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Solutions to the Thomas-Bargmann-Michel-Telegdi spin equation for spin 1=2 particles have to date
been confined to the single-resonance crossing. However, in reality, most cases of interest concern the
overlapping of several resonances. While there have been several serious studies of this problem, a good
analytical solution or even an approximation has eluded the community. We show that this system can be
transformed into a Hill-like equation. In this representation, we show that, while the single-resonance
crossing represents the solution to the parabolic cylinder equation, the overlapping case becomes a
parametric type of resonance.
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I. INTRODUCTION

Two-level systems have been much studied in various
branches of physics and have presented themselves early on
in the development of quantum mechanics. In the accel-
erator physics community, similar problems emerge from
the Thomas-BMT (Bargmann, Michel, and Telegdi) equa-
tion used to model the spin dynamics which particles
undergo in a beam line. A well-developed theoretical
apparatus exists to handle the various spin-depolarizing
resonances. Essentially, it rests upon our understanding of
solutions to the single-resonance model via the Froissart-
Stora formula [1] for accelerating particles and harmonic
oscillations for the stationary case.
However, in many cases, the presence of nearby spin

resonances casts doubt upon the veracity of our under-
standing. So an approach to handle the interference of
nearby spin resonances has been long sought after. Several
efforts were made to understand the effect of nearby
resonances. One approach based on classifying the prox-
imity and strength of resonances was developed by Lee
[2,3] and Tepikian [4] 18 years ago. However, this approach
could not explain the case when the resonances nearly
overlapped and the particle was accelerating. Later, in
2004, with some limited degree of success, Mane [5]
developed an approximation based on the first-order
Magnus expansion, and applied, ad hoc, a modified
resonance strength to the Froissart-Stora formula. In this
paper, we present an approach that casts the problem into a
form permitting a clearer understanding of the underlying
dynamics and admits a good perturbation approximation.
Next, formulas are developed for the case when there is
both zero and nonzero acceleration present. These new

approximations might be of value for several current issues:
For example, in the Alternating Gradient Synchrotron
(AGS) and the Relativistic Heavy Ion Collider (RHIC),
there are certain cases when imperfections and intrinsic
resonances may be close enough and strong enough to
warrant a treatment that considers the overlapping dynam-
ics. In the RHIC lattice with the snakes off, this occurs at
Gγ ¼ 393þ ν, 411 − ν, where the intrinsic resonances are
≈0.4 at 10π mmmrad. At this strength, the intrinsic
resonance can overlap either with its imperfection or with
neighboring intrinsic resonances. It has been observed that
this type of overlap can reduce the polarization trans-
mission through the strong intrinsic resonances with
snakes. For example, experience with a lattice designed
to accommodate the phase advance necessary for the
operation of the electron lens beam-beam compensation
appears to show a reduced polarization transmission during
the acceleration ramp. This new lattice has raised the
strength of the neighboring resonances even while reducing
the strong intrinsic resonance [6]. If taken individually,
tracking and theory show that the two RHIC snakes should
be enough to prevent depolarization at these resonance
strengths. However, the overlapping mechanism appears to
reduce the effectiveness of the snakes. In the AGS, the use
of a strong partial snake might be modeled as a strong
imperfection resonances, and, thus, the crossing of an
intrinsic resonance may be considered as an overlapping
intrinsic resonance with a strong imperfection resonance
due to the partial snake [7]. This formalism might also be
useful to analyze and reinterpret the phenomenon of spin
echo, where the repeated crossings of given resonances can
lead to spin recoherence [8]. Finally, it also could prove
useful in extending the range of validity of the single-
resonance analytical stroboscopic formula developed by
Mane [9], since we will show that the single-resonance
solution remains valid in the overlapping case, up to the
onset of the parametric-resonance region. In the parametric-
resonance region, the nonaccelerating formula derived here
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might be useful to develop a single turn spin map with
snakes which can then provide solutions for the cases with
rational tunes and perhaps irrational tunes following
Mane’s approach.

II. THOMAS-BMT EQUATION IN SPINOR FORM

The dynamics of the spin vector of a charged particle in
the laboratory frame is described by the Thomas-BMT
equation

d~S
dt

¼ e
γm

~S × ðð1þ GγÞ~B⊥ þ ð1þGÞ~B∥Þ; ð1Þ

~S is the spin vector of a particle in the rest frame, and ~B⊥
and ~B∥ are defined in the laboratory rest frame with respect
to the particle’s velocity. G ¼ g−2

2
is the anomalous

magnetic moment coefficient, and γmc2 is the energy of
the particle. Here we neglect the electric fields. We can
transform this equation by expanding about a reference
orbit described by the Frenet-Serret coordinate system
shown in Fig. 1. Thus, we have

dx̂
ds

¼ ŝ
ρ
;

dŝ
ds

¼ −
x̂
ρ
; and

dẑ
ds

¼ 0; ð2Þ

where ρ is the local radius of curvature for the reference
orbit. This is satisfactory for a trajectory in the plane (no
vertical bends). Particle motion can be parameterized in this
coordinate system as

~r ¼ ~roðsÞ þ xx̂þ zẑ: ð3Þ

Here, ~roðsÞ is the reference orbit, and ŝ ¼ d~ro=ds. The
velocity becomes

~v ¼ d~r
dt

¼ ds
dt

�
x0x̂þ

�
1þ x

ρ

�
ŝþ z0ẑ

�
≈ vðx0x̂þ ŝþ z0ẑÞ; ð4Þ

~v0 ¼ v

��
x00 −

1

ρ

�
x̂þ x0

ρ
ŝþ z00ẑ

�
: ð5Þ

All primes 0 represent derivatives with respect to s. The
transverse magnetic field now can be expressed as

~B⊥ ¼ 1

v2
ð~v × ~BÞ × ~v

¼ Bρ

�
1 −

x
ρ

���
x00 −

1

ρ

�
ẑþ z0

ρ
ŝ − z00x̂

�
; ð6Þ

where we have employed ds
dt ≈ vð1 − x=ρÞ and

~v × ~B ¼ γmc
e

d~v
dt. We also note that B⊥ρ ¼ γmcv=e is the

particle’s magnetic rigidity. To the first order, ~B∥ is found to
be

~B∥ ≈ ðBs þ Bzz0Þŝ: ð7Þ

By using the dipole guiding field Bz ¼ −B⊥ρ=ρ, the Bs
field can be derived from Maxwell’s equations, obtaining

∂Bs

∂z ¼ ∂Bz

∂s ¼ −ðBρÞ
�
1

ρ

�0
; ð8Þ

Bs ¼ −Bρz
�
1

ρ

�0
: ð9Þ

Neglecting higher-order terms,

~B∥ ≈ −Bρ
�
z
ρ

�0
ŝ: ð10Þ

Then, by using d
dt ¼ v

ρþx
d
dθ, the Thomas-BMT equation

becomes

d~S
dθ

¼ ~S × ~F; ð11Þ

where ~F ¼ F1x̂þ F2ŝþ F3ẑ, and the elements are

F1 ¼ −ρz00ð1þ GγÞ;

F2 ¼ ð1þGγÞz0 − ρð1þ GÞ
�
z
ρ

�0
;

F3 ¼ −ð1þ GγÞ þ ð1þGγÞρx00: ð12Þ

By using dx̂
dθ ¼ ŝ and dŝ

dθ ¼ −x̂, Eq. (11) becomes

FIG. 1. The curvilinear coordinate system for a particle motion
in a circular accelerator. x̂, ŝ, and ẑ are the transverse radial, the
longitudinal, and the transverse vertical unit basis vectors, and
~r0ðsÞ is the reference orbit.
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dS1
dθ

¼ ð1þ F3ÞS2 − F2S3;

dS2
dθ

¼ −ð1þ F3ÞS1 þ F1S3;

dS3
dθ

¼ F2S1 − F1S2: ð13Þ

Expressed in the rotating frame, Eq. (11) then becomes

d~S
dθ

¼ ~n × ~S; ð14Þ

where ~n ¼ −½F1x̂þ F2ŝþ ð1þ F3Þẑ�. Since we are con-
cerned only with spin 1=2 particles, we can employ the well-
developed spinor formalism. By using the Pauli matrices

σx ¼
�
0 1

1 0

�
; σs ¼

�
0 −i
i 0

�
;

and σz ¼
�
1 0

0 −1

�
; ð15Þ

the polarization can be given by

~S ¼ Ψ†~σΨ: ð16Þ

Then substituting Eq. (16) into the left side of Eq. (14)
yields

d~S
dθ

¼ dΨ†

dθ
~σΨþΨ†~σ

dΨ
dθ

: ð17Þ

By using ½~σ · ~n; ~σ� ¼ 2ið~n × σÞ, the right-hand side becomes

~n × ~S ¼ −
i
2
ðΨ†~σÞ~σ · ~nΨþ i

2
Ψ†~σ · nð~σΨÞ: ð18Þ

Finally, equating both sides gives us

dΨ
dθ

¼ −
i
2

�
f3 −ξ
ξ� −f3

�
Ψ; ð19Þ

where ξðθÞ ¼ F1 − iF2 and f3 ¼ ð1þ F3Þ with

F1 ¼ −ρz00ð1þ GγÞ;

F2 ¼ ð1þGγÞz0 − ρð1þ GÞ
�
z
ρ

�0
;

F3 ¼ −ð1þ GγÞ þ ð1þGγÞρx00: ð20Þ

Here, θ is the orbital angle that remains constant outside the
bends. Although the spinor function Ψ is similar in form to
the quantum-mechanical-state function, in this case ~S is a
classical vector. However, as in the former case, this two-
component spinor is defined:

Ψ ¼
�
u
d

�
: ð21Þ

u and d are complex numbers representing the up and down
components, respectively. The components of the spin
vector become

S1 ¼ u�dþ ud�;

S2 ¼ −iðu�d − ud�Þ;
S3 ¼ juj2 − jdj2: ð22Þ

Because H ¼ ð~σ · ~nÞ is Hermitian,

j~Sj ¼ juj2 þ jdj2 ¼ Ψ†Ψ; ð23Þ

and the magnitude of the spin vector remains constant. We
chose the normalization condition for the spinor function to
be Ψ†Ψ ¼ 1. Moving to the interaction frame by using the
transformation

ΨðθÞ ¼ e−
i
2

R
θ

0
f3ðtÞdtσ̂zΨIðθÞ;

ξ̂ðθÞ ¼ ξðθÞei
R

θ

0
f3ðtÞdt ð24Þ

yields the following:

dΨþ
I

dθ
¼ i

2
ξ̂Ψ−

I ;
dΨ−

I

dθ
¼ i

2
ξ̂�Ψþ

I : ð25Þ

These equations can be cast into a standard second-order
homogeneous linear differential equation with variable
coefficients:

d2Ψþ
I

dθ2
−
�
if3ðθÞ þ

ξ0ðθÞ
ξðθÞ

�
dΨþ

I

dθ
þ ξðθÞξðθÞ�

4
Ψþ

I ¼ 0:

ð26Þ

III. HILL-LIKE DIFFERENTIAL EQUATION

It is possible to eliminate the first-order derivative in
Eq. (26) to obtain a Hill-like differential equation

d2q
dθ2

¼ Ω2ðθÞq ð27Þ

by using the following definitions:

βðθÞ ¼ −
�
if3ðθÞ þ

ξ0ðθÞ
ξðθÞ

�
;

Ω2ðθÞ ¼ β0ðθÞ
2

þ βðθÞ2
4

−
ξðθÞξðθÞ�

4
;

DðθÞ ¼ 1

2

Z
θ
dτβðτÞ; qðθÞ ¼ eDðθÞΨþ

I ðθÞ: ð28Þ
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Evaluating Ω2ðθÞ, we get

Ω2ðθÞ ¼ −
if03
2

−
f23
4
þ i

f3
2

�
ξ0ðθÞ
ξðθÞ

�

þ 3

4

�
ξ0ðθÞ
ξðθÞ

�
2

−
1

2

�
ξ00ðθÞ
ξðθÞ

�
−
ξðθÞξðθÞ�

4
: ð29Þ

While formally this looks similar to Hill’s equation,Ω2 when
undergoing acceleration is not periodic. Considering the form
of Eq. (29), we see that Ω2ðθÞ will have oscillating terms
from the transverse motion due to z. In fact, the standard
approach is to expand F1 − iF2 into a Fourier series:

ξðθÞ ¼ F1 − iF2 ¼
X
K

εKe−iKθ ð30Þ

wherein the Fourier coefficient or resonance strength εK is
given by the following:

εK ¼ −
1

2π

I �
ð1þ GγÞðρz00 þ iz0Þ

− iρð1þGÞ
�
z
ρ

�0�
eiKθdθ: ð31Þ

Here, K is the resonance spin tune. Also, usually the ð1þ
GγÞρx00 term is ignored to first order. In the case when Gγ is
constant, the equation reduces to a normal Hill equation with
a constant piece defined byGγ and an oscillating piece given
by the Fourier expansion. In this case, we have parametric
resonances whenever the constant- or polynomial- f3 terms
equal the frequency of the ξ terms. For a single resonance, the

oscillating pieces coming from ξ0ðθÞ
ξðθÞ and ξðθÞξðθÞ�

4
cancel out

each other, and thewhole ofΩ2ðθÞ is constant and becomes a
simple harmonic oscillator. In the caseGγðθÞ is not constant,
but still we have only a single-resonance term in ξðθÞ, then in
Ω2ðθÞ all oscillating terms cancel each other as before, but we
acquire a polynomial in θ. If the acceleration is linear, then it
is a second-order polynomial solvable via Refs. [1,8]. In the
case when there are both accelerating Gγ and multiple
frequency terms in ξ, then Ω2ðθÞ has both polynomial and
oscillating terms that make the solution much more
challenging.
However, following Refs. [10,11], who considered a

similar system with linear terms and multiple frequency
terms, we can break up the Ω2 into regions where the
polynomial terms dominate and those where the parametric
resonance dominates and then attempt a piecewise approxi-
mation that captures the important dynamics of this system.
Since the 1

ξðθÞ term presents the most problems, we will

expand this to obtain an adequate approximation.
Considering only two resonances, one strong and the other
weak, we expand to first order in the small parameter
ϵ ¼ a2=a1, where a1 is the absolute value of the stronger
resonance εK1

and a2 represents the weaker

1

ξðθÞ ¼
1

a1e−iðK1θþϕ1Þ þ a2e−iðK2θþϕ2Þ

≈
eiðK1θþϕ1Þ

a1
ð1 − ðϵeiΔϕÞeiδθÞ: ð32Þ

Here, ϕ1;2 are the phases of the εK1;K2
, Δϕ ¼ ϕ1 − ϕ2, and

δ ¼ K1 − K2. Now, we can generate a new approximate
βðθÞ and DðθÞ:

βðθÞ ≈ −ðif3ðθÞ − iK1 þ iδϵeiδθþiΔϕÞ; ð33Þ

DðθÞ ≈ 1

2

�
ϵð1 − eiδθÞeiΔϕ − 1

2
iθðαθ þ 2κ0 − 2K1Þ

�
:

ð34Þ

Here, we have assumed thatGγ is constantly ramping at the
rate α, defining f3ðθÞ ¼ κ0 þ αθ with the initial Gγ0 ¼ κ0.
Now calculating Ω2 we keep only the first-order terms in

ϵ to get the following:

Ω2ðθÞ ≈W2
0 þ C1θ þ C2θ

2 þ CrðθÞeiðδθþΔϕÞ

þ C−re−iðδθþΔϕÞ;

W2
0 ¼ −i

α

2
−
κ20
4
þ K1κ0

2
−
K2

1

4
−
a21
4
;

C1 ¼ α
K1 − κ0

2
; C2 ¼ −

α2

4
; C−r ¼ −ϵ

a21
4
;

CrðθÞ ¼
��

−
a21
4
þ δ2

2
þ δðK1 − κ0Þ

2

�
−
αδ

2
θ

�
ϵ: ð35Þ

IV. OUTSIDE PARAMETRIC RESONANCE

It has been shown by Refs. [10,11] and others that, for a
system which crosses a parametric resonance, a decent
approximation can be achieved in a piecewise fashion. The
oscillatory parts of the kernel contribute only inside the
region of the so-called parametric-resonance tongue. This
region is defined by using the following:

W2
0 þ C1θ þ C2θ

2 ≈ δ2=4� jCaj=2: ð36Þ

Here, Ca is the amplitude of the resonant oscillatory term.
Outside the region of the parametric-resonant tongue, we
can ignore the oscillatory pieces of Ω2. The approximate
Ω2 for this region then becomes

Ω2
cðθÞ ≈W2

0 þ C1θ þ C2θ
2: ð37Þ

For this Ω2
c, solutions exist in the form of so-called

parabolic cylinder functions DνðxÞ. However, to provide
easier contact with the standard derivation, this is really just
the original solution to the single-resonance formula given
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in Refs. [1,8] [i.e., solving Eq. (26) with
ξðθÞ ¼ a1e−iðK1θþϕ1Þ].
This solution is valid up to the parametric-resonance-

tongue region. For this particular case, the location of the
dominant 2∶1 parametric resonance is θ ¼ θr, which is
found by solving Eq. (36) for θ setting Ca ¼ 0:

θ�r ¼ Re

�
−C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 − C2δ

2 − 4C2W2
0

p
2C2

�
: ð38Þ

So we see that there are two possible parametric-resonance
regions represented by the two roots (θ�r). The boundaries
for the parametric-resonance region are derived likewise by
solving Eq. (36) for θ with now Ca ¼ jCþrj þ jC−rj, where
Cþr ¼ CrðθrÞ. So for the θþr root we have the following:

θþr� ≈ Re

�
−C1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 2C2jCaj − C2δ

2 − 4C2W2
0

p
2C2

�
;

ð39Þ

where þr� represents the two boundaries for the given
parametric-resonance tongue. In Fig. 2, a plot of these
boundaries is shown for one case. These two formulas for
the location [Eq. (38)] and the boundaries for the para-
metric-resonance region [Eq. (39)] represent an important
and potentially very useful result of this work. It demarks
the locations in θ where the simpler single-resonance
solution is valid.
One can also notice that Eq. (38) may have a nonzero

imaginary part (which is why we take only the real part).
This indicates that the parametric resonance is not on the
real number line and we never actually cross that condition.
However, the effects of the parametric resonance can
still be observed provided jCaj is large enough as you
can see in Fig. 3. This can be tested by seeing if
jCaj ≥ j2Ωcðθ�rÞ � δ2

2
j.

V. INSIDE PARAMETRIC RESONANCE

Inside the parametric-resonant region, we must consider
contributions to the solution from the oscillatory parts that
are in resonance. So for our case, an approximate solution
can be developed following Refs. [10,11], by using the
multiscales method. We expand around the parametric
resonance θ ¼ θr and rewrite Ω2ðθ þ θrÞ:

Ω2ðθ þ θrÞ ≈ −
δ2

4
þ ϵ21μθ þ ϵ1ðse�ðiδθþiχÞ þ ϵ2e∓ðiδθþiχÞÞ;

ϵ1 ¼ jC�rj; s ¼ sgnðC�rÞ; σ1 ¼ C1 þ 2C2θr;

μ ¼ σ1=ϵ21; ϵ2 ¼ C∓r=ϵ1; χ ¼ δθr þ Δϕ: ð40Þ

Here, we make several approximations. We drop both
the C2θ

2 and ϵ αδθ
2

inside Crðθ þ θrÞ, since, during the
resonance crossing (around θr), they are small relative to
the other terms. We chose the� equations, depending upon
which terms C�r has the larger magnitude. Considering
for now that Cþr is larger, we can follow Refs. [10,11].
By defining new coordinates η ¼ ϵ1θ and t ¼ θ, our
differential equation becomes (keeping only first-order
ϵ1 terms)

∂2q
∂t2 þ 2ϵ1

∂2q
∂t∂η ¼

�
−
δ2

4
þ ϵ1μη

þ ϵ1ðseiδtþiχ þ ϵ2e−iδt−iχÞ
�
q: ð41Þ

Next, expanding q ¼ q0 þ ϵ1q1 and collecting the zero and
first-order terms in ϵ1, we get

FIG. 2. jCaj versus orbital angle θ showing the two 2∶1
parametric-resonant-tongue regions. Here initial Gγ ¼ κ0 ¼ 0.0,
K1 ¼ 1.673, K2 ¼ 2.4, and α ¼ 3.18 × 10−5.

FIG. 3. jCaj versus orbital angle θ showing the two 2∶1
parametric-resonant-tongue region. Here initial Gγ ¼ κ0 ¼ 0.0,
K1 ¼ 1.673, K2 ¼ 2.0, and α ¼ 3.18 × 10−5. Now the para-
metric-resonance region requires a minimum jCaj ≥ 0.0265
to cross.
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∂2q0
∂t2 ¼ −

δ2

4
q0;

∂2q1
∂t2 þ 2

∂2q0
∂t∂η ¼ −

δ2

4
q1 þ q0ðμηþ seiδtþiχ þ ϵ2e−iδt−iχÞ:

ð42Þ
The solution for the zeroth-order term is

q0ðη; tÞ ¼ AðηÞeiδt=2 þ BðηÞe−iδt=2: ð43Þ

Canceling the secular terms in the q1 equation leads us to a
pair of coupled first-order equations for the A and B
coefficients:

dB
dη

¼ iμη=δBþ iϵ2=δe−iχA; ð44Þ

dA
dη

¼ −iμη=δA − is=δeiχB: ð45Þ

This can be rewritten as a single second-order equation:

B00 ¼ ðiμ=δþ ϵ2s=δ2 − μ2=δ2η2ÞB; ð46Þ

whose two particular solutions are the parabolic cylinder
functions

D−iν

�
−ð1 − iÞ

ffiffiffiffiffi
σ1
δ

r
θ

�
; D−1þiν

�
ð1þ iÞ

ffiffiffiffiffi
σ1
δ

r
θ

�
;

ð47Þ

with ν ¼ ϵ2s
2δμ. Using Eq. (44), we can develop a solution for

AðηÞ. Thus, the q0 approximation becomes the following:

q0ðθÞ ¼ B1q
ð1Þ
0 ðθÞ þ B2q

ð2Þ
0 ðθÞ;

qð1Þ0 ðθÞ ¼ e−
iδθ
2

ϵ1ϵ2

�
ðϵ1ϵ2 − 2eiχþiδθσ1θÞD−iν

�
−ð1 − iÞ

ffiffiffiffiffi
σ1
δ

r
θ

�
þ ð−1 − iÞ

ffiffiffi
δ

p ffiffiffiffiffi
σ1

p
eiχþiδθD1−iν

�
−ð1 − iÞ

ffiffiffiffiffi
σ1
δ

r
θ

��
;

qð2Þ0 ðθÞ ¼ e−
iδθ
2

ϵ1ϵ2

�
ð−1þ iÞ

ffiffiffi
δ

p ffiffiffiffiffi
σ1

p
eiχþiδθDiν

�
ð1þ iÞ

ffiffiffiffiffi
σ1
δ

r
θ

�
þ ϵ1ϵ2D−1þiν

�
ð1þ iÞ

ffiffiffiffiffi
σ1
δ

r
θ

��
: ð48Þ

It is also useful to give the values for qð1;2Þ00 :

qð1Þ00 ðθÞ ¼ −
ie−

1
2
iδθ

2δϵ1ϵ2

�
ðϵ1ϵ2ðδ2 þ 2θσ1Þ þ 2σ1ð−2θ2σ1 þ δðδθ − 2iÞÞeiðδθþχÞÞD−iν

�
ð−1þ iÞθ

ffiffiffiffiffi
σ1
δ

r �

þ ð1þ iÞ
ffiffiffi
δ

p ��
−4δ3=2θ

�
σ1
δ

�
3=2

eiðδθþχÞ þ δ2
ffiffiffiffiffi
σ1

p
eiðδθþχÞ − 2θσ3=21 eiðδθþχÞ þ 2

ffiffiffi
δ

p
ϵ1ϵ2

ffiffiffiffiffi
σ1
δ

r �

×D1−iν

�
ð−1þ iÞθ

ffiffiffiffiffi
σ1
δ

r �
þ ð−2 − 2iÞδ ffiffiffiffiffi

σ1
p ffiffiffiffiffi

σ1
δ

r
eiðδθþχÞD2−iν

�
ð−1þ iÞθ

ffiffiffiffiffi
σ1
δ

r ���
; ð49Þ

qð2Þ00 ðθÞ ¼ e−
1
2
iδθ

2δϵ1ϵ2

�
−ð1þ iÞ

ffiffiffi
δ

p ��
δ2

ffiffiffiffiffi
σ1

p
eiðδθþχÞ þ 2θσ3=21 eiðδθþχÞ þ 2

ffiffiffi
δ

p
ϵ1ϵ2

ffiffiffiffiffi
σ1
δ

r �
Diν

�
ð1þ iÞθ

ffiffiffiffiffi
σ1
δ

r �

þ ð−2þ 2iÞδ ffiffiffiffiffi
σ1

p ffiffiffiffiffi
σ1
δ

r
eiðδθþχÞDiνþ1

�
ð1þ iÞθ

ffiffiffiffiffi
σ1
δ

r ��
− iϵ1ϵ2ðδ2 − 2θσ1ÞDiν−1

�
ð1þ iÞθ

ffiffiffiffiffi
σ1
δ

r ��
: ð50Þ

Solutions where the magnitude of C−r is larger can be
derived by permuting s with ϵ2 in Eq. (48) and picking the
corresponding C�r terms for ϵ1;2 in Eq. (40). With further
consideration, expressions for q1ðθÞ also can be developed,
but they are large and the q0 approximation usually
suffices, since the important contributions of the order ϵ1
terms come in via the AðηÞ and BðηÞ coefficients used in q0.
The B1;2 coefficients can be found by using standard
boundary-matching methods. One approach is to develop
a matrix transport for these equations using the up and
down spinors. This can be accomplished by using a matrix
of the spin up and down solutions:

~WðθÞ ¼
�
ψþ
1 ðθÞ ψþ

2 ðθÞ
ψ−
1 ðθÞ ψ−

2 ðθÞ

�
ð51Þ

with

ψþ
1;2ðθÞ ¼ qð1;2Þ0 ðθ − θrÞe−DðθÞ;

ψ−
1;2ðθÞ ¼ −2i

ψþ0
1;2ðθÞ
ξ̂

¼ −2i
e−DðθÞðqð1;2Þ00 ðθÞ − 1

2
βðθÞqð1;2Þ0 ðθÞÞ

ξ̂
ð52Þ
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for the parametric-resonance regions. Here we have used
Eq. (25) to obtain the ψ− solution. For the nonparametric
region we have

ψþ
1 ðθÞ ¼ M

�
iq;

1

2
;
i
2
αθ2
�
;

ψþ
2 ðθÞ ¼

i
2
a1θe

i
2
αθ2−iϕ1M

�
1 − iq;

3

2
;−

i
2
αθ2
�
;

ψ−
1 ðθÞ ¼ −ψþ�

2 ðθÞ; ψþ
2 ðθÞ ¼ ψþ�

1 ðθÞ; q ¼ a21
8α

:

ð53Þ

This is of course the Froissart-Stora derived solution [1].
Mða; b; xÞ is the confluent hypergeometric function. Thus
the spin transport map across each region from an arbitrary
initial θi becomes

~Mðθ; θiÞ ¼ ~WðθÞ ~W−1ðθiÞ;
ΨIðθÞ ¼ ~Mðθ; θiÞΨIðθiÞ: ð54Þ

So, for example, the transport matrix that can take one from
a nonparametric-resonance region across a 2∶1 parametric
resonance would look like

~U−rðθ; θiÞ ¼ ~Mfsðθ; θ−rþÞ ~M−rðθ−rþ; θ−r−Þ ~Mfsðθ−r−; θiÞ:
ð55Þ

Here fs (Froissart-Stora) denotes the nonparametric-
resonance region and −r the θ−r parametric-resonance
region. In many cases, one crosses two parametric-
resonance regions given by the two roots of Eq. (38)
θ�r. Thus the total transport across the two regions
becomes

UT
�!ðθ; θiÞ ¼ ~Uþrðθ; θþr−Þ ~U−rðθ−r−; θiÞ;�
ΨðθÞþ
ΨðθÞ−

�
¼ UT
�!ðθ; θiÞ

�
ΨðθiÞþ
ΨðθiÞ−

�
; ð56Þ

SyðθÞ ¼ 2jΨþðθÞj2 − 1: ð57Þ

We have assumed that θþr > θ−r and that θ�rþ > θ�r−.
Depending on the values, this may or may not be true, and
the matrices should naturally be adjusted according to their
order in θ.
The transport matrices ~Mfs outside the parametric-

resonance tongue are unitary; however, inside the para-
metric-resonance-tongue region, the perturbed solutions are
not unitary. We can trivially enforce unitarity on the final
result at any point by normalizing the up and down

solutions (i.e., Ψþ
N ¼ Ψþ

Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΨþ

I j2þjΨ−
I j2

p ). As will become evident

in the section on error analysis, this does not appear to

significantly degrade the accuracy of the final
approximation.

VI. NONACCELERATING SOLUTIONS

It is noteworthy that we also can derive the nonaccel-
erating case (when α ¼ 0), starting from Eq. (46) and
letting μ ¼ 0, since α ¼ 0. To ensure this approximation
works well off the parametric resonance (this is lost when
α ¼ 0), we also expand in powers of ϵ1 about the para-
metric resonance (δ2=4 ¼ W2

0) and introduce a deviation w1

from the parametric resonance to obtain

W2
0 ¼

δ2

4
þ ϵ1w1;

w1 ¼
W2

0 − δ2=4
ϵ1

: ð58Þ

We can now develop a new AðηÞ and BðηÞ:

AðηÞ ¼ δ

ϵ2
ðB1f−ef0η þ B2fþe−f0ηÞ;

BðηÞ ¼ B1ef0η þ B2ef0η; ð59Þ

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sϵ2 − w2

1

δ2

s
; ð60Þ

f� ¼
�
w1

δ
� if0

�
eiΔϕ; ð61Þ

and then a new q0ðθÞ:

q0ðθÞ ¼ B1q
ð1Þ
0 ðθÞ þ B2q

ð2Þ
0 ðθÞ;

qð1Þ0 ðθÞ ¼ ef0ϵ1θ
�
fþ

δ

ϵ2
eiδθ=2 þ e−iδθ=2

�
;

qð2Þ0 ðθÞ ¼ e−f0ϵ1θ
�
f−

δ

ϵ2
eiδθ=2 þ e−iδθ=2

�
: ð62Þ

In this case, there is benefit in adding the q1ðθÞ term to our
approximation, as one’s energy deviates from the para-
metric resonance. As well, the additional terms are not so
cumbersome as in the accelerating case. To accomplish this
requires solving for q1 in the following equation:

∂2q1
∂t2 þ 2

∂2q0
∂t∂η ¼ −

δ2

4
q1 − q0w1

þ ðseiδtþiχ þ ϵ2e−iδt−iχÞq0: ð63Þ

Using Eq. (59) for A and B cancels the secular terms, so we
are left with the following nonhomogeneous equation:
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∂2q1
∂t2 þ δ2

4
q1 ¼ sAðηÞei3δt=2þiΔϕ

þ BðηÞϵ2e−i3δt=2−iΔϕ: ð64Þ

This can be solved to give the first-order contribution:

q1ðθÞ ¼ B1q
ð1Þ
1 ðθÞ þ B2q

ð2Þ
1 ðθÞ;

qð1Þ1 ðθÞ ¼ ef0ϵ1θ

2δ2

�
ei

3δθ
2
−iΔϕϵ2 þ e−i

3δθ
2
þΔϕ sδf−

ϵ2

�
;

qð2Þ1 ðθÞ ¼ e−f0ϵ1θ

2δ2

�
ei

3δθ
2
−iΔϕϵ2 þ e−i

3δθ
2
þΔϕ sδfþ

ϵ2

�
: ð65Þ

As before, to obtain the (þ) or (−) solutions, we just
permute ϵ2 and s depending on if Cþr is larger or C−r. It is
also useful to find the analogues of Eqs. (38) and (39), the
location of the parametric resonance and its boundaries in
κ0 or Gγ space:

κ�r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a21 þ δ2

q
þ K1; ð66Þ

κþr� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a21 � 2jCaj þ δ2

q
þ K1: ð67Þ

Here again �r for Eq. (66) represent the two parametric
resonances andþr� for Eq. (67) the two resonance-tongue
boundaries for each parametric resonance. With these
solutions and boundaries, we can now build the spin
transport matrices for Eq. (51). Now our ψ�

1;2 become

qð1;2ÞðθÞ ¼ qð1;2Þ0 ðθÞ þ ϵ1q
ð1;2Þ
1 ðθÞ;

ψþ
1;2ðθÞ ¼ qð1;2ÞðθÞe−DðθÞ;

ψ−
1;2ðθÞ ¼ −2i

ψþ0
1;2ðθÞ
ξ̂

¼ −2i
e−DðθÞðqð1;2Þ0ðθÞ − 1

2
βðθÞqð1;2ÞðθÞÞ

ξ̂
: ð68Þ

We also again derive the qð1;2Þ0 values:

qð1Þ0ðθÞ ¼ e−
3iδθ
2
−iΔϕþf0θϵ1

4δ2ϵ2
ð2δ3fþeið2δθþΔϕÞð2f0ϵ1 þ iδÞ

þ 2δ2ϵ2eiðδθþΔϕÞð2f0ϵ1 − iδÞ þ ϵ1ϵ
2
2e

3iδθð2f0ϵ1 þ 3iδÞ þ δeð1þiÞΔϕf−sϵ1ð2f0ϵ1 − 3iδÞÞ; ð69Þ

qð2Þ0ðθÞ ¼ −
ie−

3iδθ
2
−iΔϕ−f0θϵ1

4δ2ϵ2
ð−2δ3f−eið2δθþΔϕÞðδþ 2if0ϵ1Þ

þ 2δ2ϵ2eiðδθþΔϕÞðδ − 2if0ϵ1Þ − ϵ1ϵ
2
2e

3iδθð3δþ 2if0ϵ1Þ þ δeð1þiÞΔϕfþsϵ1ð3δ − 2if0ϵ1ÞÞ: ð70Þ

As in the accelerating case, the transport matrices inside the
parametric-resonance region are not unitary.
It is also worth pointing out that, for two special cases, an

exact solution for q is possible. If the amplitude of either
the positive or negative frequency dominates (i.e., jϵ2j ≈ 0),
the other frequency can be ignored. For example, if
a21 ¼ 2δ2 þ 2δðK1 − κ0Þ, then the Cþr term is zero and
the q differential equation becomes

q00 ¼
�
W2

0−
1

4
a21ϵe

−iδθ−iΔϕ
�
q;

qð1ÞðθÞ¼ð−1Þ−iW0
δ Γ
�
1−

2iW0

δ

�
I−2iW0

δ

 
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−iΔϕ−iδθ

W2
0

q
W0

ffiffiffi
ϵ

p

δ

!
;

qð2ÞðθÞ¼ð−1ÞiW0
δ Γ
�
2iW0

δ
þ1

�
I2iW0

δ

 
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−iΔϕ−iδθ

W2
0

q
W0

ffiffiffi
ϵ

p

δ

!
:

ð71Þ

Here IνðxÞ are modified Bessel functions of the first kind.
Alternatively, if jϵ1j ≈ 1, which occurs when jCþrj ¼ jC−rj,

then the oscillating pieces become a single cosine or sine
function, and again an exact analytical solution is possible
via Mathieu functions. For example, when δ ¼ 0 or when
δ ¼ κ0 − K1, we get

q00 ¼
�
W2

0 −
1

2
a21ϵ cosðδθ þ ΔϕÞ

�
q;

qð1ÞðθÞ ¼ MathieuC

�
−
4W2

0

δ2
;−

a21ϵ
δ2

;
1

2
ðδθ þ ΔϕÞ

�
;

qð2ÞðθÞ ¼ MathieuS

�
−
4W2

0

δ2
;−

a21ϵ
δ2

;
1

2
ðδθ þ ΔϕÞ

�
: ð72Þ

VII. ERROR ANALYSIS

We compared 356 points, scanning the parameters
between δ ¼ 1 to 0.001 from a1 ¼ 0.0005–1.0 and a2 ¼
0.0001–0.1 at α ¼ 3.18 × 10−5 for Δϕ ¼ 0; π; π=2 (see
Fig. 4). For this sample, we kept the ratio of the dropped
terms ϵ αδθ

2
þ C2θ

2 to the remaining terms in Eq. (40) < 1
(this implies limits on δ, since Cþr and σ1 have dependence
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on δ). When we compared our approximate results against
direct numerical integration, as well as to the product of the
Froissart-Stora formula applied to a1 and a2, we found that,
when the absolute difference between the numerical and
Froissart-Stora formula was ≥ 30%, our approximation
provided a better result. This correlated with the region of
"nearly and overlapping resonance" defined in Ref. [12] as
jδj ≥ a1, and jδj ≫ a2. In this region, the average error for
our approximation was 11%, while for Froissart-Stora it
was 150%. However, we found for some particular values
the errors for our approximation were > 30%. These could
be corrected by modifying the boundaries of the para-
metric-resonance region by ≈100 rad. We think that they
represent the limits of our current approximation for the
boundaries of the parametric-resonance region. Above
a1 ¼ 0.5 and a2 ¼ 0.1, we also began to see the effects
of the higher-order 1∶1 parametric resonances associated
with Ωc ¼ δ2. In this paper, we do not consider these
parametric resonances. As exemplified in Fig. 5, our

approximation also demonstrates an excellent qualitative
agreement. At θ ¼ 37426 rad the first 2∶1 parametric
resonance is apparent, and at θ ¼ 67793 rad the second
is seen. We observed similar results for α at an order of
magnitude slower (see Fig. 6). We have observed the range

FIG. 4. A 3D histogram of δ and the absolute difference
(jErrorj) between approximation and numerically calculated
values for the average final Sy (final 1000 rad) after crossing
K1 and K2 (100 000 rad in orbital angle). This represents 356
parameters spanning δ ¼ 1 − 0.001, a1 ¼ 0.0005–1.0, and a2 ¼
0.0001–0.1 at α ¼ 3.18 × 10−5 for Δϕ ¼ 0; π; π=2.

FIG. 5. Sy versus orbital angle θ with initial Gγ ¼ κ0 ¼ 0.0,
K1 ¼ 1.673, K2 ¼ 2.3, a1 ¼ 0.4, a2 ¼ 0.02, Δϕ ¼ 0, and
α ¼ 3.18 × 10−5. The red trace is direct numerical integration;
blue cross is piecewise approximation. One example is taken
from scans shown in Fig. 4.

FIG. 6. Sy versus θ with initial Gγ ¼ κ0 ¼ 0.0, K1 ¼ 1.673,
K2 ¼ 2.0, a1 ¼ 0.2, a2 ¼ 0.005, Δϕ ¼ 0, and α ¼ 3.18 × 10−6.
The red trace is direct numerical integration; blue cross is
piecewise approximation.

FIG. 7. Nonaccelerating case on parametric resonance. Sy
versus θ with κ0 ¼ 2.15583 (on parametric resonance),
K1 ¼ 1.673, K2 ¼ 2.3, a1 ¼ 0.4, a2 ¼ 0.02, and Δϕ ¼ 0. The
red trace is a direct numerical integration, while blue cross is
calculated without the ϵ1q1 terms in Eq. (65).

FIG. 8. Nonaccelerating case slightly off parametric resonance.
Sy versus θ with κ0 ¼ 1.19, K1 ¼ 1.673, K2 ¼ 2.3, a1 ¼ 0.4,
a2 ¼ 0.02, and Δϕ ¼ 0. The red trace is a direct numerical
integration, while blue cross is calculated by using Eq. (65).
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of validity for α from 0 through 10−3. It appears that we are
limited in α only by our ability to resolve the boundaries of
the parametric-resonance tongue. In Fig. 7, we compare the
results of the nonaccelerating approximation to direct
integration on a parametric resonance. For this case the
zeroth-order approximation for the nonaccelerating case
works well [Eq. (62)]. However, as we go off the parametric
resonance while staying in the region of resonance tongues
(see Fig. 8), the inclusion of the first-order terms appears
to help.

VIII. CONCLUSION

We present a new formalism to handle the two-level
problem which is common across many fields in physics
(e.g., classical quantum mechanics, spintronic, and MRI).
This approach transforms the problem into one of the
passage through a parametric resonance that then is handled
by using a multiscale technique to arrive at an analytic
approximation. This is a significant improvement to
Froissart-Stora in the overlap cases. Our work links the
Thomas-BMT equation to the much-studied parametric-
resonance tongues and, thus, offers a tool to easily predict
the range of validity in θ [using Eqs. (38) and (39)] for the
single-resonance approximation in a two-resonance system
and also defines the location of the actual parametric
resonance that in some cases can differ from K2.

ACKNOWLEDGMENTS

I thank Mike Blaskiewicz and Mei Bai for their fruitful
discussions and Mahshid Nirumand of Shiraz for her

inspiration. This work was supported under Contract
No. DE-AC02-98CH10886 with the U.S. Department of
Energy and used National Energy Research Scientific
Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

[1] M. Froissart and R. Stora, Nucl. Instrum. Methods 7, 297
(1960).

[2] S. Y. Lee, Phys. Rev. E 47, 3631 (1993).
[3] S. Y. Lee and M. Berglund, Phys. Rev. E 54, 806 (1996).
[4] S. Tepikian et al., Part. Accel. 20, 1 (1986).
[5] S. Mane, Nucl. Instrum. Methods Phys. Res., Sect. A 524,

80 (2004).
[6] V. H. Ranjbar et al., in Proceedings of the 4th International

Particle Accelerator Conference, IPAC-2013, Shanghai,
China, 2013 (JACoW, Shanghai, China, 2013), p. 1544.

[7] H. Huang, L. A. Ahrens, M. Bai, K. Brown, E. D. Courant,
C. Gardner, J. W. Glenn, F. Lin, A. U. Luccio, W.W.
MacKay, M. Okamura, V. Ptitsyn, T. Roser, J. Takano, S.
Tepikian, N. Tsoupas, A. Zelenski, and K. Zeno, Phys.
Rev. Lett. 99, 154801 (2007).

[8] A. Chao, Phys. Rev. ST Accel. Beams 8, 104001 (2005).
[9] S. Mane, Nucl. Instrum. Methods Phys. Res., Sect. A 498,

1 (2003).
[10] L. Ng, R. Rand, and M. O’Neil, J. Vib. Contr. 9, 685

(2003).
[11] J. Bridge, R. Rand, and S. M. Sah, J. Vib. Contr. 15, 1581

(2009).
[12] S. Y. Lee, Spin Dynamics and Snakes in Synchrotrons

(World Scientific, Singapore, 1997).

V. H. RANJBAR Phys. Rev. ST Accel. Beams 18, 014001 (2015)

014001-10

http://dx.doi.org/10.1016/0029-554X(60)90033-1
http://dx.doi.org/10.1016/0029-554X(60)90033-1
http://dx.doi.org/10.1103/PhysRevE.47.3631
http://dx.doi.org/10.1103/PhysRevE.54.806
http://dx.doi.org/10.1016/j.nima.2004.01.067
http://dx.doi.org/10.1016/j.nima.2004.01.067
http://dx.doi.org/10.1103/PhysRevLett.99.154801
http://dx.doi.org/10.1103/PhysRevLett.99.154801
http://dx.doi.org/10.1103/PhysRevSTAB.8.104001
http://dx.doi.org/10.1016/S0168-9002(02)01992-7
http://dx.doi.org/10.1016/S0168-9002(02)01992-7
http://dx.doi.org/10.1177/1077546303009006004
http://dx.doi.org/10.1177/1077546303009006004
http://dx.doi.org/10.1177/1077546309103263
http://dx.doi.org/10.1177/1077546309103263

