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Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the
attention of mathematical physicists for the last several decades, following the discovery of some number of
these systems. This paper presents a new integrable system, which can be realized in facilities such as
particle accelerators. This feature makes it more attractive than many of the previous such systems with
singular or unphysical forces.
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I. INTRODUCTION

Integrable systems with many or infinite number of
degrees of freedom attract attention due to their unique
properties. For example, the Korteweg–de Vries equation is
equivalent to a Hamiltonian system with infinite degrees of
freedom with special waves, called solitons, particlelike
scattering of them, and the possibility to solve the corre-
spondent nonlinear equations analytically [1]. A few N-
particle systems were found for special interaction forces
between particles (see, e.g., [2]). The practical realizations
and applications of such systems are questionable because
of very special features of such forces. Here we describe a
new N-particle integrable system and show the practical
possibilities of how to realize such a system in a particle
accelerator. This system has N integrals of motion, which
are independent and their Poisson brackets vanish.

II. INTEGRABLE MANY-BODY SYSTEM

Let us consider the following 1D mapping for the ith
particle, among N identical particles. The proposed map-
ping consists of two stages: a purely linear transformation
and a particle interaction stage,
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: ð1Þ

One can rewrite it as

xi;n ¼ pi;n−1;
pi;n ¼ −xi;n−1 þ Knxi;n; ð2Þ

where xi;n and pi;n are the coordinate and the momentum,
respectively, of particle i ¼ ½1…N� at the nth mapping step.
The Kn is the particle interaction term as follows:

Kn ¼
b

aσ2n þ 1
; ð3Þ

where σ2n ¼ 1
N

P
i
ðxi;nÞ2 is the mean squared position of all

particles and a and b are arbitrary parameters. This system
can be viewed as a sequence of thin lenses, acting
identically on each particle, separated by a linear map.
However, the focal length of each lens depends on the sum
of all coordinates squared; therefore, the system motion
depends on the particle’s initial conditions, and it is indeed
a nonlinear system. For N ¼ 1 (a single particle), the
mapping (2) becomes the well-known nonlinear single-
particle 1D integrable McMillan mapping [3] with σ2n ¼ x2n.
This mapping has the following integral of motion
(a conserved quantity):

I ¼ ax2np2
n − bxnpn þ x2n þ p2

n: ð4Þ
It was shown in Ref. [4] that an N ¼ 2 mapping is also

integrable; i.e., it has two independent commuting (having
vanishing Poisson brackets) integrals of motion. One is the
so-called angular momentum M ¼ x1;np2;n − x2;np1;n, and
the second one is similar to (4):

I ¼ a
4
ðx1;np1;n þ x2;np2;nÞ2 − b

2
ðx1;np1;n þ x2;np2;nÞ

þ 1

2
ðx21;n þ x22;n þ p2

1;n þ p2
2;nÞ: ð5Þ

We have found that the mapping (1), (2) is integrable for
any N; i.e., it has N independent commuting integrals of
motion. We first notice that all moments of the following
type (for i; j ¼ ½1...N� and i ≠ j):

Mi;j ¼ xi;npj;n − xj;npi;n ð6Þ
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are conserved. This gives NðN−1Þ
2

integrals of motion.
However, only some of them have vanishing Poisson
brackets, while for integrability one needs N independent
commuting integrals of motion (see, e.g., [5] for
Poisson brackets definitions and conditions for integrabil-
ity). Below, we will prove that the mapping has N inde-
pendent commuting integrals of motion. The first N − 1
commuting integrals of motion can be constructed by using
moments (6):

Ij ¼
Xj
i¼1

ðMi;jþ1Þ2; ð7Þ

where j ¼ ½1; 2…N − 1�. The proof can be established by
induction. Assume k − 1 invariants commute, and then take
the kth integral. It consists of a sum of all terms with the new
ðkþ 1Þth variable, which is absent from all previous
integrals. We omit the index n for brevity and take any
term from previous integrals, ðxipj − pixjÞ2, and the two
terms from the last (kth) integral ðxipkþ1 − pixkþ1Þ2 þ
ðxjpkþ1 − pjxkþ1Þ2 with i; j ≤ k. Now we take the
Poisson brackets of these terms and check piecewise that
they are equal to zero:

− 4ðxipj − pixjÞðxipkþ1 − pixkþ1Þ
þ 4ðxipj − pixjÞðxipkþ1 − pixkþ1Þ−;

4ðxipj − pixjÞðxjpkþ1 − pjxkþ1Þ
þ 4ðxipj − pixjÞðxjpkþ1 − pjxkþ1Þ ¼ 0. ð8Þ

It is easy to show that all other terms from this last
integral commute with the term ðxipj − pixjÞ2, since they
do not contain any variables in common, thus proving that
integrals (7) commute. The independence of integrals (7)
follows from the fact that each sum in (7) always includes
one new coordinate compared to the previous integrals and
cannot be expressed via them in any way and vice versa.
Notice that the last integral IN−1 can be rewritten in a
familiar way:

IN−1 ¼
XN
i¼1

x2i
XN
i¼1

p2
i −
�XN

i¼1

xipi

�2

; ð9Þ

which is actually the so-called emittance ε ¼
ffiffiffiffiffiffiffi
IN−1

p
N .

We will now show that there exists an additional integral
of the type (5) for any N. We prove the results of McMillan
first on our way to the final expression. Let us take a
quadratic form I, symmetric in x and p:

I ¼ a x2p2 − bxpþ x2 þ p2; ð10Þ
with a and b from (1). After the linear transformation in
Eq. (1), but before the nonlinear kick, it will transform into

I ¼ a x2p2 þ bxpþ x2 þ p2: ð11Þ
Then, we apply a nonlinear kick (2), which changes the

sign of the momentum in the expression (10), if the
invariant is written in the new variables. In Ref. [6], this
kick is called the sign reversal function for obvious
algebraic reasons (if I ¼ ap2 þ bpþ c, p ¼ p̄ − b=a,
then I ¼ ap̄2 − bp̄þ c). The expression (11) in the new
variables becomes

I ¼ ax2p2 − bxpþ x2 þ p2: ð12Þ
One can see that (10) and (12) coincide—this is the proof

for the McMillan invariant (4) with N ¼ 1. We will now
take an invariant
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N2
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i;n: ð13Þ

It is symmetric with respect to the substitution xi;n↔pi;n.
One can note that after the nonlinear kick, all momenta pi

receive an increment equal to bxi
a
P
i

x2i =Nþ1
.

Take the formula (13) and add the previous expression
to the corresponding momenta. After omitting the index n
and the terms with the sum of the coordinates squared (since
they do not change in a thin lens) for brevity, it yields

I ¼ a
N
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One can see that this expression (14) is the same as (13)
(without omitted insignificant terms), while only the
momenta sign is opposite. The same conclusion as in
the 1D case follows: the expression (13) is an invariant of
the map (1), because it is symmetric in coordinates and
momenta, the linear part of the map changes the sign of
momenta, and the kick restores it; thus, the expression
restores its form after the transformation (1). This integral
(13) is independent of integrals (7), because they are
comprised only of cross products of momenta and coor-
dinates, but the integral (13) has contributions from the
radial momentum as well (see, for example, the first two
terms). It commutes with all integrals (7), because it
consists of a function of “radial variables” (the first two
terms) and two terms symmetric with respect to any
rotation in any direction and, as such, always commutes
with any angular momentum. This concludes our proof that
the mapping is integrable.
With the exception of a matched distribution (described

below), which results in a perfectly linear motion with a
constant Kn, this mapping is nonlinear; i.e., particle trajecto-
ries depend on the initial amplitudes of all particles through a
nonlinear interaction term,Eq. (3). Figure1 showsanexample
of phase-space trajectories for four particles (N ¼ 4).
It is now easy to understand how to extend this system to

a higher-dimension space. A system of N particles in the
M-dimensional space is obtained from (1) by replacing xi
by a vector with the dimension M. The kick to each
momentum will be proportional to its conjugate coordinate,

and the sum of coordinates squared in (1) has to be replaced
by the sum of particle coordinates squared over all N
particles. It is easy to see that the new system corresponds
to the one-dimensional one with N ×M particles, and
therefore all approaches work in the same manner, and it is
exactly integrable in the same sense as the one-dimensional
system with N particles.

III. ENVELOPE EQUATIONS

Let us now describe the evolution of the N-particle
envelope σn, defined as the rms position of all particles.
Following Ref. [7], we first note that the interaction term
(3) acts as an identical lens (that depends on the N-particle
envelope) on all particles and, therefore, results in a
piecewise linear mapping (which depends on the particle
positions) for each step. We have already demonstrated
above (9) that the so-called emittance

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2nihp2

ni − hxnpni2
q

ð15Þ

is a conserved quantity (h…i indicates averaging over N
particles). This also means that one can write the mapping
for the envelope much like for the radial position and the
radial momentum of a single particle in Ref. [4]. First, we
will define the envelope momentumlike variable

ηn ¼
1

σnN

X
i

xi;npi;n: ð16Þ
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FIG. 1. Phase-space trajectories of four particles with random initial conditions.
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Now, the mapping for the envelope can be written as

σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2n−1 þ

ε2

σ2n−1

s
;

ηn ¼ − σn−1ηn−1
σn

þ Knσn: ð17Þ

This is also an integrable mapping. The integral (similar
to one in Ref. [4] that uses slightly different variables) can
be written as

I ¼ ðaσ2n þ 1Þη2n − bσnηn þ σ2n þ
ε2

σ2n
; ð18Þ

which is actually the same integral as (13), after we express
the emittance via (15). Our interpretation of this result is
that the envelope mapping couples the emittance and the
additional integral of motion (18), thus making the map-
ping integrable. It is interesting to point out that while the
preservation of emittance in a linear channel appears to be
trivial, the existence of an additional integral of motion is
far from trivial. Contrary to the rms (or envelope) equations
for the Kapchinsky-Vladimirsky space charge distribution,
which are chaotic in general even for the azimuthally
symmetric beams [8], the equations (17) have only regular
analytic solutions. Figure 2 shows an example of the
envelope mapping for four particles with some random
initial distribution.

IV. MATCHED DISTRIBUTION

In this section, we will consider a matched distribution,
i.e., the distribution in which the rms position σ and the
envelope momentum η remain constant. From Eq. (17),
we have

σ2 ¼ η2 þ ε2

σ2
; η ¼ 1

2

bσ
aσ2 þ 1

: ð19Þ

It is obvious that solutions to Eqs. (19) can be obtained
for any emittance value, although some may restrict the
allowed a and b values.
In the limit of the large number of particles (N ≫ 1), we

would obtain the Vlasov equation as in a common plasma
approach. For the smooth Vlasov equation, there exists a
distribution which maps onto itself by mapping (2). We
would call such a distribution “matched” because the
interaction term Kn ¼ K remains constant, and, thus, the
mapping becomes perfectly linear. Such a linear mapping
preserves the so-called Courant-Snyder invariant [9]

J ¼ x2 − Kxpþ p2: ð20Þ

Thus, it is obvious that any matched particle distribution
function fðJÞ would remain unchanged under the mapping

(2), provided the rms position σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
x2fðJÞdxdp

q
sat-

isfies the following equation:

K ¼ b
aσ2 þ 1

: ð21Þ

V. PRACTICAL REALIZATION

Finally, let us describe how to realize such a mapping in
a particle accelerator. The beam dynamics, described by
(2), is fairly straightforward to realize in a circular accel-
erator. One needs to measure the beam rms position σ,
which is a variable in Eqs. (2), and apply a quadrupole kick
with the coefficient of b

aσ2þ1
to the circulating beam [the

second term in the second line of the map (2)], where σ of
the beam has to be taken at the quadrupole position. It can
be achieved, for example, by placing the profile measure-
ment device and the quadrupole such that the betatron
phase advance between them is an integer of π. The
quadrupole kicks themselves have to be separated by
π=2 betatron phase advance [it corresponds to the linear
part of (2)]. This is, in a sense, a standard feedback, but the
beam parameter of interest is its rms position, not the
displacement.

VI. SUMMARY

An example of a rare N-body integrable nonlinear
system has been found and described. Its unique properties
allow one to create such a system experimentally in
accelerators, opening a new venue for various applications
to charged particle beams.
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FIG. 2. An example of the envelope mapping for four particles.
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