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The effects of space charge play a significant role in modern-day accelerators, frequently constraining
the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the
luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron
beams. The latter is applied for strongly cooled proton and ion beams in eRHIC—the proposed future
electron-ion collider at Brookhaven National Laboratory. Several schemes were proposed to compensate
for space-charge effects in a coasting (e.g., continuous) hadron beam, and some have been tested. Using
an appropriate transverse profile of the electron beam (or plasma column) for a coasting beam would
compensate both the tune shift and the tune spread in the hadron beam. But none of these methods address
the issue of compensating space-charge induced tune spread in a bunched hadron beam, i.e., the
dependence of the particle’s tune shift on its longitudinal position inside the bunch. In this paper we
propose and evaluate a novel idea of using a copropagating electron bunch with mismatched longitudinal
velocity to compensate the space-charge induced tune shift and tune spread. We present several practical
examples of such a system.
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I. INTRODUCTION

The paper is motivated by developing a high-energy
high-luminosity electron-ion collider at Brookhaven
National Laboratory called eRHIC [1], where 21.2 GeV
polarized electrons will collide with proton and ion beams,
having energies from 50 to 250 GeV=u. The eRHIC plans
to use a very short (with rms bunch length of 5 cm) and
strongly cooled proton and ion beams with normalized
transverse emittances of 0.2 mm mrad. Cooling these
hadron beams with high peak current to such low
emittances would generate a significant betatron tune
shift and spread induced by the space charge. Hence,
the goal of this paper is to propose a technique, which
could be used to mitigate negative space-charge effects
using a compensation scheme applicable to bunch
beams.
Space-charge effects have been known in accelerator

physics for half of the century. There is extensive literature
[2–22] (with an excellent and concise review by Zotter
[23]) describing the effect of space charge on the beam’s
quality and stability. A nonlinear space-charge force
induces an irreducible transverse tune spread, i.e., the tune

dependence on both the hadron’s1 longitudinal position
inside the bunch, z, and the amplitude of the transverse
oscillations.
It is well known that space-charge effects fall as a high

power of the beam’s relativistic factor:

ΔQsc ≈ −Z2rp
A

No

4πβ2hγ
3ε

Cffiffiffiffiffiffi
2π

p
σz

; ð1Þ

where C is the ring’s circumference, Z is the charge, and A
is the atomic number of the hadron (e.g., an ion, for proton
Z ¼ A ¼ 1), rp ¼ e2=mpc2 is the classical radius of the
proton, γ2 ¼ 1=ð1 − β2Þ is the relativistic factor of hadron
beam, No is number of hadrons in the bunch with an
rms bunch length of σz, and ε is the beam’s transverse
emittance.
While space-charge effects exist in any charged beam,

they have stronger implications for hadron beams. Hadrons
become ultrarelativistic at much higher energies, and also
travel a longer pass in accelerators, compared to their lepton
counterpart, to become ultrarelativistic.

*Corresponding author.
vladimir.litvinenko@stonybrook.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1Here we are considering only positively charged particles, the
space-charge effects in which can be compensated by using
negatively charged electron beam. Compensation for negatively
charged particles, including antiprotons and negatively charged
ions, would require positively charged particles. Using positron,
proton, or ion beams for compensating the space charge in the
negatively charged beams, while theoretically possible, most
likely is impractical.
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One of the most important effects is the tune spread
induced by the intrinsically nonlinear space-charge force.2

Appendix A gives the general expression of the tune
spread. Since the compensation scheme we are presenting
here does not depend on the details of the transverse beam’s
distribution, e.g., similarly to the compensation techniques
suggested for coasting beams, the transverse profile of the
electron beam (or a column) should compensate both
the tune shift and its dependence on the amplitudes of
the transverse oscillations [24–28]. Naturally, the maxi-
mum tune shift is experienced by the particles in the center
of the beam, while the particles with large amplitude of
oscillations experience a smaller value of the tune shift. The
overall tune spread is determined by its value for the center
particles.
Thus, for simplicity we consider here a hadron beam

with equal transverse emittances, εx ¼ εy ¼ ε, whose tune
shifts are given by (A26–A28):

δQx;y ¼ δQscðzÞ · fx;y;

δQscðzÞ ¼ − C
4πε

1

β2γ3
Z2rp
A

·
Noffiffiffiffiffiffi
2π

p
σz

· e
− z2

2σ2z ;

fx ¼
�

2

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
βy=βx

p �
; fy ¼

�
2

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
βx=βy

p �
:

ð2Þ

Since the longitudinal motion of hadrons usually is very
slow (e.g., Qs ≪ Qx;y), the tune of the particle depends not
only on the amplitudes (actions) of the transverse oscil-
lations, but also on their longitudinal location within
the bunch.
One practically important feature of the space-charge

effects is a very strong dependence on the relativistic factor,
γ: δQsc ∝ γ−3=ð1 − γ−2Þ. While the power one of γ
naturally comes from the increasing rigidity of the beam,
the γ−2 comes from the effective canceling of the forces
from the electric and magnetic fields induced by the beam
(details are given in Appendix A)3:

~F⊥ ¼ eZð~E⊥ þ βo½ẑ× ~B⊥�Þ ¼ eZ · ~E⊥ð1− β2oÞ≡ eZ · ~E⊥
γ2

:

ð3Þ

Several practical schemes were suggested for space-
charge tune shift and tune spread compensation by

colliding an electron beam with hadron beam (e.g., an
electron lens), or employing an electron column induced in
a residual gas [24–28]. The tune shift given by the colliding
beam does not suffer from γ−2h cancellation. Vice versa, it is
amplified. For an electron lens with round electron beam
having rms size of σe and the interaction length of L, the
tune shift is given by the following:

δQx;y el ¼
Z
A

1

βhγh

rp
4πσ2e

·
Ie

ecβe
ð1þ βe

2Þ · Lhβx:yi;

Lhβx:yi≡
ZL
0

βx:ydz; ð4Þ

where βe ¼ ve=c is the normalized velocity and of the
electron beam.4 Comparing Eqs. (2) and (4) one can
conclude that electron beam’s current,

Ie ¼
C

2γ2hL
·

2βe
βhð1þ β2eÞ

·
σ2e

hβx:yiεh
· Ip ∝

C
2γ2hL

·
βe
βh

· Ip;

Ip ¼ ecZNoβhffiffiffiffiffiffi
2π

p
σz

;
σ2e

hβx:yiεh
∼ 1; ð5Þ

can be used to compensate for the space-charge induced
tune shift. Invariably, the interaction length is much smaller
than the ring’s circumference e.g., η ¼ L=C ≪ 1. We can
compensate for this shortcoming by having large relativ-
istic factor, 2γ2hβh=βe ≫ 1. This means that the electron
current in such an electron lens can be modest, and
frequently, it can be comparable to the hadron beam’s
current.
As explained in [24,28], by selecting a proper transverse

distribution of electron beam, we can match the depend-
ence of the space-charge tune shift on the transverse
amplitudes. The only, but important, shortcoming of this
method is that the tune shift introduced by the electron lens
(or the column) is identical for all particles, independent of
their longitudinal location inside the bunch.
However, in a bunched beam, the space-charge tune shift

depends on the hadron’s position within the hadron bunch,
z. Thus, the z-dependence of the tune shift cannot be
compensated for by using an electron lens or an electron
column. Thus, for a bunched beam, at best these schemes
could reduce the space-charge tune spread by a half, e.g.,
by compensating for it at the half of the peak value at z ¼ 0.
Using a copropagating electron beam with the same

relativistic velocity βe ¼ βh (as in electron cooling
schemes) and the same longitudinal distribution offers an
opportunity of compensating for both the transverse and

2In this paper, for compactness, we assume a Gaussian
longitudinal distribution of particles. Naturally, the treatment
presented herein can be extended to other types of longitudinal
distributions.

3Please note that in this paper we are using Gaussian units,
where, for example, both electric and magnetic fields are
measured in Gs.

4We would like to point to the possible confusion caused by the
multiple usage of the symbol β. Unfortunately, it is unavoidable
when both the velocities β ¼ v=c and the lattice functions βx;y
must be used in the same paper.
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longitudinal dependences of the space-charge field.
Unfortunately, the compensating beam suffers from γ−2h
cancellation, and such a scheme would require a very large
electron beam current:

Ie ≈
C
L
· Ip ≫ Ip: ð6Þ

This unfavorable scaling makes such a scheme imprac-
tical, especially for hadron beams in large colliders. For
example, eRHIC would be operating hadron beams with
peak current ∼10 A (and duration of 0.4 nsec). Using a
30 m of the 3.8 km RHIC circumference for such a space-
charge compensator would require having an electron
bunch with a peak current ∼1.2 kA, and the bunch charge
∼4000 nC. Such an e-beam simply does not exist.
We propose to use the copropagating scheme, but with

mismatched relativistic factors (e.g., velocities) of the two
beams. Such mode offers the possibility of diminishing the
reduction factor while keeping under control the slippage
between the beams.

II. THE IDEA UNDERLYING THE METHOD

The idea for the proposed method is based on a
simple observation that the relativistic canceling is
proportional to γ2, while the velocity of the particles
weakly depends on γ for γ > 2. To be exact, we consider
a copropagating relativistic e-beam having a nearly
identical bunch profile as the hadrons, but having a
different relativistic factor.
Let us consider first the simple case of both beams being

round and relativistic, i.e., the velocities of both beams are
close to the speed of light. Hence, the slippage of the
e-beam with the respect to the hadron beam is small
compared with the length of the interaction section, L:

Δz ¼ ðve − vhÞτ ¼
L
βh

ðβe − βhÞ ≈
L
2

�
1

γh
2
− 1

γe
2

�
: ð7Þ

For long bunches with γσz ≫ σ⊥, the transverse fields
induced by beams can be easily calculated using the Gauss
or Ampere law:

Bhθðr; z; sÞ ¼
2IoðzÞ
c r

Zr
0

fhðx; sÞxdx;

Ehrðr; z; sÞ ¼ −Bhθðr; z; sÞ
βh

;

Beθðr; z; sÞ ¼
2IeðzÞ
c r

Zr
0

feðx; sÞxdx;

Eerðr; z; sÞ ¼ −Beθðr; z; sÞ
βe

;

where fe;hðr; sÞ are transverse distributions of the beams.
The force acting on the hadron from the e-beam is

Fr ¼ Ze

�
−Beθðr; z; sÞ

βe
þ βhBeθðr; z; sÞ

�

¼ −Ze
βe

Beθðr; z; sÞ · ð1 − βeβhÞ

¼ −Ze 2IeðzÞ
c r

·
1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − γ−2e Þð1 − γ−2h Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − γ−2e Þ

p
×
Zr
0

feðx; sÞxdx: ð8Þ

For ultrarelativistic particles (8) becomes

Fr ≅ −Ze IeðzÞ
c r

Zr
0

feðx; sÞxdx ·
�
1

γ2e
þ 1

γ2h

�
ð9Þ

while self-action gives

Fr sc ≅ Ze
IhðzÞ
c r

Zr
0

fhðx; sÞxdx ·
2

γ2h
: ð10Þ

Thus, for unequal velocities, the relativistic γ−2h cancella-
tion is replaced by ðγ−2e þ γ−2h Þ=2.
Since using low-energy electron beams is economically

favorable, let us assume that the relativistic factor of the
hadron is significantly larger than that of the e-beam:

γ2h ≫ γ2e:

This assumption makes 1
γ2e
≫ 1

γ2h
and simplifies (7) and (9):

Fhr ≅ −Ze 2IhðzÞ
γ2hc r

Zr
0

fhðx; sÞxdx;

Fer ≅ −Ze IeðzÞ
γ2ec r

Zr
0

feðx; sÞxdx;

Δz ≅ − L
2γ2e

: ð11Þ

Let us also assume that the e-beam has the same transverse
shape, as does the hadron beam. Then, as follows from
Eq. (11), compensating for the space-charge effects accu-
mulated by the hadron beam in the ring with circumference
C, we will need the electron beam current of

Ie ≅ −2Ih · γ
2
e

γ2h
·
C
L
: ð12Þ

If we further assume that it could slip for one rms bunch
length of the proton bunch (practical examples are given in
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the following section) during the interaction, e.g., the length
of interaction section is

L ∼ 2γ2eσz: ð13Þ

Then, the ratio between the beam currents becomes inde-
pendent of the electron’s energy:

Ie
Ih

≅
C

σzγ
2
h

; ð14aÞ

and the latter should be determined by a practical matters of
building an electron accelerator. Naturally, there can be
Nc ≥ 1 space-charge compensation sections,5 which pro-
portionally reduce the required e-beam current:

Ie
Ih

≅
C

Ncσzγ
2
h

: ð14bÞ

For example, for γh ¼ 100 and the RHIC circumference
C ¼ 3.8 km the required ratio is the following:

Ie
Ih

∼
1

Nc
·

1

σzðn secÞ
: ð15Þ

Thismeans that electron beam’s peak current can of the same
order as that of the hadrons.

III. THE METHOD

We now consider the method for finite velocities without
any limitations, and an electron beam having longitudinal
profile determined by its current

Ie

�
t − s

ve

�
: ð16Þ

As shown in Fig. 1, it merges with the hadron beam,
copropagates along the interaction region from s ¼ 0, and
is taken out at s ¼ L. A hadron passes the interaction
region as follows:

s ¼ vh · ðt − toÞ; t ¼ to þ
s
vh

; ð17Þ

and is affected by the electron beam’s current of

Ie

�
to þ

s
vh

− s
ve

�
: ð18Þ

The integrated effect is denoted by the following
expression:

L · ĪeðtÞ ¼
ZL
o

Ie

�
tþ s

vh
− s
ve

�
ds

≡ c
βeβh

βh − βe

ZΔt
o

Ieðtþ ζ − ΔtÞdζ ð19Þ

with the slippage given by

cΔt ¼ L
βh − βe
βeβh

: ð20Þ

First, we assess the value of allowable slippage by the
deconvolving equation (19), assuming that the shape of
ĪeðtÞ repeats that of the hadron beam IhðtÞ, e.g.,

ĪeðtÞ
Īeð0Þ

¼ IhðtÞ
Ihð0Þ

¼ qðtÞ: ð21aÞ

Thus we require that

ZΔt
0

Ieðt − Δtþ ζÞdζ ¼ Io · qðtÞ ð21bÞ

with a value of Io chosen to compensate the tune shift for
the hadron in the center of the bunch. Any deviation of the
e-bunch’s shape from (21b) will result in error in the
compensating tune for the hadrons. In Appendix D we
show how to deconvolute

ZΔt
0

gðtþ ζÞdζ ¼ qðtÞ; Ieðt − ΔtÞ ¼ IogðtÞ; ð22Þ

to get two simple independent solutions:

gþðtÞ ¼ −X∞
m¼0

q0ðtþmΔtÞ;

g−ðtÞ ¼ þ
X∞
m¼1

q0ðz −mΔtÞ: ð23Þ

It is evident that a linear combination of the solutions (23)

gαðtÞ ¼ αgþðtÞ þ ð1 − αÞg−ðtÞ

0 L vh 

ve 

Compensator 

s 

FIG. 1. A generic layout of the interaction region of the space-
charge compensator. Electron beam merges with the hadron
beam, copropagates through the straight section with length L,
and then is extracted. Their velocities ve ≡ cβe and vh ≡ cβh can
differ, e.g., the beams can slide with respect to each other.

5As we discuss later, it even can be beneficial.
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is a solution of (22). It is likely that g1=2 ¼ ðgþ þ g−Þ=2 can
be of practical interest.
We also show in Appendix D that for rather general

physics assumptions, these functions converge to zero at
one of the infinities:

gþðzÞz→þ∞ → 0; g−ðzÞz→−∞ → 0. ð24Þ

This is not necessarily true for the other sign. While these
mathematical properties of the solutions mostly are of
academic interest, there is an additional, very practical
issue. By definition in Eq. (21a), qðtÞ is a non-negative
function: qðtÞ ≥ 0. Similarly, the sign of the e-beam current
is always negative, and IeðtÞ ≤ 0. Thus, any practical
deconvolution of (22) cannot change the sign, and choosing
Io < 0 requires gðtÞ be a positive function:

gðtÞ ≥ 0. ð25Þ
The natural parameter determining the behavior and

“positivity” of g�ðtÞ is determined by the ratio between the
slippage, Δt, and the rms length of the hadron bunch, σt,

τ ¼ Δt
σt

: ð26Þ

In storage rings, the longitudinal distribution of the
bunch frequently is described by a Gaussian function:

qðtÞ ¼ exp

�
− t2

2σt
2

�
: ð27Þ

We studied this case in detail (see Appendix D) to answer
the following questions: (a) At what values of τ do the
deconvolution functions remain positively defined?
(b) What error is accumulated in the convolution if we
fit a reasonable positively defined function to approximate
g�ðtÞ for large values of τ?
The following shortly summarizes our findings. First, for

τ ≤ 1, both g�ðtÞ solutions converge very well within the
typical physical aperture (here we used �5 rms bunch
lengths). For τ ≤ 1, the deconvolutions g�ðtÞ are nearly
identical (see Fig. 2) and are positively defined within the
interval t=σt ∈ f−5; 5g. For τ ¼ 0.5, the difference
between g�ðtÞ is within �10−15g�ð0Þ and likely is
determined by the computer’s accuracy. For τ ¼ 1, the
difference between g�ðtÞ is less than �10−7g�ð0Þ
and g�ð5σtÞ ≅ 1.8 × 10−5, g�ð−5σtÞ ≅ 9.5 × 10−8. This
simply means that, for practical purposes with τ ≤ 1, the
compensating error will not be defined by the deconvolu-
tion function, but by other practical means.

4 2 2 4
t

0.2

0.4

0.6

0.8

1.0

g

FIG. 2. Graphs of g�ðtÞ for deconvolution for Gaussian dis-
tribution (27) with τ ¼ 1. We note that both functions g�ðtÞ are
practically indistinguishable.

FIG. 3. 3D graphs of the deconvolution function gþ for Gaussian distribution (27) as a function of the time and slippage. Part (a) is the
top view with the horizontal axis being t=σtf−5.5g, the vertical axis being gþðtÞ, whilst the third axis used for the slippage
τ ¼ Δt=σt ∈ f0; 3g. The vertical axis is clipped at zero to show where gþ becomes negative. (b) The same graph seen from the bottom to
illustrate the areas where gþ < 0.
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Second, for values of τ exceeding unity, the situation
changes rather rapidly and when τ > 1.75 there are very
well-defined oscillating tails with amplitudes comparable
to that of the central peak. Naturally, both g�ðtÞ no longer
are positively defined. Figures 3 and 4 illustrate these
features.
The practical conclusion from these studies is that

τ ¼ 1.5 is a natural boundary, where a g1=2 deconvolution

(see Fig. 5) works very well. It provides a relative
convolution error of less than 10−3 (to be exact it is limited
to about 5 × 10−4) and, therefore, would not represent
practical limit to accuracy. For example, the bunch-to-
bunch intensity variation in a hadron beam most likely will
exceed the relative level of 10−3.
As shown in Appendix D, even for τ ¼ 2 we could find a

positive function (by fitting g) that could compensate 95%
of the tune spread. Nevertheless, for the rest of this paper
we use τ ¼ 1.5 as a practical limit for slippage.
Since we have proven that for a smooth Gaussian-like

longitudinal distribution of the hadron bunch we nearly
perfectly can compensate the space-charge-induced tune
spread, the next question is what electron beam current is
required to achieve this.
In Appendices A, B, and C we discuss issues related to

the transverse matching of the nonlinear tune shift induced
by the space charge in the ring and that induced by the
electron beam in the compensator. Here, for simplicity, we
further consider the space-charge effects for a round beam,
and set fx;y ¼ 1 in Eq. (2).6 Then, the space-charge tune
shift accumulated by hadrons along the ring’s circum-
ference, C, should be compensated by that accumulated in
the interaction with electrons:

δQsc ¼ − C
4πε

1

βh
3γh

3

Zrp
A

·
Ih
ec

¼ −δQsce

¼ Lc

8πε

1

βhγh

1 − βeβh
βe

Zrp
A

·
Īe
ec

: ð28Þ

(a)

4 2 2 4
t

0.5

0.5

1.0

1.5
g

(b)

(c)

4 2 2 4
t

0.5

0.5

1.0

1.5
g

4 2 2 4
t

0.5

0.5

1.0

1.5
g

FIG. 4. 3D graphs of gþ (a), g− (b), and g1=2 (c) deconvolution
functions for a Gaussian distribution (27) at function of the
time for four values of τ ¼ Δt=σt: 1—dark blue, 1.25—magenta,
1.5—yellow/grey, 1.75—green, and 2—light blue.

4 2 0 2 4
t

0.2

0.4

0.6

0.8

1.0

1.2
g

FIG. 5. Clipped graph of g1=2 for a case of τ ¼ 1.5. Keeping the
shape of g1=2 from t ¼ −3σt to t ¼ 4σt assures a nearly perfect
convolution (22).

6Compensation criteria do not depend on the details of the
transverse matching. The latter is required to compensate
correctly space-charge tune spreads in horizontal and vertical
directions, as well as to approximate the dependencies of the
space-charge tune shift on the transverse actions, Ix;y.
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Thus, the requirement for the compensating beam
current,

Lc

βe
Īe · ð1 − βeβhÞ ¼ IhC

ð1 − β2hÞ
βh

Īe
Ih

¼ − C
Lc

βe
βh

ð1 − β2hÞ
ð1 − βeβhÞ

; ð29Þ

depends on the length of the compensator section, Lc, that
could be limited either by the allowable slippage, as we
discussed above, cΔt ≤ 1.5σz=βh,

Lmax ≤ cΔtmax
βeβh

βh − βe
≈
1.5σzβe
βh − βe

; ð30Þ

or by the practical limitations of the accelerator. Combined
with the limitation on the slippage, this gives the following:

				 ĪeIh
				 ¼ C

γ2hβ
2
hð1 − βeβhÞ

max


jβe − βhj
Δtc

;
βeβh
Lc

�
: ð31Þ

As we discussed in previous sections, there is no benefit
in having βe ≥ βh. Hence, for βe < βh, Eq. (23) becomes

				 ĪeIh
				 ¼ C

γ2hβ
2
h

max



βh − βe

cΔtð1 − βeβhÞ
;

βeβh
Lcð1 − βeβhÞ

�
: ð32Þ

To minimize the required electron beam current, we
can find the minimum of the right-hand side in Eq. (32).
We note that βh−βe

1−βeβh ¼ βh
1−βe=βh
1−βeβh monotonically decreases

and βhβe
1−βeβh monotonically increases as a function of βe at the

interval 0 ≤ βe ≤ βh. Thus the minimum in Eq. (32) is
reached at

βe ¼ βc ¼
βh

1þ βh
cΔt
Lc

: ð33Þ

This yields a simple expression for the required com-
pensating current:

Īe
Ih

¼ − C
Lc þ γ2hβh · cΔt

: ð34Þ

In a case of more than one compensator Nc ≥ 1, the
required e-beam current can be reduced proportionally:

Īe
Ih

≅ − 1

Nc

C
Lc þ γ2hβh · cΔt

: ð35Þ

Having more than one compensator may offer additional
advantages; it will distribute compensation around the
ring. The latter will bring the compensators closer to the
source and naturally will provide a more stable beam (see
discussion at the end of the paper).
According to Eq. (35) using multiple compensators with

the given total length of

L ¼ NcLc ¼ ηC; ð36Þ

the required e-beam would be

Īe
Ih

≅ − 1

ηþ Nc · γ2hβh ·
cΔt
C

: ð37Þ

Thus, it is beneficial to split compensation length into as
many as practically manageable compensators. As follows
from (33), this also will lower the optimal energy of the
electron beam.
Such splitting will not necessarily lead to an increase of

the electron beam sources and collector. Hadron storage
rings usually operate with many hadrons bunches. For
example, RHIC (and the future eRHIC) operate with 120
hadron bunches. Figure 6 shows a scheme in which one
electron beam source can serve several space-charge
compensators. This scheme is especially effective when
using a low-energy electron beam moving with nonrela-
tivistic velocities. In following section, we will discuss
what limits the minimal length of the compensator.

IV. EFFECTS ON THE ELECTRON BEAM

It is well known that hadron beam affects the propagation
and dynamics of the electron beam. There is an economical
value in using low-energy electron beams. However, such a

Electron 
Gun Collector 

FIG. 6. A sketch of one electron source supporting four SC compensating sections. Each electron bunch (red) merges and
copropagates with the hadron beam in the first straight section. Then it is sent through a delay loop to merge with the following hadron
bunch. The process is then repeated as needed (3 times in this figure).
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beam would be highly susceptible to space-charge forces
induced by itself as well as by the hadron beam. The
solution for transporting such beams and accurately con-
trolling their distribution is well known: that of a magnet-
ized electron beam transported by a solenoidal field
[29–40]. Such transport assures both the stability of the
electron beam (and therefore, the hadron beam) as well as
the control of the beam’s size by changing the value of the
solenoidal field. It provides focusing needed to counteract
destructive space-charge forces.
For example, the stability of the interacting electron and

hadron beams will be similar to that in head-on collisions
using electron lens [40–44]. As shown in [45], using a
strong longitudinal magnetic field plays an important role
in maintaining the stability of these interacting beams.
If solenoidal transport is used, the main limiting factor

for the compensator length will be the finite radius of
curvature of the bends. At each bend, the hadron experi-
ences the field from the bent electron beam, which has a
different transverse structure from what we are compensat-
ing. Thus, the consequence of the end effects must be
controlled, and we can formulate an addition limitation on
the compensator’s length:

Lc ≫ bend radius:

In practice, this means that the typical lengths of a
compensator should be a few meters and not a few
centimeters.

V. EXAMPLES

We now consider a case a hadron beam in eRHIC with
γh ¼ 250, an rms bunch length of σz ¼ 8 cm and the
compensator length of 3 m. We assume that that slippage is
equal to a 1.5 rms bunch length, e.g., cΔt ¼ 12 cm.
Equation (33) yields the optimum βe ≅ 0.961, and the
optimum energy of the electron beam of 1.86 MeV (kinetic
energy of 1.35 MeV). The required electron beam current
for a single compensator should be

Īe ≅ −0.51 · Ih: ð38Þ
In a high-luminosity eRHIC, the expected proton inten-

sity is 3 × 1011 per bunch with the peak proton beam
current of ∼72 A. Hence, the required e-beam peak current
∼37 A is reasonable. For a γh ¼ 50, the required e-beam
current would grow nearly 12.6-fold to about 900 A,
making such compensation in a single compensator a very
challenging task.
Hence, since the length of the compensation section is

only 3 m, while each of six eRHIC IR straight sections is
200 m long, we can consider multiple compensating
sections to reduce the required e-beam peak current to
tens of amps.
Compensating for space-charge effects also could be

required for a low-energy scan in RHIC in search of the

critical point in the QCD phase diagram [46–50]. For such a
scan the relativistic γ can be as low as 2.7 [51], but bunch
intensity in such an operation is significantly lower than in
eRHIC and the bunch length is much longer [52]. Tables I
and II give a sample of hadron beams’ energies, their
parameters, and possible parameters for space-charge
compensation.
Parameters of the compensators presented in the tables

are not necessarily optimized for performance or cost. What
is important is that the energy of an electron beam required
for space-charge compensation for RHIC’s low energy scan
is in the ∼10 KeV range (this was the reason for quoting
kinetic energy in the table). It is related directly to using
long bunches with an rms duration of a few meters. Such
long bunches allow a longer slippage, and, therefore,
operating e-beams with βe ∼ 0.2–0.25. This also means
that the electrons are rather slow moving, and that the loops
shown in Fig. 6 are 4–5-fold shorter than would be required
for relativistic electrons.
In contrast, eRHIC will use short bunches of hadrons

with rms length of few centimeters that results in a modest
but relativistic energy of the electrons ∼1.35 MeV with
βe ≅ 0.96.
These simple examples show the ability of this concept

to compensate the space-charge-induced tune spread with
a compensator of reasonable length, and of a reasonable
current.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented a novel method of compen-
sating space-charge-induced tune spread in bunched hadron
beams. In principle, we showed that it is possible to
compensate for both the tune shift and the tune spread
with significant accuracy. We consider that, with a proper
design and simulations, we can compensate for up to 99%
of the space-charge-induced tune spread.
It is natural to question what would be the ultimate

space-charge-induced tune spread that can be sustained in a
storage ring. Unfortunately there is no simple direct answer.
It is well known that space-charge-induced resonances
can make hadron beam unstable [53–55]. Thus, the beam’s
dynamics in the presence of the compensators should be
simulated using an appropriate code (for example [56–60]).
One important conclusion from such simulations (for the

bunch-average tune shift compensation [56–59]) is that
spreading the compensators around the ring allows us to
achieve (at least in a simulation) larger beam intensities. A
frequently observed phenomenon is that local compensa-
tion for nonlinear effects in beam dynamics is the prefer-
able solution, e.g., placing the compensation as close as
possible to the source.
Hence, we believe that having multiple tune spread

compensators distributed around the ring would result in
a better compensation and beam stability. For example,
the strength and the locations of the compensators can be
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chosen to eliminate the most dangerous resonant
driving terms.
This said, further detailed theoretical and numerical

studies are required to find the limits of the proposed
compensation scheme: what is the maximum space-charge
tune shift/spread that can be compensated before the
dynamic aperture of the machine collapses? or before
the beam becomes unstable? [61,62].
In contrast with traditional space-charge compensating

schemes, we proposed the method of compensating not
only the tune shift but also the entire tune spread. We expect
that this method would stabilize the intense hadron beam
in sub-TeVs and in low-energy storage rings. Electron
beams with required quality, energy, and intensity either are
readily available, or are being considered for future

accelerators [63–66]. They could be used for the proposed
compensator for space-charge effects.
We believe that using multiple compensators located in

multiple straight sections of the storage ring (e.g., having
them as close as possible to the source) would be required
for compensating strong space-charge effects. Their loca-
tions (e.g., their strengths and betatron phases) have to be
properly chosen to eliminate dangerous driving terms.
Finally, the main idea of this paper is based on the

observation that for comoving electron and hadron beams
the slippage is proportional to the difference between
their velocities L · ðβh − βeÞ=βe, while the reduction of the
space-charge force is proportional to ∼γ−2e þ γ−2h . It means
thatourproposedschemestronglyenhancescompensationfor
relativist and ultrarelativistic hadron beams with γh ≫ 1.

TABLE I. Examples of possible space-charge compensator schemes for various modes of operating the high-
luminosity eRHIC.

Parameter

Hadron beam p p 79Au197 79Au197

Energy, GeV=u 250 100 100 50
Number of particles 3 × 1011 3 × 1011 3 × 109 3 × 109

rms bunch length, m 0.08 0.08 0.08 0.08
Normalized emittance, m rad 2 × 10−7 2 × 10−7 2 × 10−7 2 × 10−7
ΔQsc 0.05 0.31 0.1 0.40
Peak current, A 72 72 58 58
Electron beam
Compensator length, m 3 3 3 3
Kinetic energy, MeV 1.35 1.35 1.35 1.35
Number of compensators 3 12 12 24
Peak current, A 10.6 16.6 13.1 26
Total compensators length, m 9 36 36 74

TABLE II. Examples of possible space-charge compensator schemes for various modes of low energy RHIC
operations.*

Parameter

Hadron beam 79Au197 79Au197 79Au197 79Au197

Energy, GeV=u 2.5 3.85 5.75 10
Number of particles 0.5 × 109 1.1 × 109 1.1 × 109 1.1 × 109

rms bunch length, m 3 3 2 2
Norm. emittance, m rad 1.5 × 10−6 1.5 × 10−6 1.5 × 10−6 1.5 × 10−6
ΔQsc 0.10 0.09 0.06 0.075
Peak current, A 0.25 0.55 0.82 0.83
Electron beam
Compensator length, m 1 1 1 1
Kinetic energy, keV 8.6 8.6 16.5 16.5
Number of compensators 12 12 12 12
Peak current, A 2.5 2.4 2.4 0.77
Total compensators length, m 12 12 12 12

*Ion beam parameters are taken from [51,52], and we assume that the beam’s transverse emittance is cooled by a
factor of 2 [67,68].
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What is also important, in our scheme the slippage can
be controlled by varying βh − βe < βh, while in the
head-on collision scheme aka e-lenas it is proportional
to βh þ βe > βh. The later can be beneficial also for
hadron rings with modest energy γh ¼ 2 − 10. For lower
energy hadron rings (synchrotrons) with γh ∼ 1 operating
very long bunches, the benefit of our scheme can be
modest, when compared with the head-on collision
scheme [24]. For example, for the 2.5 GeV=u ion beam
proposed for the low energy RHIC operation (see column
one in Table II), the copropagating of the electron beam
reduces the slippage 1.5-fold compared with the head-on
compensator.
Thus, for low energy hadron rings with γh ∼ 1 operating

beam with bunch length ∼10 m or longer, the degree of
improvement provided by our scheme would be very
modest.
For hadron rings with γh ≫ 1 operating beams with

bunch length ∼1 m or shorter, our scheme gives a signifi-
cant advantage. It is likely the only scheme, which could do
the job with attainable electron beam parameters.
Let us review the case of eRHIC beam with energy

250 GeV and rms bunch length 0.08 m (see column one
in Table I). Our scheme increases the compensation
strength of the electron beam ∼2600-fold, compared
with “electron-cooling-like” scheme (γe ¼ γh). By doing
so, it reduces the required e-beam peak current to tens
of amps, from hundreds of kA required otherwise.
When compared with the head-on collision, our scheme
reduces the slippage between two beams 52-fold. Hence,
a head-on scheme using relativistic electron beam must
reduce the interaction length below 6 cm. If a typical
10-keV electron lens is used, the interaction length must
be reduced even further, below 2 cm. Providing such
short interaction regions will be a very difficult, if not
impossible, task.
Thus we conclude that our novel scheme provides a

practical method of compensating the tune shift and the tune
spread induced by space charge in bunched hadron beams.
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APPENDIX A: SPACE-CHARGE-INDUCED
TUNE SPREAD

There are multiple ways of deriving the space-charge-
induced tune shift and tune spread for a relativistic hadron
beam. We refer readers to specialized papers on the topic
[69,70] and the references therein. There is no practical
limit to which one can complicate the space-charge
problem by adding the effects of the surrounding environ-
ment [71], nontrivial beam distributions, and an arbitrary
coupling between 3 degrees of freedom. While interesting
in general, heavy mathematical calculations could obscure
the main idea of this paper, i.e., describing the novel
compensation method for the space-charge-induced tune
spread.
Hence, we will focus on a case of uncoupled transverse

motion with a simple Gaussian transverse and longi-
tudinal density distribution in the bunch propagating in a
vacuum:

fðx; y; s; τ ¼ ctÞ

¼ No

ð2πÞ3=2σxσyσz
exp

�
− x2

2σ2x
− y2

2σ2y
− ðs − βoτÞ2

2σ2z

�
;

ðA1Þ
where No is the number of particles in the bunch,
βo ≡ ð1 − γ−2o Þ1=2 ¼ vo=c is the beam’s longitudinal
velocity, τ ¼ ct and c is the speed of the light. Trivial
Lorentz transformation gives us the distribution (A1) in
the comoving frame:

f̄ðx; y; z̄Þ ¼ No

ð2πÞ3=2γoσxσyσz
exp

�
− x2

2σ2x
− y2

2σ2y
− z̄2

2σ̄2z

�
;

z̄ ¼ γoðs − βoτÞ; σ̄z ¼ γoσz: ðA2Þ

The charge density, ρ, differs from the particle density
by the multiplier eZ. We assume that, in the comoving
frame, the scalar potential is nearly time impendent, viz.,
it evolves only with a change of the particles’ distribution.
Naturally, since there is no current in the comoving
frame, the vector potential from space charge is zero.
Now, we need to solve only the stationary Poisson
equation7:

Δφ̄ð~rÞ ¼ −4πρð~rÞ:
Following [72], we can derive the scalar potential using

well-known equalities [73,74]:

7We assume here that in the comoving frame speed of the
particles is much smaller than the speed of light, and that the
formula for a static scalar potential, Δφ ¼ −4πρ, is applicable.
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φ̄ð~rÞ ¼
Z

ρð~ζÞ
j~r − ~ζj

d~ζ3;
1

j~r − ~ζj
≡ 2ffiffiffi

π
p
Z∞
0

expð−u2j~r − ~ζj2Þdu

and rewrite it using q ¼ 1=u2, as

φ̄ð~rÞ ¼ 1ffiffiffi
π

p
Z∞
0

Z
q−3=2ρð~ζÞ exp

�
− j~r − ~ζj2

q

�
dqd~ζ3:

Substituting the charge density using the particle distributions (A2),

φ̄ðx; y; z̄Þ ¼ eZffiffiffi
π

p No

ð2πÞ3=2γoσxσyσz

Z∞
0

dq

q3=2

Z
dξdηdζ · exp

�
− ðx − ξÞ2 þ ðy − ηÞ2 þ ðz̄ − ζÞ2

q
− ξ2

2σx
2
− η2

2σy
2
− ζ2

2σ̄z
2

�
;

ðA3Þ

and taking three trivial integrals, as indicated below,

ðx − ξÞ2
q

þ ξ2

2σ2x
¼ qþ 2σ2x

2σ2xq

�
ξ − x

2σ2x
qþ 2σ2x

�
2

þ x2

qþ 2σ2x
;

Z∞
−∞

dξ exp
�
− ðx − ξÞ2

q
− ξ2

2σ2x

�
¼ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πq

qþ 2σ2x

s
exp
�
− x2

qþ 2σ2x

�
;

we derive the final expression for a scalar potential:

φ̄ðx; y; z̄Þ ¼ φo þ
eZffiffiffi
π

p No ·
Z∞
0

dq
exp
�
− x2

qþ2σx
2 − y2

qþ2σy
2 − z̄2

qþ2σ̄z
2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σx

2Þðqþ 2σy
2Þðqþ 2σ̄z

2Þ
q : ðA4Þ

Since in the comoving frame only the time component of the 4-vector potential, e.g., φ̄, is nonzero, the Lorenz
transformation back into the laboratory frame is trivial:

½φscðx; y; s; τÞ; ~Ascðx; y; s; τÞ�lab ¼ γoð1; βoŝÞ · φ̄½x; y; γðs − βoτÞ�; ðA5Þ

where ŝ is the unit vector along the beam propagation. Equation (A5) can be directly added into the Canonical accelerator
Hamiltonian [75,76],

h� ¼ −ð1þ KxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH − eφþ eφscÞ2

c2
−m2c2 −

�
Px − e

c
Ax

�
2 −
�
Py − e

c
Ay

�
2

s
− e
c
ðA2 þ AcsÞ; ðA6Þ

where we assumed a flat ring reference orbit (i.e., the absence of orbit torsion [75]).
While it is possible to proceed further using the Hamiltonian (A6), for most practical cases, we can use significant

simplifications. First, in all practical hadron storage rings, the bunch length is significantly larger than the transverse beam sizes,
e.g.,σz ≫ σx;y.Forexample, ineRHIC, thehadronbeamrmsbunchlengthwillbe∼50 mm,while thetransversebeamsizewillbe
∼0.2 mm. With a further σ̄z ¼ γoσz boost in the comoving frame, this size asymmetry becomes overwhelming, e.g.,

σ̄z ⋙ σx;y:
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In the case of eRHIC case, we would have σ̄z=σx;y > 104. This asymmetry allows using a two-dimensional expression for
the scalar potential. The easiest way is using the σ̄z

2 → ∞ limit in (A4), but it also can be done directly [77]8:

φ̄ðx; y; z̄Þ ¼ eZNoffiffiffiffiffiffi
2π

p
σ̄z

e
− z̄2

2σ̄2z ·
Z∞
0

dq
expð− x2

qþ2σ2x
− y2

qþ2σ2y
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqþ 2σ2xÞðqþ 2σ2yÞ
q : ðA7Þ

Following [69] to keep potential finite on the beam axis (x ¼ y ¼ 0) one should subtract unity for the exponent in the

nominator: exp ð− x2

qþ2σ2x
− y2

qþ2σ2y
Þ − 1. We implicitly assume such subtraction where it is needed.

Using substitutions uðsÞ ¼ σxðsÞ=σyðsÞ and q ¼ 2ϑσxσy. Equation (A7) can be rewritten with a dimensionless integral:

φ̄ðx; y; z̄Þ ¼ eZNoffiffiffiffiffiffi
2π

p
σ̄z

e
− z̄2

2σ̄2z ·
Z∞
0

dϑ
expð− x2=σ2x

2ð1þϑ=uÞ − y2=σ2y
2ð1þϑuÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϑ=uÞð1þ ϑuÞp ;

ðA8Þ

The near-the-axis expansion of Eq. (A7) can be found written in analytical form using an identity
aðaþ bÞ R∞0 dq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2a2Þ3ðqþ 2b2Þ

p
¼ 1:

φ̄ðx; y; z̄Þ ¼ − eZNoffiffiffiffiffiffi
2π

p
σ̄z

e
− z̄2

2σ̄2z ·
1

σx þ σy

�
x2

σx
þ y2

σy

�
þO4.

ðA9Þ

The next useful approximation, which is very common in the accelerator literature, originates from the fact that
synchrotron oscillations in hadron rings are much slower than the transverse (betatron) oscillation. It allows us to consider
both the particle’s longitudinal position inside the bunch as well as its relative energy deviation, δ≡ E=Eo − 1, as slow
varying. In this approximation, the transverse accelerator Hamiltonian (with the dimensionless variables px;y → px;y=po)
becomes [75,76]

8There is a direct way of doing deriving (A7) following [77]. By applying a Fourier transform ∬ .. expð~k ~rÞdxdy=ð2πÞ2 to

Δ⊥φ ≈ −4πρ; for σ̄z ≫ σx;y we obtain φð~kÞ ¼ 4πρð~kÞ=~k2. Using a familiar trick 1
~k2
¼ R∞0 e−~k

2tdt≡ 1
4

R
∞
0 e−

~k2 t
4 dt and scaling it by 1=4we

get

φð~kÞ ¼ 4π

Z∞
0

ρð~kÞe−~k2tdt; φð~rÞ ¼ π

Z∞
0

dt
ZZ

e−i~k ~rρð~kÞe−~k2 t
4 dkxdky:

Then, for a long Gaussian bunch with linear density of ρoðzÞ ¼ eZN · e
− z̄2

2σ̄2z z=ð ffiffiffiffiffi
2π

p
σ̄zÞ.

ρ ¼ ρoðzÞ
1

2πσxσy
e
− x2

2σ2x
− y2

2σ2y ; ρðkÞ ¼ 1

ð2πÞ2 · e
−k2xσ

2
x

2
−k2yσ

2
y

2 ;

after trivial integration,

φð~rÞ ¼ πρoðzÞ
1

ð2πÞ2 ·
Z∞
0

dt
ZZ

e−i~k ~re−
k2xσ

2
x

2
−k2yσ

2
y

2 e−
~k2 t
4 dkxdky;

Z∞
−∞

e−ikxxe−
k2xð2σ2xþtÞ

4 dkx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2σ2x þ t

s
e
− x2

2σ2xþt;

we get the desirable result identical to (A7):

φð~rÞ ¼ eZNffiffiffiffiffi
2π

p
σ̄z

e
− z2

2σ2z ·
Z∞
0

e
− x2

2σ2xþt
− y2

2σ2yþtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2σ2x þ tÞð2σ2y þ tÞ

q dt:
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~h ¼ −ð1þ KxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

βo

�
δ − Ze

poc
φsc

�
þ
�
δ − Ze

poc
φsc

�
2 − p2

x − p2
y

s
− Ze
pc

ðAs þ AscÞ;

½φscðx; y; s; τÞ; ~Ascðx; y; s; τÞ�lab ¼ γoð1;þβoŝÞ · φ̄½x; y; γðs − βoτÞ�; ðA10Þ

where K is the curvature of the reference orbit.
Assuming that space charge can be treated locally as a perturbation (e.g., jΔQsc x;yj ≪ Qx;y), we can expand the

Hamiltonian keeping only the dominant space-charge term. Using (A5) and taking into account that γoð1 − β20Þ ¼ γ−1o, we
obtain

~h ¼ ~ho þ Δ ~hsc ≅ −ð1þ KxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

βo
þ δ2 − ~p⊥2

s
− Ze
pc

As þ



1þ Kx
1þ δ=βo

�
·

Ze
βoγopoc

φ̄½x; y; γðs − βoτÞ�: ðA11Þ

Since we are interested in the main space-charge effects, keeping the term in angular brackets is unnecessary.9

In (A11), the third term represents space-charge effects:

Δ ~hsc ¼
1

β2oγ
3
o

Z2Norcffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z ·
Z∞
0

dϑ
exp
�
− x2=σ2x

2ð1þϑ=uÞ − y2=σ2y
2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϑ=uÞð1þ ϑuÞp ; ðA12Þ

where rc ¼ e2=mc2 is the classical particle’s radius. Since we are using Ze as the charge of the hadrons, we also should
introduce the hadron’s mass number, A ¼ m=mp (with A > 1 for ions), where mp is the mass of the proton:
rc ¼ rp=A; rp ¼ e2=mpc2.

9The multiplier 1=ð1þ δ=βoÞ describing the chromaticity of the space-charge effects can be estimated as σδ · ΔQsc ∼ 10−3ΔQsc, while
the multiplier 1þ Kx represents the lengthening of the trajectory, and can be estimated as αcσδ · ΔQsc ∼ 10−3ΔQsc=γ2t , where γt is the
relativistic factor at transition energy. Typically, γt ∼Qx ≫ 1. More accurate treatment requires averaging the perturbation of the
Hamiltonian over the phases of the betatron oscillations and integrating it over the ring circumference,C. It gives us an effective one-turn
variation of the average Hamiltonian [76]:

Δ ~hsc ¼
1þ Kx
βo þ δ

·
e

γopoc
φ̄ðx; y; z̄Þ; hcsðIx; Iy; z; δÞ ¼

e
γopoc

1

βo þ δ

ZC
0

dshð1þ KxÞ · φ̄ðx; y; z̄Þiϕx;y
;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βxðsÞIx

p
cos½ψxðsÞ þ ϕx� þDxδ; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βyðsÞIy

q
cos½ψyðsÞ þ ϕy�;

where Ix; Iy are the actions of the betatron oscillations, δ is the relative energy deviation of the hadron, and βx;y are the lattice functions.
The action dependent tune shift than can be calculated as follows:

ΔQsc x;y ¼
1

2π

∂hcsðIx; Iy; z; δÞ
∂Ix;y :

This formula covers all aspects of the space-charge tune shift, including its chromaticity. For on-energy particle, δ ¼ 0,

hcsðIx; Iy; zÞ ¼
ZC
0

ds

�
1þ Kx
γoβo

·
e

poc
φ̄ðx; y; z̄Þ

�
ϕx;y

; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βxðsÞIx

p
cos½ψxðsÞ þ ϕx�; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βyðsÞIy

q
cos½ψyðsÞ þ ϕy�:

Since the potential is symmetric function φð−x; y; zÞ ¼ φðx; y; zÞ, and hxφ̄ðx; y; z̄Þi≡ 0.
Hence, the relative strength of neglected terms would be ∼10−3.
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Near the axis expansion of Eq. (A12) is straightforward
using (A9):

Δ ~hscL ¼ − 1

β2oγ
3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

×

�
x2

σxðσx þ σyÞ
þ y2

σyðσx þ σyÞ
�
: ðA13Þ

The classical averaging method10 over the fast betatron
oscillations [75,76]

ΔhscðIx; IyÞ ¼ hΔ ~hscðx; yÞiϕx;ϕy
;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βxðsÞIx

p
cos½ψxðsÞ þ ϕx�;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βyðsÞIy

q
cos½ψyðsÞ þ ϕy�; ðA14Þ

where Ix;y and ϕx;y are the actions and phases of the
betatron oscillations, allows us to find local variation of the
betatron phases as derivatives over the corresponding
action:

dϕx;y

ds
¼ ∂ΔhscðIx; Iy; sÞ

∂Ix;y :

Then, the tune shift is a simple integral over the ring
circumference:

ΔQsc x;y ¼
1

2π

ZC
o

ds
∂ΔhscðIx; Iy; sÞ

∂Ix;y : ðA15Þ

Averaging (A12) over betatron phases is straightforward
using the well-known expression:

FðξÞ ¼ he−2ξcos2ψiψ ≡ 1

2π

Z2π
o

dψe−2ξcos2ψ ¼ e−ξ · IoðξÞ;
ðA16Þ

where IoðξÞ is the modified Bessel function of the first kind
[74]. Expressing the beam sizes through the lattice func-
tions, βx;y, and the geometric emittances ε,11 the transverse
dispersion, D, and the rms energy spread, σδ,

σ2xðsÞ ¼ βxðsÞεx þD2
xðsÞσ2δ; σ2yðsÞ ¼ βyðsÞεy; ðA17Þ

and using Eq. (A16) we get

hΔ ~hsciφx;y

¼ 1

β2oγ
3
o

Z2Norcffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

·
Z∞
0

dϑ

D
exp
�
− 2βxIxcos2φx

2ð1þϑ=uÞσ2x


E
φx

D
exp
�
− 2βyIycos2φy

2ð1þϑ=uÞσ2y


E
φyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϑ=uÞð1þ ϑuÞp

and

hΔhsciϕx;ϕy
¼ 1

β2oγ
3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

×
Z∞
0

dϑ
F
�

A2
x·fE

2ð1þϑ=uÞ


F
�

A2
y

2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϑ=uÞð1þ ϑuÞp ; ðA18Þ

where we introduced new parameters:

A2
x:y ≡ Ix;y

εx;y
; fEðsÞ ¼

βxðsÞεx
βxðsÞεx þD2

xðsÞσ2δ
≡ βxðsÞIx

σ2xA2
x

:

ðA19Þ

As seen from Eq. (A18), the tune shifts depend on the
horizontal and vertical actions as well as on the longitudinal
position s − βoτ inside the bunch. Averaging Eq. (A13)
over the betatron phases gives the Hamiltonian of the linear
motion:

Δ ~hsc ¼ − 1

β2oγ
3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

×

�
2βxðsÞIxhcos2½ψxðsÞ þ ϕx�i

σxðσx þ σyÞ
þ hy2i
σyðσx þ σyÞ

�

and

hΔhscLi ¼ − 1

β2oγ
3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z
1

σxðsÞ þ σyðsÞ

×

�
βxðsÞIx
σxðsÞ

þ βyðsÞIy
σyðsÞ

�
: ðA20Þ

We define the average of a periodic function12 gðsÞ ¼
gðsþ CÞ as follows:

10With averaging over the phases of the betatron oscillations
defined as ð2πÞ2hfiϕx;ϕy

≡ R 2π0 R 2π0 fdϕxdϕy.
11With normalized emittances defined as εn ≡ γoβoε.

12We note that the lattice functions βx;yðsþ CÞ ¼ βx;yðsÞ are
periodic functions of the ring circumference, ψx;yðsþ CÞ ¼
ψx;yðsÞ þ 2πQx;y, while the betatron phases are monotonically
growing functions.
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hgiC ≡ 1

C

ZC
o

gðsÞds: ðA21Þ

Using (A15) and (A20) we obtain the tune shifts
experienced by particles near the axis that then are given by

δQx ¼
C
2π

� ∂
∂Ix hΔhsci

�
C

¼ − C
2π

1

β2oγ
3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

�
1

σxðsÞ þ σyðsÞ
βxðsÞ
σxðsÞ

�
C

¼ − C
4π

1

εxβ
2
oγ

3
o

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

e
−ðs−βoτÞ2

2σ2z

�
2fEðsÞ
1þ 1

u

�
C

to get

δQx ¼ −Qx
sc · e

−ðs−βoτÞ2
2σ2z

�
2βxðsÞεx

σxðsÞ½σxðsÞ þ σyðsÞ�
�

C

¼ −Qx
sc · e

−ðs−βoτÞ2
2σ2z

�
2fEðsÞuðsÞ
1þ uðsÞ

�
C
;

δQy ¼ −Qy
sc · e

−ðs−βoτÞ2
2σ2z

�
2βyðsÞεy

σyðsÞ½σxðsÞ þ σyðsÞ�
�

C

¼ −Qy
sc · e

−ðs−βoτÞ2
2σ2z

�
2

1þ uðsÞ
�

C
; ðA22Þ

where we introduce approximate values for space-charge-
induced tune spreads as

Qx;y
sc ¼ C

4πβ2oγ
3
oεx;y

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

: ðA23Þ

Similarly, using (A15), (A18), and (A19) we obtain the
tune shifts for arbitrary amplitudes of betatron oscillations:

ΔQscx¼Qx
sce

−ðs−βoτÞ2
2σ2z ·

Z∞
0

dϑ

*
fE

F0
�

A2
x·fE

2ð1þϑ=uÞ


F
�

A2
y

2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þϑ=uÞ3ð1þϑuÞ

p
+

C

;

ΔQscy¼Qy
sce

−ðs−βoτÞ2
2σ2z ·

Z∞
0

dϑ

*
F
�

A2
x·fE

2ð1þϑ=uÞ


F0
�

A2
y

2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þϑ=uÞð1þϑuÞ3

p
+

C

;

ðA24Þ

with F0ðξÞ ¼ dFðξÞ
dξ ¼ e−ξ½I1ðξÞ − IoðξÞ�. The plot in Fig. 7

shows FðA2Þ and −F0ðA2Þ as functions of A. The behavior
of the kernel in integral (A24), F0F, indicates that the tune
shift diminishes for particles with large oscillating ampli-
tudes, e.g., ΔQsc x → 0 when I x;y → ∞. It also indicates

that the tune spread for particles confined within Ax;y ≤ 5 is
close to that of the maximum shown in Eq. (A22).
For our further use in this paper we rewrite the

expressions for the tune shifts as follows:

ΔQsc x;y ¼ −Qx;y
sc · e

−ðs−βoτÞ2
2σ2z · ffx:y

�
Ix
εx
;
Iy
εy

�
;

ffxðA2
x; A2

yÞ ¼ −
Z∞
0

dϑ

*
fE

F0
�

A2
x·fE

2ð1þϑ=uÞ


F
�

A2
y

2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϑ=uÞ3ð1þ ϑuÞ

p
+

C

;

ffyðA2
x; A2

yÞ ¼ −
Z∞
0

dϑ

*
F
�

A2
x·fE

2ð1þϑ=uÞ


F0
�

A2
y

2ð1þϑuÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϑ=uÞð1þ ϑuÞ3

p
+

C

:

ðA25Þ

We note that both ffx and ffy, while being smooth
functions of Ix;y, are neither a simple exponential nor can
they be expressed as well-known functions. This signifies
that, in practice, they should be calculated (tabulated) for a
specific storage ring.
Finally, we note that if the contribution of the energy

spread term in (A17) is negligible, i.e.,

βx;yðsÞεx;y ≫ D2
x;yðsÞσ2δ;

then both (A24) and (A25) can be reduced to “symmet-
rically looking” expressions with fE ¼ 1. Further, for a
round beam with equal transverse emittances, εx ¼ εy ¼ ε,
we can write Eq. (A22) as follows:

δQx ¼ −Qsce
−ðs−βoτÞ2

2σ2z

*
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffi
βyðsÞ
βxðsÞ

s !−1+
C

; ðA26Þ

0 2 4 6 8 10
A

0.2
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1.0
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FIG. 7. Plots of FðA2Þ (red) and −F0ðA2Þ (blue) as a function of
A (horizontal axis).
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δQy ¼ −Qsce
−ðs−βoτÞ2

2σ2z

*
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffi
βxðsÞ
βyðsÞ

s !−1+
C

; ðA27Þ

with the expressions

Qsc ¼
C

4πβ2oγ
3
oε

Z2Norp
A
ffiffiffiffiffiffi
2π

p
σz

; ðA28Þ

frequently used as an estimate for tune spread induced by
space charge in hadron storage rings.
To connect the particle’s distribution with the beam

current, we should note that

Iðs; τÞ ¼ Î exp
�
− ðs − βoτÞ2

2σ2z

�

≡ Î exp

�
− ðs=vo − tÞ2

2σ2t

�
;

Î ≡ eZNovo
ð2πÞ1=2σz

; σt ¼
σz
vo

;

fðx; y; s; τ ¼ ctÞ ¼ Î
2πσxσyZevo

× exp

�
− x2

2σ2x
− y2

2σ2y
− ðs − βoτÞ2

2σ2z

�
;

ðA29Þ

where Î is the beam’s peak current. This allows us to rewrite
Eq. (A23) as

Qx;y
sc ¼ C

4πβ3oγ
3
oεx;y

Z
A

Î
IpA

;

IpA ¼ mpc3

e
≡ ec

rp
≅ 31.3 × 106 A; ðA30Þ

where IpA is the Alfven current redefined for protons.

APPENDIX B: TRANSVERSE DISTRIBUTION
OF THE ELECTRON BEAM

We are proposing to use a low energy electron beam to
compensate the space- charge-induced tune shift and spread
in a hadron beam with much higher energy. Both beams
will have similar beam sizes and peak currents. Hence, the
focusing effect of the hadron beam on the electron beam
will be much stronger and, most likely, will cause pinching
of the electron beam. The result of such an interaction will
be neither desirable nor controllable. There is a practical
way of keeping electron beam transverse distribution
controllable and fixed [26]—the propagation of a magnet-
ized beam in a strong solenoid field [78,79]. In this case,
with a solenoid of an appropriately chosen strength,

the electron beam’s profile can be both maintained and
controlled.
Similar to the arguments used for calculating the EM

field induced by the hadron beam, we can conclude that the
4-potential induced by the electron beam is given by (A5)
with a change of the kinematic variables γo → γe; βo → βe:

½φeðx; y; z; τÞ; ~Aeðx; y; z; τÞ�lab
¼ γeð1; βeŝÞ · φ̄e½x; y; γeðz − βeτÞ� ðB1Þ

with the scalar potential, φ̄e, satisfying the reduced Poison
equation in the e-beam’s comoving frame:

Δ⊥φ̄eð~r⊥; z̄Þ ¼ −4πρeð~r⊥; z̄Þ: ðB2Þ

As we discussed in the paper, the convolution of the
longitudinal profile of the electron bunch has to fit that of
the hadron bunch, while the transverse profile should be the
same, i.e.,

ρeð~r⊥; z̄Þ ¼ ρe⊥ð~r⊥Þ · ḡðz̄Þ;
φ̄eð~r⊥; z̄Þ ¼ φ̄

e⊥ð~r⊥Þ · ḡðz̄Þ;
γeḡðz̄Þ ¼ gðz − βeτÞ;

Δ⊥φ̄e⊥ð~r⊥Þ ¼ −4πρe⊥ð~r⊥Þ: ðB3Þ

To satisfy the requirement for a desirable φ̄eð~r⊥Þ, one
“simply” must provide a beam with transverse density
distribution satisfying

ρe⊥ð~r⊥Þ ¼ −Δ⊥φ̄e⊥ð~r⊥Þ
4π

: ðB4Þ

It is easy to see that negatively charged beam is needed
to compensate for the space charge of positively charged
particles, e.g., we know the sign of ρe < 0. But while
looking as a simple mathematical relationship (i.e., the
double differentiation of a given function), we must take
into account that the density should not change the sign,
i.e., on potentials with (unless the ignored longitudinal part
of the Poisson equation becomes non-negligible for some
reason)

Δ⊥φ̄eð~r⊥Þ ≥ 0; ∀ ~r⊥

are allowed in practice. Unfortunately, this is not the only
limitation; generating an arbitrary profile of the electron
bunch is a nontrivial engineering undertaking.
While there are practical challenges in generating the

desirable transverse profiles (especially when the current is
modulated), a large diversity of transverse profiles already
has been generated in practice [64,78,79]. Hence, we can
assume a smooth profile mimicking to a significant degree
the distribution of a hadron beam can be produced.

VLADIMIR N. LITVINENKO AND GANG WANG Phys. Rev. ST Accel. Beams 17, 114401 (2014)

114401-16



This most likely means that only the main features of the
space-charge-induced tune spread can be mimicked by the
compensating beam, and only partial compensation of
the tune spread would be possible. The degree of com-
pensation will depend both on the ring, and the attainable
profile of the electron beam.

APPENDIX C: TUNE SHIFT INDUCED
IN THE E-BEAM COMPENSATOR

Next, we consider an electron beam in a compensating
scheme with a known 4-potential [see (B1)]:

½φeðx; y; s; τÞ; ~Aeðx; y; s; τÞ�lab
¼ γeð1; βeŝÞ · φ̄e½x; y; γeðs − βeτÞ� ðC1Þ

and according to (B2) we get

½φeðx; y; s; τÞ; ~Aeðx; y; s; τÞ�lab
¼ γeð1; βeŝÞ · φ̄e⊥ðx; yÞ · gðs − βeτÞ;Z∞
−∞

gðsÞds ¼ 1. ðC2Þ

The latter can be input into the transverse accelerator
Hamiltonian for the hadrons (similarly to the procedure in
Appendix A) to find how it changes:

δ ~he ¼
Zeγe
β0poc

ð1 − βeβ0Þφ̄e⊥ðx; yÞ · gðs − βeτÞ: ðC3Þ

Assuming the symmetry of the electron beam distribu-
tion, we can assume that

φ̄eðx; yÞ ¼ φ̄ðx2; y2Þ ðC4Þ

and we can average the Hamiltonian over the betatron
phases to find the effective one:

hδhei ¼
Zγee
β0poc

ð1 − βeβ0Þ

× hφ̄½2IxβxðsÞcos2ϕx; 2IyβyðsÞcos2ϕy�iϕx;y

· gðs − βeτÞ: ðC5aÞ

The effective Hamiltonian for a hadron traversing the
interaction region can be expressed as the following:

s ¼ βo · ðτ − τoÞ; τ ¼ τo þ
s
βo

;

ZL=2
−L=2

dshδhei ¼
Zeγe

β20γoAmc2
ð1 − βeβ0Þ

ZL=2
−L=2

dshφ̄½2IxβxðsÞcos2ϕx; 2IyβyðsÞcos2ϕy�iϕx;y
· g

�
s

�
1 − βe

β0

�
− βeτo

�
: ðC5bÞ

Further evaluation is impossible without knowing the specific transverse distribution of electron beam. It is natural to
assume that it also is Gaussian,

feðx; y; s; τ ¼ ctÞ ¼ Ne

ð2πÞ3=2σxσy
exp

�
− x2

2σ2x
− y2

2σ2y

�
gðs − βeτÞ;

φð~rÞ ¼ −eNegðs − βeτÞ
Z∞
0

e
− x2

2σ2exþq
− y2

2σ2eyþqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2σ2ex þ qÞð2σ2ey þ qÞ

q dq; ðC6Þ

and continue with the Hamiltonian variation of

hΔhei ¼
ZNerp
β20γoA

ð1 − βeβ0Þ · g
�
s

�
1 − βe

β0

�
− βeτo

�
×
Z∞
0

dq
F
�
βxðsÞIx
qþ2σ2x



F
�
βyðsÞIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞðqþ 2σ2yÞ

q ;

FðxÞ ¼ IoðxÞe−x; ðC7Þ

and the induced integral Hamiltonian is
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ΔH ¼
ZL=2
−L=2

hΔheids ¼
ZNerp
β20γoA

ð1 − βeβ0Þ ×
ZL=2
−L=2

dsg
�
s
�
1 − βe

β0

�
− βeτo

� Z∞
0

dq
F
�
βxðsÞIx
qþ2σ2x



F
�
βyðsÞIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞðqþ 2σ2yÞ

q ; ðC8Þ

and the induced tune shifts are given by following convolutions:

ΔQx ¼
ZNerp
2πβ20γoA

ð1 − βeβ0Þ
ZL=2
−L=2

dsgðξÞ
Z∞
0

dqβx
F0
�

βxIx
qþ2σ2x



F
�

βyIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞ3ðqþ 2σ2yÞ

q ;

ΔQx ¼
ZNerp
2πβ20γoA

ð1 − βeβ0Þ
ZL=2
−L=2

dsgðξÞ
Z∞
0

dqβy
F
�

βxIx
qþ2σ2x



F0
�

βyIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞðqþ 2σ2yÞ

q
3
;

ξ ¼ s

�
1 − βe

β0

�
− βeτo: ðC9Þ

One possible simplification to (C9) can be done for a case when the size of an electron beam stays constant through the
interaction region, and βx;y ≫ L, that is, we can use a thin-lens approximation for the kick. In this approximation, the effect
of the slippage and that of the kick are separable:

ΔQx ≅
ZNerpβ̄x
2πβ20γoA

ð1 − βeβ0ÞGðτÞ
Z∞
0

dq
F0
�

β̄xIx
qþ2σ2x



F
�

β̄yIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞ3ðqþ 2σ2yÞ

q ;

ΔQy ≅
ZNerpβ̄y
2πβ20γoA

ð1 − βeβ0ÞGðτÞ
Z∞
0

dq
F
�

β̄xIx
qþ2σ2x



F0
�

β̄yIy
qþ2σ2y



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2σ2xÞðqþ 2σ2yÞ3

q ;

GðτÞ ¼
ZL=2
−L=2

dsg

��
1 − βe

β0

�
s − βeτ

�
; β̄x;y ¼

1

L

ZL=2
−L=2

βx;yðsÞds: ðC10Þ

The idea of the method is that GðτÞ approximates the
hadron beam’s longitudinal shape. Then the goal of the
transverse shaping and choosing an appropriate βx;y as well
as the electron beam intensity and sizes is to approximate
the values of the tune shift induced by the space-charge
effects and their dependence on the transverse actions.
These assumptions set already familiar requirements:

GðτÞ ¼ e
−ðs−βoτÞ2

2σ2z ; Ne ¼
ZNo

γ2oð1 − βeβ0Þ
Cffiffiffiffiffiffi
2π

p
σz

: ðC11Þ

APPENDIX D: DECONVOLUTION

Before starting the derivation for deconvolving Eq. (22),
we list our assumptions:
1. By definition, Δz ¼ cΔt > 0.
2. We assume that the hadron beam longitudinal dis-

tribution function, qðzÞ, is an analytical function, with a
finite integral and values diminishing at infinity.

3. Furthermore, we assume that at large distances, its
derivative also vanishes faster that 1=jzj, that is
jq0ðzÞj < A=jzj1þε; ε > 0. This rather weak assumption will
be used for proving the convergence of the convolution.
To deconvolve the equation (22), we rewrite it in the

following form:

RΔz
0 gðzþ ζÞdζ ¼ qðzÞ

⇓R
zþΔz
z gðζÞdζ ¼ qðzÞ:

ðD1Þ

Taking the derivative, we get the finite step differential
equation on g:

gðzþ ΔzÞ − gðzÞ ¼ q0ðzÞ; ðD2Þ

which can be solved by turning the finite series
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Xn
m¼0

q0ðzþmΔzÞ ¼
Xn
m¼0

g½zþ ðmþ 1ÞΔz� −Xn
m¼0

gðzþmΔzÞ

¼
Xnþ1

m¼1

gðzþmΔzÞ −Xn
m¼0

gðzþmΔzÞ;

Xn
m¼0

q0ðzþmΔzÞ ¼ g½zþ ðnþ 1ÞΔz� − gðzÞ ðD3Þ

and assuming that gðzÞz→∞ → 0, we can derive the result:

gþðzÞ ¼ −X∞
m¼0

q0ðzþmΔzÞ: ðD4Þ

We naturally assume that the sum
P∞

m¼0 q
0ðzþmΔzÞ

converges, i.e., that the derivative of the distribution
function at large values falls faster than A=jzj1þε; ε > 0.
Similarly, using

Xnþ1

m¼1

q0ðz −mΔzÞ ¼
Xn
m¼0

gðz −mΔzÞ −Xnþ1

m¼1

gðz −mΔzÞ

¼ gðzÞ − g½z − ðnþ 1ÞΔz�; ðD5Þ
and assuming that gðzÞz→−∞ → 0, we can derive the second
result:

g−ðzÞ ¼ þ
X∞
m¼1

q0ðz −mΔzÞ: ðD6Þ

Since the function gðzÞ is not unique, function g− in (D6)
is not necessarily identical to gþ in (D4). Adding any

periodical function with period Δz and a zero integral,
we get

g1ðzÞ ¼ gðzÞ þ pðzÞ;

pðzþ ΔzÞ ¼ pðzÞ;
ZΔz
0

pðzÞdz ¼ 0; ðD7Þ

does not change the property of satisfying the convolution.
But it definitely violates the natural requirement that
gðzÞz→�∞ → 0, i.e., the length of the electron bunch is
finite.
By observing (D4) and (D6), we can conclude that for a

properly behaving distribution function

jq0ðzÞj < A=jzj1þε; ε > 0 ðD8Þ

gþðzÞz→þ∞ → 0 and g−ðzÞz→−∞ → 0. It is rather easy to
prove by considering z > 0:

jgþðz > 0Þj <
X∞
m¼0

jq0ðzþmΔzÞj < A
X∞
m¼0

				zþmΔz
				−ð1þεÞ

< A
X∞
m¼M

				mΔz
				−ð1þεÞ

¼ A
Δz1þε

X∞
m¼M

1

m1þε ;

M ¼ Floor

�
z
Δz

�
>

z − Δz
Δz

;

X2M−1

m¼M

1

m1þε <
X2M−1

m¼M

1

M1þε ¼
1

Mε ;
X4M−1

m¼2M

1

ð2MÞ1þε <
1

ð2MÞε →
X∞
m¼M

1

m1þε ≤
1

Mε

X∞
n¼0

1

ð2εÞn ¼
1

Mε

2ε

2ε − 1
;

jgþðz > 0Þj < A
Δz1þε

1

Mε

2ε

2ε − 1
<

A
Δz1

1

ðz − ΔzÞε
2ε

2ε − 1
;

with the latter expression definitely showing that
gþðzÞz→þ∞ → 0. Proving g−ðzÞz→−∞ → 0 is identical to
the logic with that given above, but for z < 0 replacing M
to M ¼ Floor½− z

Δz� > − zþΔz
Δz .

While at some values of Δz g− can be identical to gþ,
there are clear physics examples of where they can diverge.
For example, we can consider a bell-shaped qðzÞ with its
entire span falling within Δz, i.e., qð�Δz=2Þ ¼ 0. In

practice such distributions exist, for example as a bunch
in a single rf bucket. It means that

ZΔz=2
−Δz=2

q0ðzÞdz ¼ 0; q0
�
�Δz

2

�
¼ 0:
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At the same time q0ðzÞ has at least one maximum value
and one minimum one, with an interval f−Δz=2;Δz=2g.
We mark the locations of these q0ðzÞ extremes as
zþðmaximum; zþ < 0Þ, z−ðminimum; z− > 0Þ. Then, for
an arbitrarily positive m, we have gþðzÞ ¼−P∞

m¼0 q
0ðzþmΔzÞ,g−ðzÞ ¼ þP∞

m¼1 q
0ðz −mΔzÞ:

gþðzþ −mΔzÞ ¼ −q0ðzþÞ < 0;

gþðz− −mΔzÞ ¼ −q0ðz−Þ > 0;

g−ðzþ þmΔzÞ ¼ q0ðzþÞ > 0;

g−ðz− þmΔzÞ ¼ q0ðz−Þ < 0; ðD9aÞ

i.e., denoting the oscillating nature of gþ at negative
values and g− at positive values of the argument.
Furthermore,

gþðzÞ ¼ 0; z > Δz=2;

gþðzÞ ¼ −q0½Δzmodðz=Δzþ 1=2Þ−Δz=2�; z < Δz=2;

g−ðzÞ ¼ 0; z < Δz=2;

g−ðzÞ ¼ q0½Δzmodðz=Δzþ 1=2Þ−Δz=2�; z > Δz=2;

gþðzÞ− g−ðzÞ ¼ −q0½Δzmodðz=Δzþ 1=2Þ−Δz=2�;
ðD9bÞ

with the difference being a periodic function with zero-
value integral. Figure 8 below shows this behavior for a
Gaussian qðzÞ as a function of the delay.
Since Eq. (22) is linear, any combination of

gαðtÞ ¼ αgþðtÞ þ ð1 − αÞg−ðtÞ
is a deconvolution of Eq. (22). For practical applications,
the most interesting is an even sum of both:

2g1=2ðzÞ ¼ gþðzÞ þ g−ðzÞ ¼
X∞
m¼1

q0ðz −mΔzÞ −X∞
m¼0

q0ðzþmΔzÞ;

2g1=2

�
zþ Δz

2

�
¼
X∞
m¼1

q0
�
z −mΔzþ Δz

2

�
−X∞

m¼0

q0
�
zþmΔzþ Δz

2

�
;

X∞
m¼0

q0
�
zþmΔzþ Δz

2

�
¼
X∞
m¼1

q0
�
zþmΔz − Δz

2

�
;

2g1=2

�
zþ Δz

2

�
¼
X∞
m¼1



q0
�
z −

�
m − 1

2

�
Δz
�
− q0

�
zþ

�
m − 1

2

�
Δz
��

:

Hence, we can define a “symmetric-form” function as

GðzÞ ¼ g

�
zþ Δz

2

�
¼ 1

2

X∞
m¼1



q0
�
z −

�
m − 1

2

�
Δz
�
− q0

�
zþ

�
m − 1

2

�
Δz
��

ðD10Þ

and easily prove that

FIG. 8. 3D plot of τ · ½gþðtÞ − g−ðtÞ� (vertical axis) for Gaus-
sian convolution function with t ¼ z=σz ∈ ð−5; 5Þ being a
horizontal axis, and the third axis is τ ¼ Δz=σz ∈ f0; 3g [see
Eqs. (D4) and (D6)].
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X∞
m¼1

ZzþΔz
2

z−Δz
2

dz1



q0
�
z1 −

�
m − 1

2

�
Δz
�
− q0

�
z1 þ

�
m − 1

2

�
Δz
��

¼
X∞
m¼1

fqðzþ Δz −mΔzÞ − qðzþmΔzÞ − qðz −mΔzÞ þ qðz − ΔzþmΔzÞg

¼

X∞

m¼0

qðz −mΔzÞ −X∞
m¼1

qðzþmΔzÞ −X∞
m¼1

qðz −mΔzÞ þ
X∞
m¼0

qðzþmΔzÞ
�

¼ 2qðzÞ

ZzþΔz=2

z−Δz=2
GðζÞdζ ¼ qðzÞ. ðD11Þ

If qð−zÞ ¼ qðzÞ is symmetric, then

q0ðzÞ ¼ −q0ð−zÞ → q0
�
z −

�
m − 1

2

�
Δz
�
¼ −q0

��
m − 1

2

�
Δz − z

�
;

q0
�
zþ

�
m − 1

2

�
Δz
�
≡ q0

��
m − 1

2

�
Δzþ z

�

and GðzÞ can be rewritten in a form that has obviously symmetric terms:

GðzÞ ¼ − 1

2

X∞
m¼1



q0
��

m − 1

2

�
Δz − z

�
þ q0

��
m − 1

2

�
Δzþ z

��
: ðD12Þ

It is easy to prove:

vðzÞ ¼ q0ða − zÞ þ q0ðaþ zÞ;
vð−zÞ ¼ q0ðaþ zÞ þ q0ða − zÞ≡ vðzÞ:

Let us consider a practical case with

qðzÞ ¼ exp

�
− z2

2σ2

�
; ðD13Þ

we then have

gþðzÞ ¼
1

σ2
X∞
n¼0

ðzþ nΔzÞ · exp
�
− ðzþ nΔzÞ2

2σ2

�
: ðD14Þ

Undoubtedly, the behavior of the gðzÞ is defined by
dimensionless parameter τ ¼ Δz

σ :

FIG. 9. 3D plots of (a) gþðtÞ and (b) g−ðtÞ as functions of t ∈ ð−5; 5Þ and the parameter τ ∈ f0; 3g. The clipping shows the area where
the function becomes negative.
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gþðtÞ ¼
1

σ

X∞
n¼0

ðtþ nτÞ · exp
�
− ðtþ nτÞ2

2

�
;

t ¼ z
σ
; τ ¼ Δz

σ
: ðD15Þ

Figure 9 shows the value of g�ðtÞ as functions of
t ∈ ð−5; 5Þ and τ ∈ f0; 3g. It shows that for τ ∈ f0; 1g the
functions g�ðtÞ remain positive. Figure 10 shows details
of g�ðtÞ at τ ¼ 1; 2; 3. Again, it is obvious that for τ > 2 it
is impossible to make gðtÞ > 0 approximating the
required function. But it also is obvious that for τ≤ 1.5
Equations (D4) and (D6) generate a smooth positive
function, which, in principle, can be reproduced by an
e-beam’s profile.
Figures 3–5 in Sec. III also show that deconvolutions

for τ ≤ 1.5 are generating smooth positive functions
closely approximating the required forms. As shown in
Fig. 11, the gþðtÞ for τ ¼ 1.5 attains small negative values

FIG. 12. (a) A plot of gþðtÞ for τ ¼ 2 (blue) and a fit of a positive function (magenta). (b) The residual tune shift as a function of the
position within a hadron bunch, when a fitted function is used.
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FIG. 10. Plot of τ · g�ðtÞ (gþ is on the left, and g− is on the right) as functions of t ∈ ð−5; 5Þ. Colors code: blue for τ ¼ 1, cyan for
τ ¼ 2 and yellow-green for τ ¼ 3.
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0.5

0.5

1.0

g

FIG. 11. 3D plot of τgþðtÞ as a function of t ∈ ð−5; 5Þ and for
τ ¼ 1.5.
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at t < −3. Detailed studies show that it becomes an
oscillating sin-like function with amplitude about
1.5 × 10−3 and with period of T ∼ 1.5. Simply cutting
this tail at t < −3 makes a practically useful positive
function, whose convolution deviates from (22) only by a
small fraction ∼7 × 10−4.
As Fig. 12 shows, it even is possible to use τ ¼ 2 with a

smooth positive function, approximating the exact decon-
volution, to compensate for more than 95% of the tune
spread induced by the space charge. While this can be
considered, using τ ≤ 1.5 is preferable for accurate space-
charge compensation.
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