set of graphics, we added one Romberg
iteration.
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FIG. 11. Absolute error in the computed spin using eight slices across a RHIC dipole for a range of initial conditions. See also the
caption of Fig. 10. The two sets of 25 graphics correspond to PWC spin integration (upper set) and PWC plus one Romberg iteration
(lower set).
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FIG. 12. Absolute error in the computed spin across a RHIC IR quadrupole. The rows, from top to bottom, show results obtained using
four slices, eight slices, four slices plus two Romberg steps, and eight slices plus three Romberg steps. The columns, from left to right,
show results averaged over spins covering an opening angle about the vertical of 0°, 20°, and 180°.
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two Romberg steps (third row), or eight slices plus three
Romberg steps (bottom row). As indicated above each
graphic, the gray-scale in the first two rows covers the same
(logarithmic) range of errors: from black at 10−6 to white at
10−2. In the third row, the range goes from 10−10 to 10−5.5,
which means most of the errors in the third row (all except
small triangles in the corners) lie below the errors in the
upper two rows. In the last row, the range of 10−14 to 10−8.5

means the errors here lie entirely below those of the upper
two rows; and they lie below most of the errors in the
third row.
The columns in Fig. 12 correspond to averaging over

various sets of initial spins. We generated a quasirandom
distribution of spins (i.e., points on the unit sphere [65])
with opening angle α about the vertical: α ¼ 0° (left
column), 20° (middle), and 180° (right).
In the case of a vertical spin (α ¼ 0°), the errors vanish

for orbital motion in the midplane because the vertical spin
remains parallel to the vertical field everywhere along those
orbits and therefore does not precess. What about other
particles, those launched still with a vertical initial spin, but
away from the midplane? For particles traversing a RHIC

IR quad, the ~Ω of (6b) lies predominantly along the
quadrupole magnetic field, ðb2Y; b2X; 0Þ. Since the com-

ponent of ~Ω orthogonal to the spin is the component that
rotates the spin, it follows that an initially vertical spin
should be most sensitive to variations in Y, and rather
insensitive to variations in X. This suggests why the two
graphics in the upper left of Fig. 12—those for α ¼ 0° and
no Romberg iterations—show essentially no variation with
respect to Xi. Moreover, the fact that the orbital variation in
Y is (to first order) proportional to Yi suggests why the
errors in those same two graphics increase away from the
horizontal midplane.
As we allow the distribution of initial spins to open up

(α > 0°), the distribution of errors (before the application of
any Romberg iterations) quickly becomes more symmetric
about the quadrupole axis. See the four graphics in the
upper right of Fig. 12. After we apply one or more
Romberg steps, the quadrupole spin-integration errors
become smaller and develop additional structure across
the ðX; YÞ plane. See the bottom two rows of Fig. 12. We do
not yet understand the origin of this structure.
For the solenoid, we examine spin integration errors

across a 1.3 T, 2.1 m long magnet. For the 200 GeV protons
we used in previous elements, we find that four slices
together with one or two levels of Romberg quadratures
suffice to reduce errors to the level of round-off. In this
case, however, the particle experiences very little spin
rotation—of order 10 mrad. We therefore chose to look at
the spin integration errors for a much lower energy proton,
1.2 GeV, traversing this same magnet. In this case the spin
rotation is of order 0.6 rad. As a proxy for exact tracking,
we again settled on three Romberg iterations applied to 128
slices of PWC spin integration.

Given the homogeneous nature of a solenoid’s body
magnetic field in our thin-fringe approximation, we expect
spin integration errors across this element to exhibit very
little dependence on Xi, Yi, or Pi

t. A coarse examination
over a range of initial conditions in phase space indicates
that this is indeed the case. As a consequence, here we show
graphics of the spin integration errors for this element only
in the ðPx; PyÞ plane.
In Fig. 13, we show the absolute error in the computed

spin for a 1.2 GeV proton traversing the solenoid described
above. The top graphic shows the result obtained using
eight slices of PWC spin integration. The two graphics
below show results obtained using four slices plus two
Romberg steps (middle), and eight slices plus three
Romberg steps (bottom). As indicated by the ranges noted
above each graphic, the error ranges in these three graphics
do not overlap. Indeed, the error range drops by several
decades with each step down the page.

2. Single-turn errors

In this section, we examine spin integration errors after a
full turn in the same RHIC lattice used for the orbital
studies in Sec. VA. See Figs. 14 and 15. As our measure of
the error, we use the mean difference between the spin
computed using a given set of numerical algorithms, and a
reference solution that we use as a proxy for the exact
result. The mean is taken over an ensemble of spins in a
beam. We compute thus, at turn t,

Δ~SðtÞ ¼ 1

N

XN
j¼1

j~SjðtÞ − ~SðrefÞ
j ðtÞj: ð46Þ

For the results shown here, we computed the reference
solution using BK/MK integration with nb ¼ 256 and three
Romberg iterations.
Figure 14 shows the absolute spin error as a function of

the number of spin slices, here chosen identical to the
number of orbital slices. No Romberg steps were applied,
except when computing the reference solution. As a
consequence, differences seen here between drift-kick
results (upper two curves) and BK/MK results (lower
curve) derive solely from differences in the orbital data
passed to the Thomas-BMT equation.
At small numbers of orbital slices, spin integration based

on drift-kick orbital integration reproduces only the one-
turn spin-precession axis (close to the vertical). The
precession angle about that axis, however, is completely
off: compared to the reference solution, the phase of the
spin precession is distributed uniformly over a 2π interval.
Increasing the number of orbital slices improves the
accuracy of spin integration, and at nb ¼ 64 the single-
turn spin-phase errors fall below a mrad.
When performing spin integration based on BK/MK

orbital integration, we obtain errors that are consistently
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two-and-a-half decades below those based on drift-kick
integration (see the lowest curve in Fig. 14). This result, we
emphasize, obtains in the absence of Romberg quadrature.
Figure 15 also shows the absolute spin error, but now as a

function of particle emittance, after a single turn in the RHIC
lattice. As in Fig. 14, no Romberg steps were applied—
except in computing the reference solution—so that here
also the differences seen derive solely from differences in the

accuracy of the orbital integration. In addition, we have
reduced the noise level in this graphic by, as in Fig. 5,
averaging over narrow slices of emittance.

3. Evolution of spin errors

We also examined how spin errors evolve over the course
of many simulated turns in RHIC. In Fig. 16 we use the
accumulated spin error to compare different methods of
integration. The green curve shows results obtained using
the previous standard: a TEAPOT split with four slices for
most elements, but 16 slices for the strong elements around
the interaction regions. The lowest two curves we obtained
using the new integrators, also with nb ¼ 4. For the blue
curve, we used just the “trapezoidal” rule (PWC of Fig. 7).
For the lowest curve, we computed a Romberg limit using a
maximum k of 3.

FIG. 14. Single-turn spin errors as a function of the number of
slices for several different integrators: drift-kick (blue circles, tan
diamonds), and BK/MK (purple squares). The blue circles
represent DKSKD: traverse each slice using half-drift, half-kick,
spin rotation, half-kick, half-drift. The purple squares represent
DKDSDKD: traverse each slice using half-DKD, spin rotation,
half-DKD. The reference solution used BK/MK with nb ¼ 256
together with three Romberg iterations.

FIG. 15. Amplitude dependence of the single-turn spin errors
for three different integrators: drift-kick with nb ¼ 32 (upper),
and BK/MK with nb ¼ 1 (middle), and nb ¼ 4 (lower).

FIG. 13. Absolute error in the computed spin across a solenoid.
We computed the data shown in these three graphics using, from
top to bottom, eight slices PWC spin integration, four slices PWC
plus two Romberg iterations, and eight slices PWC plus three
Romberg iterations. Note the different error ranges indicated
above each graphic: with each step down the page, the errors fall
by several decades.
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The topmost curve, obtained using drift-kick integration
with nb ¼ 8, but without retuning the lattice, exhibits
pronounced oscillations. The tune errors in the orbital
integration translate into these periodic oscillations of the
spin errors.

VI. GPU-ACCELERATED IMPLEMENTATION

In recent years, graphics processing units (GPUs) have
emerged as an effective means to accelerate compute-
intensive workloads. Because they are designed for
massively data-parallel workloads with very regular con-
trol flow and memory access patterns, GPUs can dedicate
a much larger fraction of their transistors to processing
elements (registers and arithmetic and logic units) than
can CPUs. As a consequence, they can achieve signifi-
cantly larger computational throughput, performance
per watt, and performance per dollar for workloads that
are well suited to their architecture. Particle tracking in
the absence of space-charge effects is an embarrassingly
parallel problem, and is therefore a natural fit for GPUs.
To map the spin-orbit tracking problem onto GPU hard-

ware, we assign a GPU thread to each particle. For the actual
tracking, we first transfer the state of a bunch to global
memory on the GPU. This state comprises six-dimensional
orbit data, three-dimensional spin data, plus the quaternions
required for accumulating spin rotations. Particle tracking
through individual beam line elements is broken up into
several GPU kernels. We first compute the orbital motion
through a particular beam line element. This requires loading
orbit data at the element entrance from global memory into
registers, computing the orbital motion using the integrators
discussed in detail above, and then, at the element exit,
writing the updated state back to global memory. During the
orbital computation, we record in global memory the spin

precession vector ~Ω at the edge of each orbital slice.
After integrating the orbital data through the given element,

we then use the recorded ~Ω data to update the quaternions
using PWC spin integration plus one or more Romberg steps.
We then update the spin.
The particle data resides on the GPU throughout

spin-orbit tracking. By maintaining the data on the
GPU, we avoid unnecessary data transfers between
GPU and CPU, which can significantly slow down
simulations. Particle data is occasionally copied back to
the CPU in order to perform analysis; e.g., to compute
(or update) the invariant spin field (ISF) at a particular
location in the accelerator.
Figure 17 shows a comparison of the performance of

spin-orbit tracking on a GPU and a CPU. The GPU
simulations were carried out on the Dirac cluster at the
National Energy Research Scientific Computing center
(NERSC). The CPU performance is an estimate for an
eight-core CPU, based on the assumption that the simu-
lation scales perfectly to eight CPU cores and that each
CPU core is a factor 4 faster than a GPU core. For up to a
few hundred particles the CPU is faster than the GPU.
For larger numbers of particles, the GPU accelerated
simulations are faster. For a few ten-thousands of particles,
the GPU accelerated simulations are approximately 15
times faster than the corresponding CPU implementation.

VII. CONCLUSION

In Sec. VA, we showed that the BK/MK integrators can
be much more efficient than the drift-kick integrators. This,
of course, is well known (but see Forest’s discussion [37]
for why drift-kick integration remains useful). Our purpose
in including such a comparison here has to do with the
influence of accurate orbit integration on the accuracy of
spin integration.
Figure 14 tells us that better orbit data yields more

accurate spin integration. Using BK/MK integration yields
a two-decade reduction of the spin errors as compared to
drift-kick integration. We see that the improvement with
the number of orbital slices is, in large part, due to the
improvement in the orbital accuracy. In other words,

FIG. 16. Accumulated spin error as a function of turn number,
for multiturn tracking in a RHIC lattice, using different methods
of integration. From top to bottom: drift-kick integration with
nb ¼ 8 and no tune-fit (tan); the previous standard, a TEAPOT
split with nb ¼ 4 (green); BK/MK with nb ¼ 4 and no Romberg
(blue); and BK/MK with nb ¼ 4 (purple). The simulated beam
had a 95% emittance of 15π mmmrad.

FIG. 17. Time required to track N particles through 100 turns
of the RHIC lattice with GPU-accelerated integrators (solid).
The CPU time (dashed) is an estimate; see text for details.
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with drift-kick integration the accuracy of the spin motion
will improve just by increasing the number of orbital slices
while holding the number of spin integration steps fixed.
On the other hand, for BK/MK integration, the discre-

tization of the spin motion appears to be a significant source
of error: A comparison of Figs. 4 and 5 with Figs. 14 and 15
show that the relative error in the orbital motion is much
smaller than that in the spin rotation angle.
In Sec. IV B we discussed interpolating the spin pre-

cession vectors, using cubic Bézier polynomials, as a means
of rapidly computing multiple spin steps per orbital slice.

To compute a Bézier curve for ~Ω, one must first determine
the associated control points (see Fig. 1), and doing so

requires computing the longitudinal derivative of ~Ω at the
beginning and end of each slice. For most elements, this is a
nontrivial, hence time-consuming, computation. In other

words, if we wish to enjoy the fast computation of many ~Ωs
along an interpolating Bézier curve, we must first invest

some time computing ~Ω0. As a trade-off, this means we

benefit only if we plan to interpolate ~Ω at some (possibly
large) number of intermediate locations.
In the bargain, however, we do not improve the rate

at which spin integration converges: The accuracy of
this approach cannot improve upon what we obtain by
taking smaller steps (i.e., using more orbital slices). In other
words, the best we might hope for from interpolating

the precession vector ~Ω, is a faster computation of
PWC spin integration, which exhibits just second-order
convergence.
As shown in Fig. 7, as well as in Figs. 8 through 13, the

application of Romberg quadratures to PWC spin integra-
tion does increase the rate of convergence. Moreover, this
approach requires only a modest number of orbital slices.
Applying the Romberg algorithm to a sequence of qua-
ternion products constitutes an easy and fast means of
accelerating the convergence of spin integration. As a
consequence, we have not pursued further the use of

Bézier curves to speed up the computation of ~Ω.
Note that our initial motivation for using quaternions

was the factor of 2 savings in arithmetic they convey. After
discovering that Romberg applied to quaternions acceler-
ates the convergence of the spin motion, we have another—
much more significant—reason to use quaternions when
integrating the Thomas-BMT equation for spin motion.
Concerning the convergence of spin motion, we here

comment on what happens when simulating a system near a
spin-orbit resonance [16]. First, note that in such a system a
particle’s spin orientation becomes very sensitive to even
very tiny perturbations. As a consequence, if we follow a
single spin and ask for its motion to converge as we slice
the lattice ever more finely, we may never see that happen.
As with the orbital motion, we do not—cannot—ask for the
“exact result,” because the machine we build is not the one
we designed (though we hope it is close). We instead ask

for accurate qualitative dynamics, as revealed by phase-
space portraits.
Second, note that the integrators are particular to given

elements. In other words, they care only about the mapping
of phase-space coordinates across a single element:
zi at entrance → zf at exit. On the other hand, a resonance
condition can exist only in a ring: it is defined by the ring.
One might therefore expect that the choice of integrator is,
in some sense, independent of the proximity and strength of
a resonance. But this expectation can hold only if the
integrators are independent of, or have no effect on,
whatever properties define the resonance.
When using drift-kick integrators, we know the tune seen

in tracking data depends on how finely we slice our
elements. What happens, then, as we approach a reso-
nance? If we increase the slicing so as to ensure con-
vergence, the effective tune changes. Hence the distance to
resonance changes, and the spin dynamics can appear quite
different—especially because of its sensitivity in the
neighborhood of a resonance. If, on increasing the slicing
we also retune the lattice, then the distance to resonance, as
defined by the orbital tunes, remains the same. But the
quadrupole strengths do change, and this implies a change
in the spin tune for a given simulated particle [16]. And so
again the distance to resonance changes, and again the spin
dynamics can appear quite different because of its sensi-
tivity in the neighborhood of a resonance.
Because BK/MK integrators yield the same linear orbital

tunes independently of slicing, they are not subject to the
same difficulties.
In addition to the improved accuracy and accelerated

convergence of spin tracking, our code benefits from the
significant speed-up it derives just from its implementation
on GPUs. As shown in Fig. 17, a reasonable estimate for
that benefit yields a speed-up factor of about 15. On a more
practical level, we note that on one of NVIDIA’s GeForce
TITAN GPU nodes, computing an ISF for RHIC at 104

phase-space locations using 103 turns takes less than fifteen
minutes.
Finally, we are currently implementing integrators for

other types of optical elements. These include electrostatic
lenses, which are important for simulating EDM experi-
ments, as well as better models for Siberian snakes.
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