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Quantum diffusion effects in undulator radiation in semiclassical approximation are considered.
Short-term effects on the electron beam motion are discussed and it is shown that approaches based
on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet
radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding
field, all lead to similar results in terms of electron energy spread for cases of practical interest. An
analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is
derived.
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I. INTRODUCTION

Undulator radiation has been long produced experimen-
tally and understood theoretically (see, e.g., [1–4]).
Numerical modeling of realistic devices taking realistic
field configurations into account has also been long possible
[5–7]. In X-ray free electron lasers (FELs) very long
undulators are needed so that the Self-amplified sponta-
neous emission (SASE) process has time to develop. For
example, the European XFEL has 22 sections for soft X-ray
undulators, and 35 sections for hard X-ray undulators, of
approx. 6 m length each [8]. At such lengths the electron
beam diverges significantly and needs focusing. For that
reason the undulator comes in segments with focusing
magnets and beam instrumentation placed in the intersec-
tions. Calculation of spontaneous undulator radiation (SR)
from such a setup in an XFEL facility mostly serves
diagnostics purposes where two segments are brought in
phase by tuning a phase shifter magnet [9,10]. SR is also a
background signal which is to be taken into account in
experiments and X-ray optics design. For most of these
purposes rather rough estimates neglecting focusing, emit-
tance and energy spread are typically sufficient. When the
required relative precision of SR spectrum calculation is
better than 200–300%, the mentioned effects are to be
included. To facilitate future ad-hoc calculations of SR for
various purposes, a detailed model of the European XFEL
undulator section was introduced in a simulation code [11].
It allows us to calculate radiation spectra taking the energy
spread and emittance effects into account. Further discus-
sions of these effects for the parameter space of the European
XFELcan be found in [12].Another effectwhich is expected
to influence the radiation spectrum in such long undulators is

the so called quantum diffusion of electron trajectories, and
the present paper focuses on this effect.
The effect of electron beam diffusion due to statistical

fluctuations in photon emission in the bending magnets of a
storage ring has long been known and exploited in
synchrotrons, where the beam dimensions are the result
of equilibrium between radiative damping and radiative
excitations of the betatron and synchrotron oscillations. In
this work we focus on the single-pass effects in the
undulator radiation, leaving aside the questions of long-
term beam stability and equilibrium dimensions, which
have already been studied extensively and are receiving
further attention in connection to very low emittance
storage rings. With the emergence of light sources with
large number of insertion devices and the development of
free electron lasers with very long undulators, two ques-
tions receive attention. First, what are the valid approaches
to model the electron trajectories when electron recoil from
photon emission is taken into account. And second, how
does this influence the undulator radiation spectrum. The
first question is studied in Sec. II. We discuss the range of
validity of the diffusion approximation, two ways of
arriving at the diffusion coefficients, and their respective
range of validity. It is shown that for the range of most
practical interest, i.e., for the undulator parameter K ≳ 1,
the diffusion approximation with the diffusion coefficients
derived from the local field values is adequate, and can be
used in calculations of, e.g., radiation integrals [13]. The
second question is addressed in Sec. III. Analytical
expressions for the influence of energy loss and fluctua-
tions on the undulator radiation spectrum are given. It is
shown that for long undulators (Lw ≳ 10 m), large undu-
lator parameters [(K ≳ 2)], and high electron energies
(E≳ 10 GeV) the effect of quantum diffusion will always
be observed. Moreover, for the parameter space of the
European XFEL [8], spontaneous undulator radiation
intensity at the resonant frequency is reduced by up to
an order of magnitude.
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II. ELECTRON DYNAMICS TAKING RADIATION
EMISSION FLUCTUATIONS INTO ACCOUNT

When calculating synchrotron radiation emitted by
electrons in long undulator sections in fields B ∼ 1 T,
beam energy distribution dilution caused by quantum
fluctuations in the radiated energy has to be taken into
account whenever E≳ 0.5 GeV. At the same time, one
does not need to consider the quantum nature of the
radiation itself unless ð BB0

Þγ ∼ 1, where B0 is the

Schwinger field B0 ∼ 4 × 109 T and γ the relativistic factor
[14]. Such conditions exist in astrophysics or in atomic
nuclei, but are not yet achieved in accelerators. For
synchrotron radiation in particle accelerators, when spin
polarization properties of the electrons resulting from
radiation emission are not important, it is sufficient to
consider radiation computed classically, treating trajecto-
ries as random. Computationally, it is most convenient to
model the random trajectory by a diffusion process with
diffusion-drift coefficients depending on the local magnetic
field value. This is however not always possible since the
radiation spectrum, from which both the average energy
lost by the electron and its fluctuations are derived, cannot
be calculated from too short a segment of the trajectory.
When the field variation over the radiation formation length
is significant, the local approach cannot be, strictly speak-
ing, used. For situations of practical interest where the
diffusion starts playing a role, the local approximation is
however valid, which is shown in this section. Moreover,
expressing the radiated power for a single electron in terms
of the number of photons, it can be shown that the average
number of photons emitted per undulator period may
become less than one. Then one should in principle resort
to the more general representation of the electron dynamics
by a Poisson process. It is, again, shown, that in cases of
practical interest the diffusion approximation remains
adequate.
Assume that in time Δt the electron loses energy due to

(random) emission of radiation quanta. The approach to
include the energy loss is to consider an electron moving on
a certain trajectory where the emitted spectrum is known,
such as a circular path or a sinusoidal path in an undulator,
and then calculate the mean and variance of the total
radiated power given by that spectrum. For an electron
moving on a path with a constant radius of curvature ρ this
can be obtained according to [15]. The assumption is that
during the time Δt ¼ ρ=γc the radius of curvature stays
constant (the time needed for the radiation cone to sweep
by an angle 1=γ). Since

γme½GeV=c� ¼ ρ½m� · B½T� · 0.2998;
the requirement that the path length during this “emission
time” is much less than the undulator period

Δt · c ¼ ρ=γ ¼ me½GeV�=0.2998B½T� ≪ lw½m�

or roughly

1=B½T� ≪ 6 · lw½cm�: ð1Þ

Assuming that the energy of each emitted photon and the
number of photons emitted are not correlated, and the
latter has Poisson statistics [16] with the property
hN2i ¼ hNi2 þ hNi, one arrives at the drift and diffusion
coefficients aðγÞ and bðγÞ given by

mec2aðγÞ ¼ Pγ; mec2b2ðγÞ ¼
55

ffiffiffi
3

p

72mec2
Pγuc; ð2Þ

where Pγ ¼ 2mec3re
γ4

ρ2
is the average radiation power and

uc ¼ 3
2
ℏcγ3

ρ the critical photon energy. Note that substituting
the mean magnetic field of a planar undulator into this
expression one gets

hdðδγÞ2i
dðctÞ ¼ b2ðγÞ

c
∼
γ4

l3w
K3:

The condition (1) is not always fulfilled for XFEL
undulators when K is small. For example for the
European XFEL, 4 cm and 6.8 cm period undulators are
used, and it might not be strictly fulfilled when producing
very short-wavelength radiation, which corresponds to
K < 1. Following a similar approach, but taking the
undulator radiation spectrum as a starting point, in [17]
the following approximate expression for diffusion in an
ideal undulator field was derived

hdðδγÞ2i
dðctÞ ¼ 122π3

15
ƛcre

γ4

l3w
K3 × fðKÞ; ð3Þ

where for a planar undulator asymptotically

fðKÞ ¼ 1.20þ 1

K þ 1.50K2 þ 0.95K3
:

For K ≪ 1 the two approaches lead to different asymp-
totics, and the approach based on local field value should not
be used. For K > 1 both approaches can be used: although
the radiation spectra for undulator and bending magnet
radiations are different, the total radiated power and its
variation are similar, which leads to similar electron
dynamics. For an XFEL 40 mm and 68 mm undulators,
the diffusion coefficients for different beam energies and K
parameters are shown in Fig. 1. Due to the K3 scaling of the
diffusion coefficient, only strong undulators contribute
significantly to diffusion and in numerical calculations the
local field approach can be used with a good accuracy.
The validity of the diffusion approximation for calculating
the rms electron beam dimensions is always justified by
virtue of summation over a very large number of electrons in
the bunch.
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The validity of the diffusion approximation is further
confirmed by numerical Monte-Carlo simulations [18].
These simulations are based on the following method.
The bending magnet spectrum is used to calculate the mean
free path based on the local radius of curvature of the
electron trajectory in the magnetic field. A random time
is generated using Poisson statistics, and the electron is
tracked for that period of time. After that a photon is
generated. The photon carries the momentum directed
along the electron path at the emission time and its energy
is randomly generated according to the bending magnet
spectrum. A transverse photon momentum can be gener-
ated based on the radiation opening angle estimate, it has
however no noticeable effect and is not used in the
simulations. The photon momentum is finally subtracted
from the electron momentum and the tracking is continued.
More details of the implementation are given in [18].
Example of the electron and photon trajectories resulting
from such calculations are shown in Fig. 2.

A stochastic leap-frog integrator was also implemented.
In this integrator a normally distributed value is added to
the electron energy at equal time steps. The mean and
variance of this value corresponds to the drift and diffusion
coefficients (2) or (3). For cases of practical interest
(K > 1), all these approaches lead to similar results for
the resulting energy spread. Example of comparison of the
Monte-Carlo method to the stochastic integrator are shown
in Fig. 3.
Although leading to correct beam energy spread, the

diffusion approximation can lead to unphysical single
trajectories in the longitudinal phase space, since the
electron energy can grow, with a certain probability, as a
result of photon emission. Since in both bending magnet
and undulator radiation the characteristic energy of emitted
photons is much smaller than the electron energy, many

FIG. 2. Electron (blue) and photon (green) trajectories, for
17.5 GeV electron beam, K ¼ 1.0, over 100 m.

FIG. 3. Energy spread γ=γ0 at the undulator exit, from initially
delta-distributed beam. Direct Monte Carlo (solid) and stochastic
integration [dashed, diffusion coefficient corresponding to
Eq. (3)], for 17.5 GeV electron beam, K ¼ 1.0, over 100 m.

FIG. 1. Diffusion coefficients for SASE XFEL undulators in
units of log10 of energy broadening [MeV] per 100 m. The upper
plot corresponds to lw ¼ 0.04 m and the lower to lw ¼ 0.068 m.
Dashed lines correspond to negative exponent values.
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such emissions need to occur before the electron changes
energy sufficiently. Thus, in most practical situations the
small deviations of single trajectories from those resulting
from Poisson statistics can be neglected.
One practical consequence of the results discussed in this

section is that whenever diffusion is not negligible, the
diffusion coefficient is to a good approximation given by
the local magnetic field along the electron trajectory. This
means that expressions for the equilibrium beam dimen-
sions in storage rings where integrals involving local radius
of curvature enter [13] are valid for the undulator case too.

III. EMITTED SPECTRA IN THE DIFFUSION
APPROXIMATION

The standard derivation of the undulator radiation
spectrum in frequency domain based on paraxial version
of Maxwell’s equation (see, e.g., [19]) allows for extevmn-
sion to compute the statistical moments. In the paraxial
approximation, the Fourier component of the radiation field
at observation point r⊥0, z0 is

~Eω ¼ −
iωe
4πc2

Z
L

−L
dz

eiϕ

zO − z

�
βðzÞ − r⊥0 − r⊥ðzÞ

z0 − z

�
;

where

ϕ ¼ ω

�
sðzÞ
v

−
z
c
þ jr⊥0 − r⊥j2

2cðz0 − zÞ
�
:

Here r⊥ðzÞ and βðzÞ are the position and relativistic
velocity of the electron, and sðzÞ its path length as
a function of the longitudinal coordinate. In a planar
undulator the trajectory is to a good accuracy

xðzÞ ¼ K
γkw

cosðkwzÞ;

βðzÞ ¼ −
K
γ
sinðkwzÞ;

sðzÞ ¼ β

βz
z −

K2

8γ2kw
sinð2kwzÞ;

βz ¼ β

�
1 −

K2

4γ2

�
;

where the undulator wave number kw ¼ 2π=lw was used. In
the following we perform estimates for on-axis spectrum
only, which is sufficient for our purposes. Analysis of off-
axis spectrum or spectrum integrated over a finite aperture
is more technically involved and better done numerically,
but the qualitative estimates of diffusion effects still hold.
Moreover, it is assumed that the number of undulator
periods Nw is large and the observation point is in far zone.
Then only polarization component in the plane of motion is
considered, which is

~Eω;x ¼ −
iωe

4πc2z0

Z
L

−L

K
γ
sinðkwzÞeiϕdz

≡ iC1

Z
L

−L

1

γ
sinðkwzÞeiϕdz;

ϕ ¼ ω

ω1

�
kwz −

K2ω1

8γ2kwc
sinð2kwzÞ

�
;

ω−1
1 ¼ 1

2kwcγ2

�
1þ K2

2

�
;

where L ¼ Nwlw=2 is the undulator half-length. The
integral is evaluated with the help of the identity

eiu sinψ ¼
X∞
n¼−∞

JnðuÞeinψ ;

where Jn are Bessel functions of first kind

~Eω;x ¼ iC1

X∞
n¼−∞

Z
L

−L

1

γ
JnðuÞeikwzð

ω
ω1
þ2nÞ sinðkwzÞdz

¼ C1

X∞
n¼−∞

Z
L

−L

1

2γ
JnðuÞ½sinΨn;þz − sinΨn;−zþ iðcosΨn;−z − cosΨn;þzÞ�dz;

Ψn;� ¼ kw

�
ω

ω1

þ 2n� 1

�
; u ¼ ω

ω1

K2

4ð1þ K2

2
Þ ¼

ωK2

8kωcγ2
: ð4Þ

If γ and thus u and ω1 are assumed constant, only cosine terms contribute to the integral and this becomes

~Eω;x ¼ −
C1L
γ

X∞
n¼−∞

JnðuÞ
�
sinΨn;þL
Ψn;þL

−
sinΨn;−L
Ψn;−L

�
:
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This expression has resonant behavior around
ω ¼ ð−2n� 1Þω1, e.g., for the first harmonic one is left
with two terms

~Eω;x ¼ −
C1L
γ

½J0ðuÞ − J1ðuÞ�
sinΨ0;þL
Ψn;þL

¼ −
ωeKNwlw
4πγc2z0

½J0ðuÞ − J1ðuÞ�
sin πNwΔω=ω1

πNwΔω=ω1

;

where Δω ¼ ω − ω1. Now if the change of energy is taken
into account, JnðuÞ and 1=γ cannot be taken out of the
integral. The contribution of the phase and amplitude
factors to the integral can be estimated separately.
Assuming the phase constant, JnðuÞ and 1=γ can be
developed into Taylor series taking only the linear part
of the energy change δγðtÞ. To estimate the amplitude first
note that the integrals of the type

I ¼
Z

L

−L
δγðzÞfðzÞdz;

where δγðzÞ is a random walk type process with
hδγð−LÞi ¼ 0 and independent Gaussian increments, have
moments

hIi ¼ a
Z

L

−L
tfðtÞdt; hI2i − hIi2

¼ b2
Z

L

−L
ds

�Z
L

s
fðtÞdt

�
2

:

Using 1
γ ≈

1
γ0
− 1

γ2
0

δγ and taking into account approxima-

tions J0ðuÞ ≈ 1 − u2
4
, J1ðuÞ ≈ u

2
(for u < 1) one sees that the

contributions to the integral (4) from the variation of JðuÞ
and γðzÞ are of order 1=γ and can be neglected. The major
contribution is in the phase sinceΨ becomes a function of z
and the phase shift in the integrand is of order kwLδω=ω1

which is not small. This is in analogy with incoherent
summation of fields from independent emitters. Now
consider the phase only, and consider the contribution of
energy drift term. Up to the first order in δγ the integrand
phase for the first harmonic becomes

Ψ1 ¼ kw

�
Δω
ω1

þ 2
ω

ω1

δγ

�
¼ kw

�
Δω
ω1

þ 2
ω

ω1

âz

�
;

where â ¼ 2Pγ

mec
is the relative energy loss per meter.

Integration can be done with the help of Fresnel integrals
C and S

~Eω;x ¼ −
ωeK

4πγc2z0
½J0ðuÞ − J1ðuÞ�

ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffi
2âkw

p

×

�
cos

kwðΔω=ω1Þ2
4â

�
C

� ffiffiffiffiffi
kw

p ðΔω=ω1 þ NwlwâÞffiffiffiffiffiffiffiffi
2πâ

p
�
− C

� ffiffiffiffiffi
kw

p ðΔω=ω1 − NwlwâÞffiffiffiffiffiffiffiffi
2πâ

p
��

þ sin
kwðΔω=ω1Þ2

4â

�
S

� ffiffiffiffiffi
kw

p ðΔω=ω1 þ NwlwâÞffiffiffiffiffiffiffiffi
2πâ

p
�
− S

� ffiffiffiffiffi
kw

p ðΔω=ω1 − NwlwâÞffiffiffiffiffiffiffiffi
2πâ

p
���

: ð5Þ

Numerical values of the intensity for various values of â
are plotted in Fig. 4. The energy loss of electrons can be
compensated by undulator tapering, i.e., changingK so that
ω=ω1 is kept constant. Then the effect of energy loss
becomes negligible again. Note that this argument applies
to the radiation at an arbitrary angle θ, where the resonant
frequency is given by

ω−1
1 ¼ 1

2kwcγ2

�
1þ K2

2
þ γ2θ2

�

but does not apply to the radiation integrated over a finite
solid angle.
Fluctuations in the phase factor cannot be compensated

with tapering since they vary for each electron independ-
ently. It is possible to estimate the spectrum in the limit of
small or large fluctuations (in the first case, representing the
term proportional to eiz

2

by its linear part, in the latter by
FIG. 4. Spectrum corresponding to various energy drift
parameters, Nw ¼ 1000.
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representing the integral as a sum of terms with uncorre-
lated phases). In practice the phase factor arising in
fluctuations need not be small or large, which is the case
whenever Nwðδγ=γÞz ∼ 1, where ðδγ=γÞz is the rms diffu-
sive energy spread at distance z, e.g., at the undulator exit.
It can be calculated with the methods of Sec. II. This
happens for some part of the European XFEL parameter
space (see Fig. 1). To understand the spectrum in this case it
is easier to introduce the “diffusive dephasing” parameter

D ¼ 4πNwðδγ=γÞz: ð6Þ

The dependency of the undulator radiation spectrum on
the diffusive dephasing parameter is shown in Fig. 5. The
effect will be noticeable at the European XFEL for all
wavelengths. For example for the soft X-ray undulator at
17.5 GeV in the radiation wavelength range ∼ 1 KeV
(K ∼ 7), the diffusive energy spread will be ∼ 5 MeV,
which taking into account Nw ≈ 2000 results in D ¼ 2π. In
that case the peak spectral intensity for the on-axis radiation
is reduced by more than an order of magnitude.
Note that the on-axis spontaneous radiation spectrum can

be more sensitive to the emission fluctuations than the
SASE FEL radiation [20]. This can be explained so that in a
SASE FEL for the exponential power growth regime only
dephasing effects over one gain length play a role, the latter
being only a fraction of the full undulator length.

IV. CONCLUSION

We discussed approaches to calculating the electron
beam energy spread due to quantum diffusion, and showed
that for cases of practical interest the diffusion coefficients
can be calculated based on the local magnetic field,
which greatly simplifies several types of calculations as
compared to using the diffusion coefficients obtained from
the undulator radiation spectrum. The effects of Poisson

statistics in the photon emission was shown to be
negligible.
In synchrotron light sources where single undulator

length is typically a few meters and the energies are a
few GeV, the effect of quantum diffusion enters the
undulator radiation spectrum indirectly by influencing
the equilibrium electron beam parameters [21], while its
single-pass effect on the radiation can be neglected. This is
not the case for FEL undulators. It has been shown that
quantum diffusion results in significant spectrum broad-
ening. This has to be taken into account whenever sponta-
neous synchrotron radiation from long undulators is
studied. The influence of the diffusion effect on the
spectrum can be estimated with the dephasing parameter.
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